PHYSICS OF FLUIDS 19, 043301 (2007)

Static and flowing regions in granular collapses down channels
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Through laboratory experiments we investigate inertial granular flows created by the instantaneous
release of particulate columns into wide, rectangular channels. These flows are characterized by
their unsteady motion, large changes of the free surface with time, and the propagation towards the
free surface of an internal interface separating static and flowing regions. We present data for the
time-dependent geometry of the internal interface and the upper, free surface for aspect ratios, a, in
the range from 3 to 9.5 (where a=h;/d, is the ratio of the initial height to basal width of the column).
The data were analyzed by two different approaches. First, by integrating under the entire internal
interface we obtained data for the static area, Ay, as a function of time for different a. Second, in
order to characterize vertical deposition rates, we measured the thicknesses of the flowing region,
hp(x,1), and the static region, hp(x,1), at fixed horizontal positions, x, and time, ¢, since the initiation
of the experiment. We also determined detailed velocity profiles with depth at distances scaled to the
final maximum runout distance to analyze the kinematic behavior of the flowing layer. In the initial
free-fall phase, the temporal variation of the static area is independent of /; and scales as gd;t.
During the subsequent lateral spreading phase, Ap(f) varies linearly with time and the
nondimensional deposition rate (dAp/dt)/(gd;)"? is a linear function of a. The thickness of the
interface hp(x,t) at constant x depends on a and varies linearly with time. The local deposition rate
dhp!dt is not constant along the flow length. Data show that for the major part of the flow length
Phpldtdx is constant. In the lateral spreading phase, the velocity profiles are characteristically

linear with a basal exponential region, a few grains in thickness, which separates static from moving

regions. The shear rate is a constant dependent on a modified initial height }7,» as (g/ ﬁi)” 2, where lZ»

is a characteristic length scale in the system describing the fraction of the granular column actually
involved in the flowing region. © 2007 American Institute of Physics. [DOL: 10.1063/1.2712431]

l. INTRODUCTION

The complex physical behavior of granular media is of
great interest in diverse areas including agriculture, chemical
engineering, fundamental physics, the pharmaceutical indus-
try, and the Earth sciences. Understanding the physics of
dense, granular flows is of particular importance in under-
standing the propagation of geophysical mass flows and how
to predict their runout. Examples of such flows include
highly destructive pyroclastic flows formed in explosive vol-
canic eruptions and avalanches of debris or snow. Numerical
simulations of geophysical mass flows over natural terrain
are being used more frequently by geologists and geophysi-
cists to produce hazard maps for volcanic' and mountainous
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areas.” Despite many fundamental studies dedicated to the
dynamics of dense granular flows, these simulations have to
circumvent the problem that the underlying constitutive
equations are still unknown. The general approach has been
to derive depth-averaged equations for steady flow condi-
tions and introduce empirical friction laws to try to obtain
agreement between data and experixnentsﬁ’7 For the case of
free-surface flows driven by gravity, three major flow geom-
etries have been studied extensively: chute flows on rough
inclines at angles slightly above the static angle of repose,
rotating drums, and heap flows. A review of the rheological
models obtained in these steady flow situations was recently
presented in the collective paper by G.D.R. Midi.®
Recently, free-surface flows of granular media have been
investigated in a fourth type of flow geometry by laboratory
experimentsgf14 and by computer simulations."”™” These
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studies all consider the fundamental problem of the collapse
of an initially static granular column released instantaneously
onto a rough horizontal bed. Granular collapse flows differ
considerably from thin, quasisteady granular chute flows at
inclines slightly above the static angle of repose referenced
above. The main differences are that they are unsteady and
involve large changes of the free surface with time as well as
the propagation towards the free surface of an internal inter-
face separating static and flowing particles.

Here we present detailed experimental results on the dy-
namics of the internal interface and the dynamic and kine-
matic behavior of the overlying particle flow. This work de-
velops further our studies of column collapses in
axisymmetricg’10 and two-dimensional geometries,” which
we now briefly summarize. In axisymmetric geometry, we
considered the unhindered spreading of initially cylindrical
columns of heights /; and radii r;. In the two-dimensional
geometry, the granular regions had initial height, 4;, basal
length, d;, and were released into long channels of different
but large width. In both geometries, we employed a wide
range of particle sizes, shapes, and densities and varied the
floor roughness systematically from smooth to rough. The
major governing parameter is the initial aspect ratio, a, in
axisymmetric geometry defined as the ratio /,/r; and in two-
dimensional geometry as h;/d;. Maximum runout distances,
1. and d.., in axisymmetric and two-dimensional geometries,
respectively, the maximum deposit height at the origin, A,
and the time, 7., to reach the final runout, were found to be
independent of the different grain types and the roughness of
the base. The axisymmetric experiments focused on the final
geometry and propagation of the flow front with time. Our
study of two-dimensional granular collapses included the ob-
servation of the internal deformation, the dynamics of the
free surface, and the interface between the static and the
flowing layer.

These experiments allowed investigation of the three
major stages describing the collapse. In the first stage, the
collapse is controlled by the free-fall behavior of the column.
The upper part of the column, above a critical height of
approximately 2.8d,, is in purely vertical motion (in two di-
mensions). Once the top of the column has reached this criti-
cal height, the second phase of collapse is dominated by
lateral motion, which ceases abruptly at 7., when the inter-
face between static and flowing particles has reached the free
upper surface. In these first two phases, the influence of the
bounding walls is very small, as indicated by (horizontal)
plug flow velocity profiles across the free surface with minor
shear at the walls and strong slip. There is a (quite different)
third phase of motion, which involves thin and slow ava-
lanching across the free surface to stabilize the steep central
part of the pile. In this phase, frictional effects of individual
particles between each other and with the bounding walls
become strong. The form of collapse, its duration and the
shape of the final deposit are effectively controlled by the
physics of the flowing layer and the propagation of the sepa-
rating interface towards the free surface.

The plan of the paper is as follows: In Sec. II, we explain
the experimental setup and the techniques that were used to
determine the velocity profiles in the flowing layer and the
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FIG. 1. Experimental setup with a sketch of the initial column, the interface
between a lower static layer (gray) and an upper flowing layer (white); and
the final deposit.

geometry of the free surface and the interface. An analysis of
the spatial and temporal evolution of the free surface and the
interface is presented in Sec. III. Data of the velocity profiles
in the flowing layer is presented in Sec. IV. A summary of
our results and further discussion are presented in Sec. V.

Il. METHODS

The experiments investigate two-dimensional granular
flows formed by the collapse of rectangular columns of sand
into a wide horizontal channel. We employed the same ex-
perimental setup described in Ref. 11 (Fig. 1). A container
accommodated the granular material at one end of the tank.
A rectangular box of the same width, 20 cm, as the channel
and variable initial basal length d; included a frontal gate to
release the granular material. A release mechanism was con-
structed to allow for very fast and reproducible lifting veloci-
ties of the gate. It consisted of releasing a large weight con-
nected to the gate via a pulley construction at the ceiling. The
weight fell freely for the first 0.75 m to reach a high velocity
(approximately 4 m s~!) before it lifted the gate extremely
rapidly. The time for the gate release in any experiment (
~0.1 s) was much less than the typical time scale of the
resulting motion (~1 s). We employed a mixture of indus-
trial black and light gray colored quartz sands of grain-size
1.4+0.4 mm. This was found to give the best contrast results
for the digital image analysis described below. In this study,
the initial aspect ratio a was varied systematically from 3 to
9.5 by using two different values of d; (6 cm and 9 ¢cm) and
different masses of sand.

Each experiment was conducted twice. In the first run,
the entire flow was filmed through the transparent frontal
pane. Before preparing the initial columns of sand, a 5 mm
grid was tied to the inner side of the frontal pane to give a
reference frame and a fast camera at 120 frames/s then re-
corded the experiment. The flows were captured and ana-
lyzed digitally. At every fifth frame (at intervals of ~0.04 s),
we mapped the free surface to obtain Zg(x,7) (Fig. 1). To
obtain curves of the interface between static and flowing par-

Downloaded 23 Apr 2007 to 131.111.18.65. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



043301-3 Static and flowing regions in granular collapses

ticles, hp(x,t), we first analyzed every fifth and sixth frame
using the Pattern Match algorithm of Dalziel."® Finally, we
carefully corrected, where necessary, these curves to exactly
match the interface between the uppermost static and the
lowermost flowing particle. In the second run, we positioned
the camera as close as possible and perpendicular to the fron-
tal pane at a distance od/3+d;, where &d is the difference
between the maximum runout distance, d.., and the initial
width d; (Fig. 1). We could thus obtain very detailed high-
speed movies for the analysis of the velocity profile with
depth, again using the 5 mm grid as a reference.

lll. EVOLUTION OF THE INTERFACE AND FREE
SURFACE

A. Spatial evolution: Qualitative observations

We first contrast the temporal evolution of the free sur-
face, the interface and the depth of the flowing layer for a
typical experiment [Figs. 2(a), 2(b), and 3(c)]. The inset in
Fig. 2(b) shows the length of the interface, L, determined
from appropriately integrating hp(x,7) as a function of time.
A detailed description of the evolution of the free surface as
a function of the aspect ratio is given in Ref. 11. Figure 2(a)
illustrates the two subsequent phases of collapse. The first
phase is dominated by the free fall of the column, and the top
of the column remains nearly undisturbed. In this free fall
phase, the point of maximum height of the flowing layer
remains at an approximately constant distance d; from the y
axis [Fig. 2(c)]. In the second, lateral spreading phase, defor-
mation occurs along the entire free surface [Fig. 2(a)]. The
point of maximum height of the flow propagates outwards
with time [Fig. 2(c)]. As the flowing layer increases in
length, its maximum thickness reduces until the flowing
layer has reached an approximately constant thickness (ex-
cept for the origin and at the front where it goes to zero). As
shown previously in Refs. 11, 13, and 14, at the beginning of
the experiment the internal interface appears as a straight line
intersecting at a zero height at x=d;, where x is the distance
from the origin. This initial line is inclined at approximately
60° to the horizontal. Throughout the entire experiment, the
internal interface propagates upwards towards the free sur-
face [Fig. 2(b)], and the static area increases with time. In the
lateral spreading phase, L, also varies approximately linearly
with time [inset Fig. 2(b)]. Results similar to those presented
in Fig. 2 for a=7 were obtained for all tested values of the
aspect ratio.

B. Static versus flowing material

Column collapses can be geometrically described by the
two time-dependent functions hp(x,t) and hp(x,t). Plots
similar to Fig. 2(b) can be used to determine the area of static
material, Ay, defined by

x=xp(1)
Ap(t) = f hp(x,t)dx, (1)
x=0

where x,(z) is the horizontal coordinate of the front of the
deposited layer. The data so obtained are plotted as Ap—Ay
against time in Fig. 3, where AW=0.5d? tan 60° is the area of
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FIG. 2. An example of the evolution of: (a) the free surface; (b) the internal
interface; and (c) the thickness of the flowing layer with time, at constant
time intervals of 0.416 s for an experiment where a=7 and d;=9.05 cm.
Note the different scale of the y axis in (b) chosen for a clearer illustration.
Inset shows the temporal variation of the length of the interface, Lj. The
gray triangle drawn in (b) marks the static wedge formed in the beginning of
the experiment.

the initial static wedge, and hence the initial value of Ajp,.
Two different phases can be recognized. Without any nor-
malization, the curves of Ap—Ay, against time for different
values of a collapse onto a universal curve in the first phase
of collapse, where Ap—A,y, is proportional to gd>. There is a
departure from this universal curve at a time dependent on a.
In the lateral spreading phase, the static area increases lin-
early with time. Deposition rates dAp/dt vary from 390 to
940 cm?/s for d;=9.05 cm and a=3.4 to a=9, respectively.
By dimensional analysis we can express the deposition rate
as
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FIG. 3. The area of the static layer against time for different values of the
aspect ratio and d;=9.05 cm. There is a collapse of the data in the first phase
to the function Ap—Ay;=0.15gd,>. Linear functions and corresponding
slopes drawn to data points in the lateral spreading phase illustrate the
constant global deposition rates dAp/dt for different aspect ratios. Inset
shows data of the nondimensional deposition rate (dAp/dt)/(gd>)""* against
a for d;=9.05 cm ([J) and d;=6.05 cm (V), and the linear best fit through
the data.

dApldt = (gd?) " f(a), )

for some dimensionless function f of the aspect ratio. The
inset in Fig. 3, where the deposition rate is plotted against
a(gd?)'?, shows that f(a) is linear.

C. Vertical motion of boundaries

Figure 4 shows the temporal evolution of the thickness
of the static layer, hp(x,7), at different horizontal distances x
for a representative experiment where a=5 and d;,=9.05 cm.
At x=12 cm and x=22 cm, the data hj, against time are well
represented by two linear segments and a short, nonlinear,
transitional region in between. The initial linear part is ob-
served during the free-fall phase, whereas the final linear
segment occurs during the lateral spreading phase. At the

124

4 ¢

0 0.2 0.4 0.6 0.8
1/s]

FIG. 4. The temporal variation of the thickness of the static layer, A, at
different horizontal distances, x, for an experiment where a=5 and d;
=9.05 cm. There are two linear regions, representing the free-fall and lateral
spreading phase, respectively, and a short transitional region in between.
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FIG. 5. The variation of the local deposition rate, dhp(x,7)/dt in the lateral
spreading phase as a function of the horizontal distance, x, for an experiment
where a=7. Deposition rates were determined as the slope from best-fit
linear regressions to the data dhj(x) against time in the lateral spreading
phase.

outer horizontal positions (x=32, 42, and 52 cm), there is
only one behavior corresponding to linear growth of the
layer during the lateral spreading phase. The data show that
during the lateral spreading phase there is a linear growth
with time of the static layer along the flow length. However,
ohpldt is not constant along the flowing layer, but varies
slightly with the horizontal distance, x. For the lateral spread-
ing phase, where the variation of A with time is linear, we
can calculate local horizontal deposition rates dhp(x,t)/dt by
linear best fits. Figure 5 shows a graph of the local deposi-
tion rate as a function of x for an experiment where a=7. It
is seen that, except close to x=0 and x=d.,, the deposition
rate declines slightly in linear fashion during the spreading
phase.

Without a general dynamical model for the internal in-
terface and the free surface, we investigate the vertical varia-
tion of hy and hp at scaled horizontal distances only. We
derive the scaling relationships for hp(z), hg(t), and hg(z)
—hp(t) at a fixed horizontal distance 8d/3+d;. We choose
this representative distance to be far from both x=0 and x
=d., where either vertical or horizontal motions dominate,
respectively. The flow front reaches this distance at constant
fractions of the final time, ¢, for different values of all Fig-
ure 6 shows the temporal evolution of hp, hy, and hp—hp for
different values of a and d;=9.05 cm. After the flow front
reaches the observation point, the thickness of the static
layer, hp, increases approximately linearly with time. The
(near constant) local deposition rate, dhp/ot, at 8d/3+d; in-
creases with increasing aspect ratio. The local flow height,
hp, first increases before equilibrating at a final height, de-
pendent on a. The thickness of the flowing layer, hp—hp,
increases with time towards a maximum before decreasing to
Zero.

Figure 7 presents the same thickness data plotted against
the nondimensional time, ¢#/t.,, where ¢, is the final emplace-
ment time. The flow front and the internal interface arrive
subsequently at constant fractions of the nondimensional
time at the scaled horizontal distance éd/3+d; (~0.4 t,, and
~0.5 t,, respectively). Growth of the static layer thus starts a
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FIG. 6. Variation of: (a) the thickness of the static layer; (b) the free surface
height; and (c) the thickness of the flowing layer, with time at a fixed
position dd/3+d; for different values of a.

little time after the flow front has passed the location. The
initial height, /;, might be a relevant length to scale all the
curves hp(t), hp(t) and hp(t)—hp(1) in order to obtain univer-
sal curves for the data. However, using this scaling neither
the time nor length scale would depend on the initial width
of the column, d;. Indeed, no collapses are obtained for non-
dimensional groupings of hp/h;, hplh; or [hg(t)=hpl/h;
against nondimensional time. By dimensional analysis the
local deposition rate dhp, (8d/3+d;,t)/Jt can be expressed as
a function of external parameters as

Ohp(8dI3 +d, 1)t = (gd)"*H(a), (3)

where H is a dimensionless function of the aspect ratio. From
the experimental data of /1, against time we can calculate the
local deposition rate by linear best fits. Figure 8 shows the
nondimensional ~ local ~ deposition rate  [dhp(Sd/3
+d;,1)/9t]/[gd;]"* plotted against the aspect ratio. The data
for experiments with different values of the initial height, 4;,
and the initial basal length, d,, collapse onto a universal func-
tion H(a) which is linear.
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FIG. 7. The thickness of the static layer, &, the free surface height, Ay, and
the thickness of the flowing layer, hp—hp, against nondimensional time at
the fixed position 6d/3+d,.

We now develop a Lagrangian view of this problem. As
shown in Ref. 11, the propagation of the flow front with time
in two dimensions is self-similar; and all columns for a
>2.8 relax towards self-similar profiles. Therefore, self-
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FIG. 8. The nondimensional local deposition rate against the aspect ratio at
the fixed position &d/3+d; for d;=9.05 cm (<) and d;=6.05 cm (+), and a
linear best fit through the data. Deposition rates were determined as the
slope from best fit linear regressions to the data dh,(5d/3+d;) against time
in the lateral spreading phase.
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FIG. 9. The depth of the flowing layer at a scaled distance xy(z)/n with (a)
n=2 and (b) n=3 for a=3.4, 5, and 7. Same symbols as in Figs. 6 and 7.

similarity of the curves hp(x,t) and hp(x,f) might be ex-
pected. From our experimental data we obtained hg(x,?) and
hp(x,r) at constant fractions of the instantaneous flow front
position xy(7). Figure 9 shows the temporal evolution of the
depth of the flowing layer for three values of a at the time-
dependent distance xy(7)/n [with n=2 in Fig. 9(a) and n=3
in Fig. 9(b)]. The first part of the curves, which relates to the
initial free-fall phase, shows a decreasing region followed by
an increasing region. There is a final continuously decreasing
part constituting the lateral spreading phase. In Fig. 10 we
plot the same data in nondimensional form, using the length
scale h; and the experimentally determined final time, 7., as
the length scale to determine the function M defined by

(hp—hp)/h;=M(tlt..). 4)

A very good collapse is obtained for all tested values of 4;
after approximately 0.4-0.5 ¢, in the spreading phase. We
have also tested other values of n (0.6=<n=10), which also
result in a collapse of the data (h;—hp)/h; against nondimen-
sional time during the lateral spreading phase. The different
curves M(t/t,,,n) merge as t/t,— 1, illustrating the experi-
mental observation that, towards the end, the thickness of the
flowing layer is approximately constant along the flow
length.

IV. VELOCITY PROFILES IN THE FLOWING LAYER

The velocity profiles in the flowing layer vary in both
space and time. In the initial free-fall phase, all particles
above a critical height, h.~ 2.8 d;, are in purely vertical mo-
tion. In the flow front region in direct contact with the base,
a strong parabolic profile with a plug-like top and a high slip
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FIG. 10. The nondimensional depth of the flowing layer at a scaled distance
xy(1)/n with (a) n=2 and (b) n=3. Same symbols as in Figs. 6 and 7.

velocity at the base exists.'! During the entire experiment,
close to x=0 or x=xy, the profiles tend to purely vertical or
horizontal motion, respectively. In the second, lateral spread-
ing phase, except close to the origin and the flow front, the
velocity profiles show the typical form illustrated in Fig. 11.
From the internal interface upwards, we distinguish between
two transient regions: a lower exponential part and an upper
linear part. At the very top of the flowing layer, there is a thin
region of roughly constant thickness (approximately 3 par-
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FIG. 11. Example of the typical form of velocity profile in the lateral
spreading phase, including the static layer, a lower exponential region, an
upper linear section and an upper plug-like region restricted to a few grains.
Inset shows the same data in a linear-log plot to highlight the exponential
region.
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FIG. 12. Collapse of all velocity profiles for an experiment where a=7 after
the development of the interface at dd/3+d,. Different symbols represent
the velocity profiles at different times in the interval 0.5 7, <t<t,. The
arrows and corresponding times mark the instantaneous position of the up-
per free surface. Inset highlights the region close to the interface.

ticle diameters) deviating from the major, linear part. The
region with the largest change in velocity and depth with
time is the linear part of the profile. The typical form of the
velocity profiles during the lateral spreading phase has been
previously reported in Refs. 11 and 13. Velocity profiles
similar to that described here are also typical for heap flow
and rotating drum geometries under steady flow
conditions.*"” A common characteristic of all three geom-
etries is the existence of an internal interface separating static
and flowing regions of granular material.

PIV analysis on high-speed movies of our second experi-
mental series allows us to obtain detailed velocity profiles
with depth at scaled distances dd/3+d;. For each aspect ra-
tio, a universal curve h—hp against velocity exists that col-
lapses all profiles obtained after the arrival of the interface
front at times #>0.5¢.,. Figure 12 illustrates the collapse for
an experiment with a=7 and times 0.5¢,, <t <t... The lower
exponential part remains constant in form and thickness (ap-
proximately 8—10 particle diameters), whereas the thickness
of the linear part decreases with decreasing thickness of the
flowing layer. Collapsed velocity profiles similar to that pre-
sented in Fig. 12 for a=7 are obtained for all values of a. We
can characterize these profiles by expressing a shear rate vy as
the inverse slope of a best linear fit through the linear part of
the velocity field. By dimensional arguments this shear rate
can be written as

y=(g/h)"*Fla=hld, ¢h,). (5)

where ¢ is the particle diameter. We introduce here the
modified initial height, E,-, defined by

h; = h; - d; tan(60°)/2 (6)

as a length scale that describes the fraction of the granular
column actually involved in the flowing region. When we
plot the experimentally determined shear rates for all values
of h; and d; against the shear rate scale (g//;)"? (Fig. 13), the
data collapse onto the linear function
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FIG. 13. The shear rate obtained from best linear fits of the linear part of the
NE

velocity profiles plotted against (g/h;
height (see text for details).

, where ﬁf is the modified initial

y=6.1(g/h;)". (7)

We note that, if instead of Ei the initial height 4; is used in the
term for the shear rate scale, the data collapse onto a linear
function that gives physically unrealistic negative values for
large values of 4;. Since the ratio ¢/h; is very small in com-
parison to the aspect ratio, we may define a nondimensional
shear rate

Yhilg)"* = F(a). (8)

Figure 14 shows that F(a) is effectively constant.
In contrast to the clear dependence of the shear rate on

the aspect ratio (or on Ei) that we have demonstrated here, a
different behavior is claimed in Ref. 13. These authors fol-
low a similar scaling approach as proposed for steady uni-
form flows observed in heap flow and rotating drum geom-
etries (e.g., Refs. 8 and 19). They suggest that velocity
profiles obtained for different values of a, at different times
and for different particle diameters, ¢, collapse onto a uni-
versal curve by normalizing the velocity by (g¢)? and
depth by ¢. With a linear fit through the linear part of all the
normalized profiles, the authors of Ref. 13 claim the relation-
ship y=0.3(g/ ¢)"?>. We think that their interpretation of the
data is misleading and substantiate our view by the following

8 —
6—————%Q—§|——'6—<> - = =
2,
N
2 O d—905cm
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0 T I T I T I T I T I
0 2 4 6 8 10

FIG. 14. The nondimensional shear rate y(i;/g)"? plotted against the aspect
ratio.
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arguments. First, in their presented data, the systematic
variation of the velocity profiles as a function of time is not
shown. Instead particular profiles for experiments with dif-
ferent a and ¢ were depicted. Second, the presented velocity
profiles nearly exclusively correspond to the late stages of
the experiment (i.e., when the thickness of the flowing layer
is less than 7-8 particle diameters). Thus, a dominant part of
the considered profiles correspond to the lower exponential
region, and the linear part of the presented profiles has a
depth of hardly five particle diameters. Finally, the presented
data show a large scatter around the proposed linear function
v=0.3(g/ ¢)"">. This large scatter (particularly that in the ex-
ponential region), however, gives reason to assume that the
form and/or depth of the lower exponential region is depen-
dent upon particle characteristics. This view and suggestions
for further investigations of this problem are amplified in the
last section.

V. SUMMARY AND DISCUSSION

This paper presents experimental results of the dynamics
of static and moving regions of granular material that char-
acterize inertial granular flows initiated by column collapse.
During collapse, the upper flowing region continuously de-
posits material from its base. Thus, the area of static material
grows with time, and the internal interface separating upper,
flowing and lower, static material propagates towards the
free surface.

The discrete nature of the internal interface allowed us to
quantify its temporal and spatial variation as a function of
the initial aspect ratio. The resulting data were analyzed by
two different approaches. First by integrating under the en-
tire interface we determined global deposition rates, dAp/dt.
Second we measured the thickness variation of the flowing
and static regions at fixed horizontal distances, x, and were
able to calculate local deposition rates, dhp(x,t)/ddt. At a
fixed position, scaled to the final maximum runout, we also
analyzed the form and temporal variation of the velocity pro-
file with depth in the flowing layer.

Experimental observations in previous studies (refer-
enced in Sec. I) have shown qualitatively that inertial granu-
lar column collapses involve two transient stages: an initial
free-fall phase and a subsequent lateral spreading phase.
These two phases are also evident in the contrasting behavior
of the motion of the interface, and consequently in the rate of
deposition which occurs from the base of the flowing layer.

In the free-fall phase, the rate of growth of the static area
with time is independent of the initial height and scales as
gd;t. This finding is in good agreement with previous results
which show that, in this initial phase, also the shape of the
free surface below the critical height 4, ~2.8 d; (including
the horizontal position of the flow front) does not change
with k'

In the lateral spreading phase, the static area increases
linearly with time dependent on the aspect ratio. Granular
columns with higher aspect ratios show higher deposition
rates, and the nondimensional deposition rate
(dAp/dt)/(gd?)'" is a linear function of the aspect ratio. The
local vertical growth of the interface is independent of the
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local flow depth and velocity. Data show that, for the major
part of the flow length, the derivative ¢*h,,/dtdx is a constant
dependent on the aspect ratio, but experimental runs with
two connected high-resolution, high-speed cameras are
needed to explore this relationship in detail. This is planned
in future investigations.

Our data of the vertical velocity profiles with depth
show: (a) a time-invariant form comprising a lower exponen-
tial and an upper linear region; and (b) a scaling relationship
for the shear rate as y=c(g/ ﬁ,-)” 2, The shear rate is, however,
independent of the local flow depth and velocity, but de-
creases by increasing the area involved in the flow (i.e., in-
creasing a). Beside column collapses, granular flows in heap
flow and rotating drum geometries comprise linear vertical
velocity profiles. However, no physical explanation for this
has yet been offered. This behavior is in contrast with steady
uniform flows on inclines close to the (static) angle of re-
pose. In this situation, the shear rate varying as the square
root of depth results in the so-called Bagnold scaling. The
widely accepted reason for this scaling relationship is the
constant ratio of shear stress and normal stress.*’

Here we interpret the characteristics of the velocity pro-
files in a qualitative way and suggest some directions for
future investigations. One possible way of looking at the
problem is by a simple rheological analog. Viscous fluids
produce a classic parabolic profile with shear rate increasing
linearly with depth. If one could describe inertial granular
flows by a rheological law, then this would have to involve a
linear dependence of “effective” viscosity with depth. This
law implies the effects of viscosity are zero (or very small)
near the free surface and increase linearly with depth.

Whereas the velocity of the interface and the major (lin-
ear) part of the velocity profile are time-invariant, the lower
exponential region seems to have the key role in describing
how particles at the base of the flowing layer come to rest.
We propose here that within this region, the flow velocity
decreases below a critical threshold, which causes a rapid
decline in granular temperature and an increase in interpar-
ticle friction. Taking a typical speed of 10 cm/s and thick-
ness of 0.5 cm for the exponential region gives a time scale
of 0.05 s. It might be worthwhile testing through molecular
dynamics simulation, for example, whether this time scale is
relevant in describing how an agitated particulate system be-
comes motionless when external forcing is removed. The
data presented in Ref. 13 for different grain diameters give
reason to assume that form and/or depth of the exponential
region may vary with the particle characteristics. Detailed
investigations making use of a high resolution, high-speed
camera of the exponential region for flows where the grain
diameter is varied by at least an order of magnitude will
provide further insight. Moreover, it will be most interesting
to investigate the dynamics of the interface for collapses in
inclined channels, in particular approaching the static angle
of repose (AOR). When the basal inclination is equal to the
AOR, the interface may coincide with the rigid base. To
further stress this idea, at inclination sufficiently above the
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AOR, even downward motion of the interface into loose bed
material could be expected, giving a framework to describe
both sedimentation and erosion from granular flows.
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