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HEAT AND SALT TRANSFER IN DOUBLE-DIFFUSIVE SYSTEMS

Herbert E. Huppert#¥

ABSTRACT

This study investigates the two-dimensional finite amplitude
motions of a fluid confined between two infinite horizontal planes,
and heated and salted from below. By a combination of numerical
simulation and perturbation theory, the possible forms of
equilibrium motion are calculated for different values of the
thermal and saline Rayleigh numbers, the Prandtl number and the
ratio of the diffusivities of heat and salt. It is shown that
equilibrium motions lie on either an oscillatory branch or a time-
independent branch. On the oscillatory branch, the motion can be
either periodic or non-periodic. In some parameter ranges, stable
motions exist on both branches, which leads to a hysteresis eiffect.
Non-periodic motions evolve into time-dependent states at a
critical thermal Rayleigh number, and disordered motion is suppres-
sed by increasing the thermal Rayleigh number beyond this critical
value.

INTRODUCTION

Double-diffusive convection is a generic term identifying the
form of motion which can occur in a fluid in which there are two
components cof different molecular diffusivities, which make
opposing contributions to the vertical density gradient. Practical
applications of this form of convection occur for a large number
of different components, and many results in this field have been
rediscovered by workers in different research disciplines. The
original investigations were concerned with the components heat
and salt, relevant to the oceans and to solar ponds, and have now
been extended to include components relevant to the storage of
liquid gas, the liquifying of metals, and the evolution of stars,
to cite only a few examples. References to a variety of applica-
tions are contained in the review article by Turner (1). 1In
addition to the many applications of double-diffusive convection,
interekt in the subject has developed as a result of the marked
difference between this form of convection and convection
involving only one component, as for example in purely thermal
convection. In contrast to thermal convection, motions can arise
even when the density decreases with height, that is, when the
basic state is statically stable. This is due to the effects of
diffusion, which is a stabilizing influence in thermal convection,
but can act in a double-diffusive fluid in such a way as to
release potential energy stored in one of the components, and
convert it into the kinetic energy of the motion.

The physical mechanism underlying one of the fundamental
forms of double-diffusive motion can be understood Zrom the
following parcel argument. Using the terminology of heat and
salt, as we shall throughout this paper, consider a fluid whose
temperature, salinity and density all decrease monotonically with
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height. If a fluid parcel is raised, it comes into a cooler, less
salty and less dense environment. Because the rate of molecular
diffusion of heat is larger than that of salt, the thermal field
of the parcel tends to equilibrate with its surroundings more
rapidly than does the salt field. The parcel is then heavier than
its surroundings and sinks. But because of the finite value of
the thermal diffusion coefficient, the temperature field of the
parcel lags the displacement field, and the parcel returns to its
original position heavier than it was at the outset. It then
sinks to a depth greater than the original rise, whereupon the
above procegs continues, leading to growing oscillations, or
overstability, resisted only by the effects of viscosity. This
linear mechanism was first explained by Stern (2). If the temp-
erature gradient is sufficiently large compared to the salinity
gradient, non-linear disturbances may exist which lead to monotonic
motions, because the large temperature field is then able to
overcome the restoring tendency of the salinity field. An evalu-
ation of the conditions under which this monotonic form of motion
can occur is one of the aims of the investigation reported in this
paper.

The motion in the inverse situation - warmer, saltier fluid
overlying relatively colder, fresher fluid - is independent of
time and occurs as a result of fluid with downward motion trans-
ferring its heat to adjacent rising fluid, much in the manner of a
heat exchanger. This form of motion, called salt-fingering
because of the long narrow convection cells it produces, was first
analysed by Stern (2), and some non-linear aspects have been con-
sidered by Straus (3).

THE THEORETICAL MODEL

The traditional geometry in which convective motions have
been analysed quantitatively, confines the fluid between two
infinite horizontal planes, heated, and in our case also salted,
from below. In the purely thermal situation, many of the
theoretically determined results have been experimentally verified
and successfully used to explain various phenomena, as summarized
by Spiegel (4). In the double-diffusive situation, Huppert and
Manins (5) develop some theoretical results which predict with a
high degree of accuracy the outcome of a series of experiments in
which two uniform layers of different solute concentrations were
initially separated by a paper-thin horizontal interface. For
details, the reader is referred to the original paper. The
relevant comment to be made here is that the theoretical model,
which incorporates the seemingly constraining presence of hori-
zontal planes, was successfully used in a situation uninfluenced
by boundaries.

Turning now to an explicit statement of the model analysed in
this paper, consider a fluid which occupies the space between two
infinite horizontal planes separated by a distance D. The upper
plane is maintained at temperature T, and salinity Sg and the
lower plane at temperature T, + AT and salinity So + AS . Both
planes will be considered stress-free and perfect conductors of
heat and salt. We restrict attention to two-dimensional motion,
dependent only on one horizontal co-ordinate and the vertical
co-ordinate. Non-dimensionalising all lengths with respect to D
and time with respect to D?/kp , where k7 1is the thermal

*




Huppert: Heat and Salt Transfer in Double-Diffusive Systems 49

+

diffusivity, and expressing the velocity g* , in terms of a|
streamfunction ¢ by ‘

q* = (kp/D) (¥, = ¥ ) (1)
the temperature, T* , by
Td = T AT(1 —-2 4+ T) (2)

and the salinity S* , by

gt =8 + AS(l - z + 8) (3)

we can write the governing Boussinesqg equations of motion as
o tvry, - o7l V) = -, T, + Rg s, + Ty (4)
T+ Y, - JW,T) = VT (5)
S+ Vv, ~ J(,s) = 1V?s | (]6)
Y=y, =T=5=0 (z =0,1) (N

f

where the Jacobian, J , is defined by
J{£,9) = fz 9y (8)

The appropriate vertical boundary condition to be applied to Egs
(4)-(6) is that the solution be periodic in x over a distance
L , for a prescribed L . The linear equation of state

p* = po(l - oT* - BS*) (9)

where o and B are taken to be constant has been assumed in the
expressions for the body-force term of Eqg. (4). Four non-
dimensional parameters appear in Egs (4)-(6): the Prandtl number

0 = v/kp , where v is the kinematic viscosity; the ratio of the
diffusivities 1 = kg/kp , where kg 1is the saline diffusivity,
which is less than k¢ ; the thermal Rayleigh number

Rp = agATD*®/(kpv) , where g is gravity; and the saline Rayleigh
number Rg = BgASD’/(KTv) . The first two parameters characterize
the fluid, while the last two characterize externally applied

parameters of the model. 1In this paper, both Rayleigh numbers are
taken to be positive.

SOLUTIONS

The solutions of the linear problem, obtained by neglecting
the quadratic Jacobians in Egs (4)-(7) are well known; see for
example Veronis (6) and Baines and Gill (7). The results of such
a linear analysis are shown in Figs 1-3 for specific values of o
and Tt and for L = 2 , which is the value of L for which the
various modes of convection first occur. According to linear
theory, for fixed Rg greater than Ry of Figs 1-3, as Rp
increases, the motion passes successively through regions of:
conduction only (0 < Ry < Ry) ; oscillatory convection of
increasing amplitude (R; < Rp < Rg) ; and monotonic convection of
increasing amplitude (Rg < RT) . Steady convection, that is,
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convection of constant amplitude, can occur only if Ry = R or

= Rg . For all practical values of the parameters,  Rg lis
greater than Ry , and only this case is considered here. The
linear results, which act as a foundation for a non-linear inves-
tigation, are more fully discussed by Turner (8), im a chapter
devoted to double-diffusive convection..

The most transparent form in which to express: our results ig
by extending the description in the last paragraph to incorporate
the important non-linear effects. In particular, we evaluate the
possible non-linear modes for fixed Rg . Results presented here
have been obtained in part from direct numerical solution of Egs
(4)-(7) and in part from consideration of the perturbation of Egs
(4)-(7) about the linear solutions. The former has been
accomplished by approximating Egs (4)-(7) by space- and time-
centred second-order difference equations: in ¢, V*y, T and §
over a rectangular staggered mesh on the domaim 0O < x:< L ,

0 < z <1 . The equations incorporate the conditions:

YU =Ygy =Ty = Sy =0 at x =0 and L . From the egquations,
values of V?y, T and S at the gridpoints are calculated at
time t + 6t from given values at time t . The variable vy is

then calculated from V?y by inverting the Laplacian, using an
implicit finite-difference approximation. to Poisson's eguation.
This process is repeated for as many time steps as required. The
program is an extension of one used originally by Moore, Peckover
and Weiss (9) and further details can be obtained from their paper,

A large number of numerical experiments over a range of
values of o, T, Rp and Rg have been conducted. From these,
the possible forms of motion can be characterized in general terwrs.
This is best accomplished by considering o, T and Rg to be
fixed and tracing existing equilibrium solutions: im am Ry —
amplitude plane. The amplitude of any solution: is here specified
by the horizontally averaged heat and salt transports, or their
non-dimensional representations, the thermal and saline Nusselt
numbers, evaluated at the lower boundary, z = 0 . These are
given by

= -— T == 1 == — = c
Np 1 T, (2 0) and Ng = 1 Szz(z: 0) (1C)
where the overbar denotes a horizontal average-.

Equilibrium non-linear solutions must emanate, or bifurcate,
from the linear solutions at Rp = R} or at Rgp = Rg , and are
most easily explained by reference to Fig. 4, wgich presents the
solutions for O = 1.0 and T = 107? in an Rgp - Ng plane.

The Oscillatory Branch

From RT = R; there emanates a solution which is gene;all?
supercritical, that is, Np and Ng increase with increasing
Rp . Along this oscillatory branch the period of'the,oscillatlff
increases monotonically because of the increasing influence of the
temperature field. Expressed in terms of the typical fluid .
particle, the explanation is that during its oscillatory displa=e”
ment, the particle experiences a restoring force which decreases
as Kp increases, and hence the period increases. Figure 5
presents a typical plot of Np and. Ng against time for one
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Ll
value of o0, T, Rp and Rg . The phase delay of Ng with
respect to Np is clearly seen. This delay occurs because the
salt field diffuses more slowly than the temperature field. The
slower diffusion of salt is also the reason why both the mean and
the range of Ng are larger than those of Np .

As Rq increases, this form of motion continues until Rp
reaches a specific value, R, , say. At Rp = Ry the motion
changes in form. Either the motion becomes time-independent, a
situation discussed below, or in the more general case, the motion
develops a further structure as is indicated in the form of N
or Ng as a function of time, as graphed in Fig. 6. In both Np
and Ng there are four extrema, two maxima and two minima, per
period, where the period is defined in the usual sense as the
time between two identical states. As seen in Fig. 6, the time
between the smaller maximum and the preceeding larger maximum is
greater than the time between the smaller maximum and the
following larger maximum. This holds for both Np and Ng . As
Rp increases above Ry , these times evolve continuously from
the single period exhibited by Np or Ng for Rr Jjust below
Ry . This form of motion is due to the increasing temperature
difference attempting to induce monotonic motion. Fluid near one
of the lower corners of the cell rises, sinks by a different
route, rises by a smaller amount in an attempt to readjust the
form of motion, sinks again, and the total form of motion is then
repeated. Other fluid particles in the cell move accordingly.
This form of motion occurs until Ry = R3 , say, at which value a
transition either to a time-independent solution or, more
generally, a disordered mnon-periodic form of motion occurs.

No motion with three, four or more maxima per cycle was
found for the values of 0, T, Ry or Rg examined.

Non-periodic motion continues to exist at increasing Rgp
until for Ry = R4 , say, an equilibrium. time-dependent solution
can no longer be maintained and the only equilibrium solutions are
time-independent. TFor some values of o, T and Rg this time-
independent form occurs before the solution passes through the
two-maxima-per-cycle form of motion or the non-periodic form.

For future use we denote by Ry' the value of Rp at which
the transition to an equilibrium time-independent solution occurs.

The Monotonic Branch

For all Rp > Ry' monotonic motion ensues. Such a form of
motion exists in a double-diffusive fluid because the temperature
field can produce an almost isosaline core, with all salinity
gradients confined to boundary layers, thinner than the thermal
boundary layers by an amount T% . In these salinity boundary
layers, the effect of the stabilizing salinity gradient on the
temperature field is arrested because of the different diffusivi-
ties. For sufficiently high Ry , the destabilizing temperature
effects can thus overcome the restoring effects of the salinity.
This steady form of motion is a very efficient way of trans-
pPorting heat and salt and thus the equilibrium Nusselt numbers
undergo a discontinuous increase as the solution changes from the
Oscillatory branch to the monotonic branch.
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Gradually decreasing Ry from some value greater tham Ry"
the equilibrium monotonic motions retrace the states that would
have been obtained on increasing Rp from Rg' ; thus there is
a unique stable equilibrium solution for Rr > Ry' .

Decreasing Ry below Ry' an equilibrium monotonic solution
continues to exist, with decreasing Nusselt numbers, until
RT = Rg , say. Further decrease of Ry 1leads to a solution on
the oscillatory branch already described, or, if Rg < Ry , to
conduction. There is thus a hysteresis betwesn these two differ—

ent modes of motion.

The non-linear monotonic branch emanates from the bifurcation
point at Rr = Rg and the behaviour of the solution about
= Rg can be obtained by using standard perturbation proce-—
dures. Results obtained by this method indicate that Rg is a
subcritical bifurcation point, that is, Np and Ng increase
with decreasing Rp . The results also indicate that solutions
on the branch are unstable to time-dependent two—-dimensional
disturbances until the branch passes through a minimum value of
Rp , that is, until the branch passes through Rp = Rg . There-
after, the branch continues, and is stable, with the amplitude
of the motion increasing as Ry 1increases.

The Interaction Between The Oscillatory And Monotonic Branches

As is evident from the Table, the oscillatory and monotonic
branches take quite different relative positions depending upon
the values of o, T and Rg . The influence of these parameters
can be summarised as follows. The linear monotonic mode is
independent of ¢ because fluid particles undergoing monotonic
linear motion conserve their momentum. Along the non-linear
part of the monotonic branch the motion is only weakly dependent
upon o, just as in purely thermal convection (10,11). By
contrast, the motion on the oscillatory branch is quite dependent
upon the value of ¢ because the magnitude of the phase delay
between the temperature and displacement field, which drives the
motion, is determined by o . The relative influence of T is
almost exactly the opposite. The whole monotonic branch is
strongly dependent on the magnitude of 1 because its value
indicates how slowly the salt field diffuses and hence how effect-
ively the salt field can overcome the tendency of the temperature
field to drive steady convection. However, along the oscillatory
branch the value of 1T determines the phase lag between the
salinity and temperature field, a lag which has only a small
influence on the motion. The value of Rg , which indicates the
magnitude of the stabilising salt field, has a large influence on

both branches.

The various different orientations of the two branches and
the hysteresis loop that connects them are summarised in the Table.
Of particular interest is the value of Ry , the minimum thermal
Rayleigh number for which (non-linear) monotonic convection is
possible. Upper and lower bounds to Rg for various values of
o, T and Rg are presented in the Table and Figs 1-3.

E Consider first Fig. 1, which presents the bounds to Rg for
o=1l,T = 107 and various values of Rg . For each of these
.
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values, Rg is greater than R; and only for the largest value
of Rg 1is Rg 1less than Rg .

Decreasing T to 10'_1 without altering o , we obtain the
results plotted in Fig. 2. The four ranges for Rg are, as
expected, all less than those for T = 1071 . For "Rg = 10> and
Rg = 1.5 x 10® , Ry 1is less than Rg .

The ranges of R for 0 = 10 and T = 10~1 are plotted in

Fig. 3. For Rg = 10 , Rg is less than R; , but due to the
relatively large viscous dissipation at these small Rayleigh
numbers Rs > Rg . For Rg = 104 or 1.5 x 104 , Ry is less

than both R; and Rg . Thus for these values of o, T and Rg,
(non-linear) steady convection can occur when the fluid is stati-
cally stable and linear theory predicts the existence of only a
conduction solution.

CONCLUSIONS

The major conclusions of the study reported in this paper
are as follows. Non-linear equilibrium solutions of the double-
diffusive Benard problem belong to one of two branches. One is
an oscillatory branch, which emanates from the linear steady-
state oscillatory solution. As Rp 1is increased, the solutions
along this branch alter in such a way that the associated Nusselt
numbers change from one maximum per period (Fig. 5), to two
maxima per period (Fig. 6), to a non-periodic state. The other
branch is composed of monotonic solutions, which emanate sub-
critically from the linear steady-state monotonic solution.
Solutions on this branch are unstable until the branch passes
through its minimum value of Ry , following which the solutions
are stable - at least in two dimensions. Stable solutions on
both branches can exist at the same values of Ry , Rg , © and
T. This leads to a hysteresis effect if solutions obtained from
increasing Rp and then decreasing Ry  are followed. Depending
upon the value of o0, T and Rg , as Ry increases, instability
may first occur as an oscillatory mode or a non-linear monotonic
mode. The existence of a non-periodic solution that evolves into
a time-independent form above a critical value of Rq indicates
that by increasing Ry disordered motion can be suppressed.
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& NOMENCLATURE
D plate separation
g gravity
L horizontal size of convection cell
Np thermal Nusselt number
Ng saline Nusselt number
q* velocity vector
Ry thermal Rayleigh number
Rg saline Rayleigh number

Ry - Rg critical thermal Rayleigh numbers
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a particular thermal Rayleigh number-
a particular saline Rayleigh number
salinity

reference salinity

disturbance salinity

temperature

reference temperature

disturbance temperature

horizontal co-ordinate

vertical co-ordinate

thermal expansion coefficient:
saline expansion coefficient
salinity difference between plates.
temperature difference between plates:
time step

saline diffusivity

thermal diffusivity

kinematic viscosity

density

reference density

Prandtl number

Kg/KT

streamfunction
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20,000

15000

Rx 5000 10000 15000 20000
Rs

Fig. 1 The stability boundaries of linear
theory and the minimum Rp for stationary
monotonic convection. According to linear
theory, on Rqp = R; an oscillatory mode is
initiated, on Rp = Rc this mode becomes a
purely growing exponential, and on R = Rg
there is a time-independent mode. The
straight lines Rp = R; and Rgq = Rg meet
at RS = Rx .
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15.000

Ry 5,000 10000 15,000
Rs

Fig. 2 As for Fig. 1 except that 1 = 0.1 .

Ry= RT=Rc RT=Rsg
T=Re .
15000

O 1 )
RX 5000 10000 15000
Rs

Fig. 3 As for Fig. 2 except that o = 10 .

*

e i



Huppert: Heat and Salt Transfer in Double-Diffusive Systems 57

’
|

11,000

T
X

H
v

10000

T

Rr

9000 :

{ :

BOOO N 1

Ry

3 i i L 1 J 5\;‘5‘
20 30 40 50 60 7.0 i
Ng (max) %

Fig. 4 The maximum value of Ng as a function of Rq
for stable equilibrium convection. For Ry < Rp < R3 ;
Ng has two local maxima per period and both are shown.
For R3 < Rp < Ry the motion is non-periodic.

Ry=31623 Rg=3162-3

g=1. T=0-1

Fig. 5 dp and Ng as functions of time for a typical
ease with R; < Rp < Ry .
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Rt=3500 Rg=31623
60 o=1 T=01

o)

Fig. 6 Np and Ng as functions of time for a typical

case with Ry < Rp < R3 .
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1.0 0.316 1,000 1,797 2;208-2; 300 3,000-2,100 ;820
1.0 0.316 3,162 3,220 4,400-4;500 4,100-4;200 16;658
1.0 0.316 10,000 7,720 11,000-11,200  10,400-10,500 32,280
1.0 0.316 15,000 11,010 15,600-15,800  15,000-15,200 48,092 .
1.0 0.316 20,000 14,301 19,400-19,600 63,903
1.0 0.1 1,000 1,346 1,900-2,000 1,700-1,800 10,658
1.0 0.1 3,162 2,535 4,100-4,200 3,500-3,600 32,280
, 1.0 0.1 10,000 ) 6,296 10,000-10,200 8,800-9,000 100,658
1.0 0.1 15,000 9,046 12,300-12,700 150,658
10.0 0.1 1,000 1,831 1,700-1,800 10,658
10.0 0.1 3,162 3,634 3,700-3,800 32,280 .
10.0 0.1 10,000 10,271 9,300-9,600 100,658
10.0 0.1 15,000 14,961 13,400-13,700 150,658

esm<wwammomww~w.~w m:m wm m0H<mHHo¢mo.am=& wm.wﬁ we an stmmﬂﬁ:monw
predicts the onset om omomwwwﬁOHw convection; Ry' 1is the largest value of Rp for which

stable time-dependent motion is possible; Rg 1is the smallest value of for which
monotonic motion is possible; and at Ry = Rg linear theory predicts steady monotonic motion.




