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Unidirectional flows of long, thin, Newtonian, viscous gravity currents inside either horizontal or
inclined channels are studied theoretically and experimentally. Effects due to temporal variations in
the input rate at a point source and spatial variations in the channel shape are considered, with
surface tension effects neglected. The current evolves with a self-similar structure at large times
when the total volume of fluid scales with time t like t� and the spreading in the lateral direction y
is constrained by a rigid boundary of height a �y /a�n, where the length scale of the channel size a
varies with distance x along the flow like xb and ��0, b�0 and n�0 are prescribed constants. The
extent of the flow scales like tc, where the constant c depends linearly on � and is determined in
terms of �, b, and n. Amongst channels that remain uniform along the flow �b=0�, a V-shaped
channel �n=1� gives rise to either a fastest or slowest propagation rate of the current depending on
whether ���c or ���c, respectively, while the value of c is the same for all n when �=�c, with
either �c=1 /2 or �c=1 for horizontal or inclined flows, respectively. The position of a current inside
either an extremely narrow or nearly flat V-shaped channel that gently widens along the flow is also
studied and shown to be proportional to a power of time. We determine that the spreading is
constrained mainly by volume conservation for the case n�1 inside wide channels and by frictional
drag at the rigid boundaries for n�1 inside narrow fractures. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2883991�

I. INTRODUCTION

Low-Reynolds-number gravity currents occur when a
viscous fluid propagates slowly horizontally or down a slope
into an ambient fluid of a different density. An everyday
example is honey spreading over toast. Examples in nature
include lava flows on land1,2 and lithospheric materials
spreading inside the Earth’s mantle.3 In industry, glass
spreading in melting glass furnaces4 plays an important role
in the manufacturing process. The main feature of all these
currents is that the motion is governed by a balance between
forces due to viscosity and gravity. Effects due to inertia are
negligible to leading order.5,6

When a Newtonian fluid is released from a point source
onto a dry rigid surface, a thin layer can quickly develop and
slowly spread as a viscous gravity current at longer times.
The resulting Stokes flow with negligible surface tension ef-
fects often evolves with a self-similar structure, which means
that regardless of the initial configurations, the position of
the front scales with time like tc for some c that depends on
the geometry of the underlying rigid surfaces and the input
rate at the source. In the case of releasing a fixed volume of
fluid, the value of the exponent c is 1 /8 for axisymmetric
spreading over an impermeable horizontal plane,5 1 /3 for
spreading down a flat incline,7,8 1 /4 and 2 /7 for spreading
inside cylindrical and V-shaped channels along a horizontal,
and 3 /7 and 1 /2 down sloping cylindrical and V-shaped
channels, respectively.9 Laboratory experiments on a flat in-
cline show, in addition, that either a series of small amplitude
waves or a single capillary rivulet develops at the front and
produces extended regions thereafter when the current is ini-

tiated from a line7 or point source,8 respectively. This is due
to surface tension effects that eventually influence the ever
thinning flow front. Such instabilities, however, have not yet
been observed in any of the experiments inside sloping semi-
circular or V-shaped channels.9

The theoretical framework for studying Stokes flows
forms an important foundation for considering additional
factors that influence the flow of viscous gravity currents. In
modelling the spreading of basaltic lava on land, for ex-
ample, the formation of levees and channelized flows have
been studied based on the assumption that the current
evolves like a Stokes flow initially near the vent.10 Newton-
ian results have formed a basis for comparison in studying
the effects due to compressibility of lava as a result of
bubbles forming inside,11 surface cooling12 and solidification
as a result of forming a crustal boundary layer.13 Where non-
Newtonian effects play an important role, various different
stress-strain relationships are considered in the study of vis-
cous gravity currents with a Bingham14,15 or a power-law
rheology.16,17

The current paper extends previous work on Stokes
flows in confining channels,9 which considered an instanta-
neous fixed-volume release in channels with uniform cross
section and found the resultant flows to evolve in a self-
similar structure. In this paper, we consider the fluid volume
to be time dependent and the channel shape to vary gently
with distance from the source. One of the motivations of the
research is to provide the foundations for studying lava
flows, which are influenced by temporarily varying effusion
rates and guided by valleys that narrow or widen in
places.18,19 The aim is to analyze the temporal behavior of
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the position of the front as a consequence of either temporal
variations in the input rate of fluid at the point source or
spatial variations in the confining boundaries.

We derive the governing equations in Sec. II A by con-
sidering the total volume of fluid to vary with time like t�

inside an arbitrary channel, where � is a prescribed constant.
When the channel is resting on a horizontal or inclined plane
and its height is given by d=a �y /a�n for some n�0, where y
is the coordinate in the lateral direction and a is the length
scale of the channel size that scales with distance x along the
flow as xb for some given b, the structure of the resultant
current is shown to evolve in a self-similar form. The math-
ematical solutions are presented for propagation inside wide
channels �n�1� in Sec. II B and inside narrow fractures
�n�1� in Sec. II C. When n=1, or more specifically when
the channel height is given by d= �y � /m and m increases like
xb, which corresponds to a gently widening V-shaped chan-
nel, the structure of the flow is only self-similar in special
cases for general b�0 and is studied in Sec. II D.

Where self-similar solutions exist, the parameter c in-
creases linearly with � and generally decreases with increas-
ing b, which corresponds to further widening of wide chan-
nels or squeezing of narrow fractures. This indicates that the
flow slows down in gently widening channels due to the
constraints of volume conservation and also in gently
squeezing fractures due to the rise in frictional drag at the
boundaries. We determine amongst channels that remain uni-
form in cross section �b=0� that c is independent of n in the
special case of �=�c for some �c, and it attains either a
maximal or minimal value when n=1 in the case of ���c

or ���c, respectively. This critical value �c is given by
�c=1 /2 when the flow is horizontal or �c=1 down an in-
cline. Experimental data are in good agreement with the the-
oretical results and are presented for a constant flux ��=1� of
glycerine that partially fills and spreads along either a hori-
zontal or inclined channel with either a cylindrical �n=2� or
V-shaped �n=1� boundary in Sec. III. Finally, in Sec. IV, we
summarize the variety of qualitative and quantitative behav-
ior of viscous gravity currents that arise inside different
channels.

II. THEORY

A. Formulation

Consider an incompressible Newtonian fluid of constant
density � and dynamic viscosity � released onto a rigid
channel, resting on a plane inclined at an angle � to the
horizontal. We adopt a Cartesian set of axes, where x denotes
the downslope coordinate measured from the point of re-
lease, y the cross-slope coordinate, and z the coordinate nor-
mal to the plane. The height of the rigid confining boundary
is denoted by d�x ,y�.

Consider the regime after sufficient time t from initia-
tion, where the fluid occupies the local width of the channel
and spreads essentially in the x direction only. Any variation
in the height of the current across the channel would lead to
a cross-stream pressure gradient and a flow which reduces
that height differential. Thus we can consider the height of
the current to be uniform across the channel, and given by

h�x , t�, dependent only on x and t as shown in Fig. 1. While
the extent of the flow xN�t� is much greater than both this
thickness and the fluid width, only the x-component of the
velocity profile is nonzero and denoted by u�x ,y ,z , t�, where
� /�x�� /�y ,� /�z. With the assumption that effects due to
surface tension are negligible, the fluid pressure is given by

p = p0 + �g��h − z�cos � − x sin �� , �1�

where p0 is the constant reference pressure and g is gravity.
A current under a deep layer of ambient fluid of density
�a�� can be described by replacing g in Eq. �1� with the
reduced gravity g��−�a� /� because the stress exerted by the
ambient fluid on the current is negligible.5

The velocity profile satisfies the Stokes equation

��2u =
dp

dx
, �2�

where � denotes the gradient operator in the �y ,z�-plane. The
dominant term on the right-hand side of Eq. �2� is

dp

dx
= �g sin1−H��− ��h/�x��H, �3�

where H takes the value 1 for horizontal flows �=0 and 0 for
flows down a slope sufficiently inclined so that
tan ���h /�x. This indicates that u is linear in either −�h /�x
or sin �, depending on whether the flow is horizontal and
driven by the slope of the free surface or inclined and driven
by the component of gravity down the slope. An exact solu-
tion for u can be found in either case by specifying two
associated boundary conditions. One is the no-slip condition
u=0 at the rigid boundary z=d. The other is at the free
surface z=h, where the shear stress is negligible and hence
�u /�z=0 there. Different velocity profiles arise inside chan-
nels of different shapes and are treated separately for n�1,
n�1, n=1 in Secs. II B–II D, respectively.

The velocity profile u is substituted into the definition of
the downstream volume flux at any distance x from the
source in the form

Q�x,t� = �
A

udA , �4�

where the integral is evaluated over the cross-sectional area
of the fluid

FIG. 1. A sketch of the current in the �x ,z�-plane.
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A�x,t� = �
W−

W+

dy�
d

h

dz �5�

and W=W+−W− is the width of the current, with W− and W+

the y coordinates of the two points where the free surface h
is in contact with the rigid boundary d, as sketched in Fig. 2.
An expression for the volume flux Q, which has the right-
hand side of Eq. �3� as a multiplicative factor, can be deter-
mined exactly in terms of the unknown height h wherever
the boundary d is given.

The problem is formulated completely by the depth-
averaged equation of continuity20

�A

�t
+

�Q

�x
= 0, �6�

the constraint on the total volume

�
0

xN�t�

Adx = qt�, �7�

where q and � are given numerical constants with �=0 cor-
responding to the instantaneous release of a constant volume
of fluid, and the condition

h�xN�t�,t� = 0, �8�

which requires that the height of the current vanishes at the
front. This final condition �8� is not satisfied by our model
when the flow is inclined �H=0�, for which the order of the
equation governing the main structure of the current Eq. �6�
is lower. In this case, a frontal region dominated by surface
tension brings the height of the flow down to zero. We ne-
glect this small region which does not influence the rate of
propagation of the current or its shape, except at the front.7

Solutions for the unknowns h and xN can be obtained
using similarity variables21 when Eqs. �6� and �7� are of the
form

xe1
�he2

�t
+ G

�

�x
�xe3he4�−

�h

�x
	H
 = 0 �9�

and

�
0

xN�t�

xe1he2dx = q̄t�, �10�

where e1, e2, e3, e4, G, and q̄ are independent of x and t and
take various different values depending on the channel
shape, as we explore in the next subsections. By considering
the scaling factors in Eqs. �9� and �10�, the scaling laws for x
and h are given by

x � �GE2q̄E4t�E4+E2�1/E �11�

and

h � �G−E1q̄E3t�E3−E1�1/E �12�

with E1=e1+1, E2=e2, E3=−e3+e1+1+H, E4=e4+H−e2,
and E=e4+e1e4−e2e3+H�1+e1+e2�. It follows that the po-
sition of the front of the current xN scales like Eq. �11� and is
given by

xN�t� = �NGE2/Eq̄E4/Etc, �13�

where the constants c= ��E4+E2� /E and �N, a dimensionless
number, depend on �, H, and the shape of the channel. An
analytic expression for �N can be obtained in the case �=0
of a constant-volume release at the source by firstly obtain-
ing an analytic solution for h with some steps of algebra,
which are presented in the Appendix. For general ��0,
however, we must resort to a numerical scheme to determine
�N, which is also outlined in the Appendix. In the next sub-
sections, we explore how different values of c and �N arise
by considering flows inside different channels.

B. Widening channels

Consider a channel described by the general power-law
relationship d=a �y /a�n, where a is the length scale associ-
ated with the channel width and n�1 is fixed so that the
flow remains thin, wide, and very long at large times. A thin
flow inside a cylindrical surface with a radius of curvature of
a /2 is described by n=2 and inside a rectangular channel of
width 2a with negligible effects due to the presence of lateral
walls by n→	, which is equivalent to two-dimensional
flows along a flat surface �Fig. 3�. It must be stressed here
that the current only occupies a small depth h�a. The es-
sential feature inside all these channels is that the depth of
the current is much smaller than its width, so by the lubrica-
tion approximation, � /�y�� /�z, in which limit Eq. �2� be-
comes an ordinary second-order differential equation in u.
The velocity profile determined to satisfy the boundary con-
ditions is parabolic and given by

u =
1

2�

dp

dx
�z − d��2h − z − d� �14�

with dp /dx given by Eq. �3�.
Suppose the length scale of the channel width is given

by a=rxb for some fixed values of r and b, so that special

FIG. 2. A sketch of the current in the �y ,z�-plane.

FIG. 3. A cross section of the boundary d=a �y /a�n in the �y ,z� plane with
various different values of n, where the shaded region is a thin layer of fluid
for the case n=2.
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cases of a channel that either remains uniform or varies lin-
early in width along the flow are represented by b=0 or
b=1, respectively. By substituting Eq. �14� into Eq. �4�,
evaluating the integrals �4� and �5� and substituting them into
the evolution Eq. �6�, we obtain Eqs. �9� and �10�, where
the coefficients are G=2g sin1−H�n2 / �
�2n+1��3n+1�� and
q̄=qr1/n−1�n+1� / �2n� and the exponents are e1=e3=b�1− l�,
e2=1+ l, e4=3+ l with l=1 /n. The position of the front of the
current is given by Eq. �13�, where

c =
1 + n + �n�2 + H�

n + �2n + 1��1 + H� + b�n − 1��2 + H�
�15�

and the dimensionless number �N depends on �, b, n, and H.
By considering all partial derivatives of Eq. �15�, we deter-
mine for flows inside channels with a uniform cross section
�b=0� that c is a strictly decreasing function of n for
���c and increasing function of n for ���c, where �c is a
critical value given by either �c=1 /2 in the horizontal case
�H=1� or �c=1 in the inclined case �H=0�. When a fluid is
released at a particular rate such that �=�c, c=1 /2 along a
horizontal boundary or c=1 down an incline for all n, so that
an identical scaling law between the extent of the flow and
time is obtained regardless of the channel shape. In addition,
we determine that c is a strictly decreasing function of b and
that c is always greater for H=0 than H=1, when all other
variables are fixed. This indicates that a higher rate of in-
crease in the channel width leads to a slower propagation rate
and that flows inside a given channel along a horizontal
boundary are always slower than inside the same channel
down an incline.

We found using the numerical scheme as presented in
the Appendix that the dimensionless number �N generally
increases with increasing b and decreasing � for any n�1. A
lower input rate and higher widening rate of the channel
along the flow therefore leads to a lower value of c but a
higher value of �N in the expression �13�. A surface plot of
�N as a function of � and b is displayed in Fig. 4 for a
horizontal flow �H=1� inside a channel with semicircular
cross section �n=2�. In this case, �N ranges from 0 to 1.86.
Plots of �N for different values of n�1 produced qualita-
tively similar results.

C. Squeezing fractures

We now consider viscous flows inside narrow fractures
of the form d=a �y /a�n, where n�1 so that the fluid width is
much smaller than its depth. The case n=1 /2, for instance,
corresponds to the flow in between the outer surface of two
identical and parallel cylinders in contact along their long
axis. By the lubrication approximation, � /�y�� /�z and the
limit of Eq. �2� tends to an ordinary differential equation for
u in terms of y. The solution satisfying the boundary condi-
tion u=0 on z=d and �u /�y=0 on y=0, which follows by
symmetry in y, is given by

u =
1

2�

dp

dx
�w�z�2 − y2� , �16�

where dp /dx is given by Eq. �3� and 2w�z�=2a �z /a�1/n is the
width of the fluid at any given height z. A thin boundary
layer near the free surface z=h ensures that the condition of
negligible tangential stress and hence �u /�z=0 is satisfied at
z=h. This boundary layer plays little role in the overall struc-
ture of the flow and does not contribute to the integral Eq. �4�
in the expression for the volume flux Q to leading order.

Suppose that the length scale of the fracture is given by
a=rxb for some fixed values of r and b, and note that in-
creasing a here corresponds to the squeezing of the channel
width rather than widening as for n�1 in Sec. II B. By
substituting Eq. �16� into Eq. �4�, evaluating the integral �4�,
and substituting them into Eq. �6�, we obtain Eqs. �9� and
�10� with coefficients G= �n+1�g sin1−H �r2�1−l� / ��n+3�
�,
q̄=qrl−1�n+1� / �2n�, and exponents e1=b�1− l�, e2=1+ l,
e3=3b�1− l�, e4=1+3l, where l=1 /n. The position of the
front is given by Eq. �13� with

c =
n + 1 + ��2 + nH�

n + 3 + H�2n + 1� + b�1 − n��2 − H�
�17�

and �N in this case depends again on �, b, n, and H. By
considering the partial derivatives of Eq. �17�, we find inside
channels with a uniform cross section �b=0� that c either
strictly increases or decreases for ���c or ���c, respec-
tively, where the critical value �c takes the same value as
what we determined for n�1 in Sec. II B. The value of c is
constant for all n in the special case of �=�c. Furthermore, c
increases with decreasing b and attains a higher value for
H=0 than H=1. This indicates that a more narrow fracture
reduces the flow rate due to the frictional drag at the rigid
boundaries, while a horizontal flow is always slower than a
flow down an incline inside identically shaped fractures.

The dimensionless number �N was found using the nu-
merical scheme as presented in the Appendix to decrease
with increasing � and b. A surface plot of �N for the case of
horizontal flow H=1 inside a fracture shape with n=1 /2 in
Fig. 5 shows that �N ranges from 0 to 1.27, where its maxi-
mum is attained at �=b=0. Plots of �N for other values of
n�1 produced qualitatively similar results.

We deduce by combining the results for n�1 and
n�1 that the dividing case �n=1� of propagation inside
a V-shaped channel, amongst all channels of the form
d=a �y /a�n, is fastest when the rate of increase of the total
volume of fluid with time is low ����c� and slowest when

FIG. 4. Surface plot of �N as a function of � and b in the case of horizontal
flow H=1 with channel shape n=2.
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it is high ����c�. Figure 6 shows the dependence of c on n
for various different values of � in the case of flows down an
incline �H=0� with �c=1. Furthermore, we deduce from the
representative plots in Figs. 4 and 5 that the dimensionless
number �N in Eq. �13� is higher when the temporal increase
in the total volume of fluid is lower and the rate of increase
of the width of a channel or fracture along the flow is higher.

D. V-shaped channels

The effect of spatial variations along the flow in the
dividing case of n=1 can be studied by considering a
V-shaped channel that is described by d= �y � /m, where m is
the slope of the lateral walls to the plane z=0 and is given by
m=rxb for some constants r and b. For general b�0, the
inner vertex angle gently opens up along the direction of the
flow.

The velocity profile inside V-shaped channels in any
given �y ,z�-plane was derived by Takagi and Huppert9 to be

u = �
i=0

	

�
j=0

	

aij cos �iY cos � jZ , �18�

with �i=��i+1 /2�, Y = ��z+y /m�h−1−1�, and Z= ��z−y /m�
h−1−1� being newly scaled variables and the scalar coeffi-
cients in the infinite sum are given by

aij =
�− 1�i+j4m2h2

��1 + m2��i� j��i
2 + � j

2�
dp

dx
. �19�

Using this to obtain an expression for the volume flux Q and
substituting it along with A=mh2 into Eq. �6�, we derive the
evolution equation

m
�h2

�t
+ G

�

�x
� m3

1 + m2h4�−
�h

�x
	H
 = 0, �20�

where G0.137g sin1−H � /
 and the global continuity equa-
tion is

�
0

xN�t�

mh2dx = qt�. �21�

A self-similar solution can be obtained for the special case of
a V-shaped channel that remains uniform in cross section
throughout the flow �b=0�, and the position of the front
scales like tc, where c does not depend on m and hence the
vertex angle.9 For general b�0, however, when the vertex
angle varies with x, the evolution equation is not of the
form �9� and generally does not admit self-similar solutions
because the second term of Eq. �20� involves the term
m3 / �1+m2�, making it impossible to construct a similarity
variable in terms of t and x. A self-similar solution only
exists under conditions where the channel is either nearly
flat �m�1� or extremely narrow �m�1� because then
m3 / �1+m2� in Eq. �20� limits to m or m3, respectively,
to leading order and Eq. �20� tends to the form �9�, where
e1=b, e2=2, e3=b, e4=4, and q̄=q /r for m�1 and e3=3b
and G is adjusted by r2 for m�1.

The position of the front xN�t� scales like Eq. �11� and
hence like tc, where c is given by

c =
2 + ��2 + H�

4  2b + H�3 + b�
, �22�

with the sign in the denominator positive for a V-shaped
channel that is nearly flat �m�1� or negative for a narrow
V-shaped fracture �m�1�. In the limit as m�1, c increases
with b for both horizontal and inclined cases H=1 and
H=0, which indicates that a gentle widening of narrow
V-shaped fractures leads to a more rapid propagation rate of
the flow front due to a reduction in frictional drag at the rigid
walls. In the limit as m�1, on the other hand, c decreases
with b for both cases H=0 and H=1, which indicates that a
gently widening V-shaped channel slows down the flow due
to the constraint on the total volume. It is therefore not pos-
sible to express the position of the front in the general form
tc with constant c throughout the flow inside V-shaped chan-
nels whose sidewalls are close together initially and gradu-
ally tilt away from each other.

III. EXPERIMENTS

A series of laboratory experiments was conducted to test
the theoretical results for the case of constant flux ��=1� for
a viscous fluid released in channels with uniform cross sec-
tion �b=0�. They complement the set of experimental results

FIG. 5. Surface plot of �N as a function of � and b in the case of horizontal
flow H=1 with fracture shape n=1 /2.

FIG. 6. A plot showing qualitatively different dependencies of c on n for
different values of � when a current flows down an incline �H=0�, in which
case the critical value is given by �c=1. Either a maximum or minimum
value of c is attained at n=1 for ���c or ���c, respectively.
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obtained previously by releasing a constant volume of glyc-
erine onto semicircular and V-shaped channels,9 correspond-
ing to the case of �=0.

The experiments were set up as follows. A 2 m long
plastic gutter with a radius of curvature of 5.8 cm was braced
by aluminium rods on either side and rested on a wooden
base. In another set of runs, a long Perspex rectangular tank
of dimensions 10�15�100 cm was rotated by 45° about its
long axis and carefully placed on orthogonal V-shaped sup-
ports, which rested on the wooden base. The wooden base
was then lifted at one end or carefully levelled to the hori-
zontal using a spirit level as required. Immediately above
one end of the tank, a measuring cylinder with a nozzle
diameter of 0.8 cm and a cork stopper at the base was sup-
ported, acting as a reservoir, from which pure glycerine with
a density of 1.26 g cm−3 could be released at a constant flux
onto the surfaces of interest. A typical current reached the
end of the channel with a width of a few centimeters after
1–5 min, depending on the channel length and the sloping
angle.

Before each run, the viscosity of the glycerine varying
from 2.37 to 10.2 cm2 s−1 was measured using a U-tube vis-
cometer. A beaker filled with glycerine was poured into the
cylinder up to a fixed height. The surface of the channel was
carefully dried and marked every 10 cm from the point of
release of fluid.

The flow of glycerine was initiated by quickly removing
the cork from the cylinder. The height of glycerine inside the
cylinder was kept constant throughout each run by pouring
the fluid from a beaker, so that a constant flux of fluid at the
point source could be maintained. The flux was determined
by recording the change in mass of the beaker before and
after each run, which typically lasted a few minutes. A stop-
clock timer was used during each run to record the time
taken for the front of the flow to reach each marker on the
channel surface from the point of release.

A complete set of experiments was performed with a
steady flux at the source ranging from 2.4 to 6.6 cm3 s−1 for
each situation. Experimental data of the distance traveled by
the front of the current and the time elapsed from the point of
release were recorded. Figure 7 shows that the scaled experi-
mental data with different constants of flux at the point
source q, marked by different symbols, collapse nicely onto
the theoretical curve in all cases for either a horizontal or
inclined channel with either a semicircular or V-shaped cross
section. Furthermore, no form of instability at the front was
observed in any of the experiments conducted with a con-
stant flux of viscous fluid released from a point source inside
a sloping V-shaped or semicircular channel, so that the struc-
ture of the flow preserved its self-similar form. The experi-
mental results are in good agreement with the theoretical
equations in the long-time regime. The theoretical result that
the extent of the flow, initiated by a constant input flux of
fluid at the source ��=1�, scales like t inside all channel
shapes down an incline is supported by the agreement be-
tween the slopes of V5 and S5 in Fig. 7.

IV. DISCUSSION AND CONCLUSIONS

A model of unidirectional Stokes flow on rigid surfaces
was used to obtain a variety of different propagation rates of
viscous gravity currents, which arise by considering different
releasing rates at the source inside channels that change
shape down the flow. Flows inside channels of the type
d=a �y /a�n evolve with a self-similar structure so that the
position of the front xN is given by Eq. �13� for some known
constants c and �N that depend on �, b, H, and n, where the
total volume of fluid scales like t�, the length scale of the
channel size a like xb with distance x from the source and
H=0 or H=1 depending on whether the flow is inclined or
horizontal, respectively. Table I shows a sample of values of
c for propagation inside channels or fractures with uniform
cross section �b=0�.

We determined that c depends linearly on � and always
attains a greater value in the case of H=0 than H=1, when b
and n are fixed. This indicates that a higher input rate of fluid
at the source, and flows down an incline rather than along a
horizontal channel of the same shape, always lead to a higher
rate of propagation. Amongst channels that remain uniform
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FIG. 7. Theoretical curves and experimental data for the nondimensional
propagation distance of the front against nondimensional time on logarith-
mic axes for different channels: V-shaped on a 5°-incline �V5�, horizontal
V-shaped �V0�, semicircular on a 5°-incline �S5�, horizontal semicircular
channels �S0�. Different data symbols correspond to different runs with
a steady flux at the source ranging from 2.4 to 6.6 cm3 s−1. The variables

xN and t have been scaled using Eq. �11� to obtain X= �G� / q̄�1/Ē and

T= �GE1+E2q̄−E3+E4�1/Ē with Ē=−E1−E2+ �E3−E4�� for each flow.

TABLE I. Table of values of c in the expression �13� for either horizontal or
inclined flows inside various different channels; in between the outer surface
of two large cylinders in contact �n=1 /2�, inside a V-shaped channel
�n=1�, on the inner surface of a large cylinder �n=2�, and inside a rectan-
gular channel �n→ 	 �. The cross section of the prescribed channel is uni-
form �b=0� and the total volume of fluid scales like t�.

c

n Inclined �H�0� Horizontal �H�1�

1/2 �4�+3� /7 �5�+3� /11

1 ��+1� /2 �3�+2� /7

2 �4�+3� /7 �2�+1� /4

	 �2�+1� /3 �3�+1� /5
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in cross section �b=0�, we also found that there exists a
critical value �c such that c is either constant for all n, maxi-
mal or minimal at n=1, depending on whether �=�c,
���c or ���c, respectively. This critical value is given by
�c=1 /2 for horizontal flows and �c=1 for flows down an
incline.

We can determine the role on the resultant flow of the
volume constraint and the frictional drag at the rigid bound-
aries by analyzing the dependence of c on b. The theoretical
results derived in Sec. II indicate that c can be expressed as
a fraction of terms where b only appears in its denominator.
The general trend is that increasing b, which corresponds to
a gentle widening of channels or squeezing of fractures, de-
creases the rate of propagation of the front. This indicates
that the spreading is primarily constrained by the condition
on the total volume conservation inside widening channels
�n�1�, where the flow width is greater than its depth, and by
frictional drag at the rigid boundaries inside squeezing frac-
tures, where the flow width is less than its depth.

The model is useful for determining whether the result-
ant structure of the flow inside a given channel is governed
by an equation of the form Eq. �9� and therefore self-similar.
We found that currents inside channels of the type
d=a �y /a�n, with the length scale a varying like xb for some
non-negative constant b, have a self-similar structure and
therefore the extent of the flow scales like tc for some con-
stant c at large times. On the other hand, flows inside chan-
nels of the type d= �y � /m, with m varying like xb, have dif-
ferent propagation rates in the limit as m�1 or m�1.
Consequently, the position of the front of any current inside
narrow V-shaped fractures that gently open up and gradually
tend to the limit of a completely flat surface cannot be ex-
pressed in the form tc with constant c.
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APPENDIX: SELF-SIMILAR SOLUTIONS

A solution for h that satisfies Eqs. �9� and �10� is ob-
tained as follows. By considering the scaling laws �11� and
�12�, it is suitable to seek a solution of the form

h = �G−E1q̄ −E3t�E3 − E1�1/E���� , �A1�

where � is a similarity variable given by

� = x/�GE2q̄E4tE2+�E4�1/E. �A2�

This form allows Eq. �9� to be transformed into an ordinary
differential equation given by

e2�e1�e2−1���E3 − E1�� − �E2 + �E4�����/E

+ ��e3�e4�− ���H�� = 0 �A3�

and Eq. �10� becomes

�
0

�N

�e1�e2d� = 1, �A4�

where �N is a constant dimensionless number that is given
by evaluating � in Eq. �A2� at the front of the current
x=xN�t�.

In the special case of releasing a constant volume of
fluid at the source, which corresponds to �=0, the differen-
tial equation �A3� reduces to the form

�e2�e1+1�e2 − �e3�e4�− ���H�� = 0 �A5�

and admits an analytic solution in both cases H=0 and
H=1. For inclined flows �H=0�, the first-order differential
equation �A5� along with the condition that the fluid height
vanishes in the long run at the source, ��0�=0, is satisfied by

� = �E2

E4
�E3	1/E4

. �A6�

For horizontal flows �H=1�, the second-order differential
equation �A5� along with the condition �8� that the fluid
height vanishes at the front of the current, ���N�=0, is sat-
isfied by

� = �E2E4

EE3
��N

E3 − �E3�
1/E4

. �A7�

The analytic solution � can be substituted into Eq. �A4� to
obtain an expression for �N, which is given by either

�EE2+E4/�E2
E2E4

E4��1/E �A8�

if the flow is inclined �H=0�, or

�E3� EE3

E2E4

E2/E4� B�E1/E3,1 + E2/E4�
E4/E

�A9�

if the flow is horizontal �H=1�, where B�x ,y� is the beta
function.22

For general ��0, however, we must resort to a numeri-
cal method to obtain a solution ���� that satisfies Eqs. �A3�
and �A4�. Here, we outline a method for the horizontal case
�H=1� so that Eq. �A3� is a nonlinear differential equation of
second order. First, we rescale � and � so that

���� = �N
E3/E4���� , �A10�

where �=� /�N is the new similarity variable. Equations
�A3� and �A4� become

e2�e1�e2−1���E3 − E1�� − �E2 + �E4�����/E

− ��e3�e4���� = 0 �A11�

and

�N = ��
0

1

�e1�e2d�	−E4/E

. �A12�

The leading term of the series expansion about �=1 is given
by

���� � �E4��E4 + E2�/E�1/E4�1 − ��1/E4, �A13�

which is used as a starting condition in determining the nu-
merical solution of ����. Finally, a numerical value of �N is
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determined by numerically integrating the solution using Eq.
�A12�. Built-in MATHEMATICA functions NDSolve and NIn-
tegrate were used to compute ���� and �N, respectively.
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