
J. Fluid Mech. (2008), vol. 606, pp. 1–26. c© 2008 Cambridge University Press

doi:10.1017/S002211200800116X Printed in the United Kingdom

1

Gravity currents from a line source
in an ambient flow

ANJA C. SLIM† AND HERBERT E. HUPPERT
Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics,

Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road,
Cambridge CB3 0WA, UK

(Received 16 June 2007 and in revised form 11 February 2008)

We present a mainly theoretical study of high-Reynolds-number planar gravity
currents in a uniformly flowing deep ambient. The gravity currents are generated by a
constant line source of fluid, and may also be supplied with a source of horizontal mo-
mentum and a source of particles. We model the motion using a shallow-water approx-
imation and represent the effects of the ambient flow by imposing a Froude-number
condition in a moving frame. We present analytic and numerical expressions for the
threshold ambient flow speed above which no upstream propagation can occur at long
times. For homogeneous gravity currents in an ambient flow below threshold, we find
similarity solutions in which the up- and downstream fronts spread at a constant rate
and the current propagates indefinitely in both directions. For gravity currents con-
sisting of both interstitial fluid of a different density to the ambient and a sedimenting
particle load, we find long-time asymptotic solutions for ambient flow strengths below
threshold. These consist of a steady particle-rich near-source region, in which settling
and advection of particles balance, and an effectively particle-free frontal region. The
homogeneous behaviour of the fronts ensures that they also spread at a constant rate
and therefore can propagate upstream indefinitely. For gravity currents driven solely
by a sedimenting particle load, we find numerically that a single regime exists for ambi-
ent flow strengths below threshold. In these solutions, settling balances advection near
the source leading to a steady region, which joins on to a complex frontal boundary
layer. The upstream front progressively decelerates. Our solutions for homogeneous
and particle-driven gravity currents compare well with published experimental results.

1. Introduction
In many natural and man-made situations gravity currents are generated by a

dense fluid being continually released and spreading horizontally beneath a lighter,
flowing ambient. The resulting currents are partly driven by the ambient flow and
partly by the buoyancy mismatch: the ambient flow impedes propagation upstream
and facilitates propagation downstream. (Note that we reserve the term ‘current’ to
refer to the gravity current, and never use it to describe the ambient flow.) Here
we study the idealized canonical problem of currents supplied by a constant line
source and propagating into a uniform ambient flow at high Reynolds number
using a shallow-water formulation. The currents may be homogeneous (uniform
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density), Boussinesq particle-laden (composed of either dense or light fluid together
with a sedimenting particle load) or Boussinesq particle-driven (driven solely by
a sedimenting particle load). We investigate how the current evolves and find the
threshold value of the ambient flow speed that prevents upstream propagation.
For particle-laden and particle-driven currents we also consider the particle deposit
distribution.

This problem represents one of the simplest configurations in which an ambient flow
affects the dynamics of a gravity current. It is also applicable to a number of natural
and environmental phenomena, a particular example being thunderstorm evolution. A
frontal rain-band is approximately uniform in the along-front direction and can thus
be modelled as two-dimensional (Carbone 1982). Cooling in thunderstorms causes a
down-flow that propagates across the ground as a gravity current. It is conjectured
that surrounding air forced to rise above the advancing fronts sustains the storm.
Often strong winds enhance this vertical motion at the upwind front (Simpson 1997).

Several previous studies have considered continuously supplied Boussinesq
homogeneous gravity currents in the presence of an ambient flow, both experimentally
(Cederwall 1971; Hogg, Hallworth & Huppert 2005, henceforth referred to as HHH)
and using numerical simulations of the full Navier–Stokes equations (Valentine &
Kao 1984) or the anelastic equations of motion (Thorpe, Miller & Moncrieff 1980;
Liu & Moncrieff 1996). In the inertia–buoyancy regime it was observed that both the
upstream and downstream fronts spread at a constant velocity and that the height
profiles are approximately uniform far from the source. HHH obtained estimates
for the frontal propagation velocities using a box model. In this description both
the up- and downstream sections of the current are approximated by a series of
rectangles whose areas increase in time at exactly half the volume flux per unit
width of the source (an assumption that immediately implies the current propagates
upstream into arbitrarily fast ambient flows). All studies except that of HHH reported
a maximum ambient flow speed, Uc, normalized by (g′Q)1/3, above which upstream
propagation does not occur, where g′ is the reduced gravity of the current and Q is
the volume flux per unit width of the source. For particular source configurations,
it ranges from approximately Uc/(g

′Q)1/3 = 0.9 (for the spread of buoyant fluid
introduced through a broad slot at the surface of a denser ambient at moderate
Reynolds number (Valentine & Kao 1984)) to approximately Uc/(g

′Q)1/3 = 1.4 (for
a current generated by a dense plume descending from a rectangular region of
cooling at higher Reynolds number (Thorpe et al. 1980; Liu & Moncrieff 1996)).
Here we consider these currents using the shallow-water equations, which do not
impose a height profile, and we also do not impose the distribution of supplied fluid
travelling in each direction. We find similarity solutions that describe the evolution
of the current and provide an analytic answer to whether upstream propagation
is possible. A key contribution of the present study is the determination of the
coefficient as a function of global properties of the source, such as its momentum
flux.

The evolution of continuously supplied Boussinesq particle-driven currents in an
ambient flow was studied experimentally and numerically using a shallow-water model
by HHH. They again assumed that the supplied fluid and particles are distributed
equally between the up- and downstream sections of the current. We re-investigate
the evolution of these currents, eliminating the assumption of equipartition of the
source. We find solutions at later times and a new regime for strong ambient flows.
Numerically, it appears that currents in this regime cannot propagate upstream at
long times.
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Figure 1. A high-Reynolds-number planar gravity current in a uniform ambient flow
continuously supplied with fluid, momentum and particles by a source of width 2x̂s . The
system is only constrained by a single horizontal boundary.

To our knowledge, continuously supplied particle-laden currents in an ambient
flow have not been considered previously, either experimentally or theoretically. We
find long-time asymptotic solutions that describe their evolution and predict whether
upstream propagation is possible. The solutions are steady next to the source and are
given by homogeneous similarity solutions in moving frames at the fronts.

The outline of this paper is as follows. In § 2 we formulate the problem, describing
the modifications to the shallow-water model required to capture the ambient flow
and the source. In § 3 we construct similarity solutions for homogeneous currents, and
compare them to the experimental data of HHH. In § 4 we address particle-laden and
particle-driven currents, constructing long-time asymptotic solutions for particle-laden
currents in § 4.1. For particle-driven currents we have been unable to find complete
asymptotic solutions because of the breakdown of the model at large times. Instead,
in § 4.2, we present a numerical study of their evolution for varying ambient flow
strengths and compare results to the experiments of HHH. In § 5 we summarize our
major results and briefly discuss the limitations of the model.

2. Formulation
We consider a planar gravity current of density ρc propagating into a deep ambient

of density ρa over (if it is denser than the ambient) or under (if it is less dense than the
ambient) a rigid horizontal boundary. In the ambient there is a far-field uniform flow
of velocity U > 0 parallel to the boundary. The current is supplied by a temporally
constant source having volume flux, q(x̂), and specific momentum flux, qm(x̂), per
unit area, where x̂ is the spatial coordinate. Particles may be homogeneously mixed
within the source fluid at volume fraction φ0. This configuration for a current denser
than the ambient is shown in figure 1.

2.1. Governing equations

Assuming a sufficiently high Reynolds number that viscosity may be ignored, sufficient
turbulence that particles and momentum are uniformly distributed in the vertical,
neglecting entrainment (for a discussion of its effects see Hallworth et al. 1996;
Hacker, Linden & Dalziel 1996) and only considering late times when the current
is long and thin, we describe the motion in the bulk of a dilute current by the
shallow-water equations (e.g. Pedlosky 1987; Bonnecaze, Huppert & Lister 1993;
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Harris, Hogg & Huppert 2001)

∂ĥ

∂t̂
+

∂(ûĥ)

∂x̂
= q(x̂), (2.1a)

∂(ûĥ)

∂t̂
+

∂

∂x̂

(
û2ĥ +

1

2
g′ĥ2

)
= qm(x̂), (2.1b)

∂(φ̂ĥ)

∂t̂
+

∂(ûφ̂ĥ)

∂x̂
= −Wpφ̂ + φ0q(x̂). (2.1c)

Here ĥ is the (dimensional) height of the current, û the horizontal velocity, φ̂ � 1 the
particle volume fraction and t̂ time. The reduced gravity of the system, g′, is given
by g′ = |ρc − ρa|g/ρc for homogeneous currents and g′ = |ρc − ρa|g/ρa for Boussinesq

particle-laden and particle-driven currents, where ρc = [1 − φ̂(x̂, t̂)]ρi + φ̂(x̂, t̂)ρp , ρi is
the density of the interstitial fluid and ρp that of the particles. The unhindered settling
velocity of the monodisperse particles is denoted Wp; they are not re-entrained.

The functions q(x̂) and qm(x̂) are non-zero over a finite domain and describe a
general source of volume and momentum. For the majority of our investigation we
concentrate on the forms

q(x̂) = Q/2x̂s , qm(x̂) = Qm/2x̂s + sgn(x̂)Qd/x̂s for |x̂| � x̂s, (2.2)

approximating a simple source in which a volume flux Q/2 is injected with momentum
flux Qm/2 − Qd to the left of the origin and a volume flux Q/2 is injected with
momentum flux Qm/2+Qd to the right of the origin. A momentum source is included
to reproduce the conditions in the investigation of HHH more accurately. In their
experiments, saline or particle-laden water was injected at a constant rate through a
small nozzle at the free surface of a tank filled with uniformly flowing fresh water. The
resultant downwelling negatively buoyant plume impinged on the base of the tank
and spread laterally, rapidly extending to the full width of the tank before propagating
up- and downstream as an effectively planar current. Entrainment of ambient fluid
during descent of the plume resulted in a net momentum flux (approximated by the
term Qm) being supplied to the current, while impingement at the lower boundary
transferred vertical momentum from the plume into up- and downstream momentum
(approximated by the momentum dipole term Qd). We emphasize that our techniques
may be applied to more general source distributions and that for a sufficiently weak
dipole the results depend only on the total volume and momentum added (as outlined
in Appendix A).

2.2. Shock conditions

In our analysis, we shall frequently employ the Rankine–Hugoniot shock conditions
and Lax entropy condition, and state them here for future reference (see, for example,
Kevorkian 1991) as

[[ûĥ]] = Ŝ[[ĥ]], [[û2ĥ + g′ĥ2/2]] = Ŝ[[ûĥ]], (2.3)

and

ûl ± ĉl > Ŝ > ûr ± ĉr , ûl ∓ ĉl < Ŝ < ûr ∓ ĉr , (2.4)

respectively. Here [[·]] = (·)r − (·)l is the difference in the bracketed quantity between
the right (r) and the left (l) across the shock, Ŝ is the shock velocity and ĉ = (g′ĥ)1/2

is the celerity. The entropy condition is required to select a unique solution of the
shock conditions, demanding that exactly one of the characteristics enters the shock
from both sides as time progresses.
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2.3. Boundary conditions

Closure conditions are required at the upstream and downstream fronts. In addition
to describing the resistance of the ambient, they must also describe the influence of the
ambient flow (Hallworth, Hogg & Huppert 1998). At the upstream front the intruding
current loses momentum as the ambient fluid rises above it. At the downstream front
the current may similarly lose momentum, or it may gain momentum if the ambient
is flowing faster than the current, inducing a region of low pressure just ahead of it.

For a steadily propagating gravity-current head between ideal Boussinesq fluids

ûuf − U = −
√

2g′ĥuf , ûdf − U =

√
2g′ĥdf , (2.5)

relates the velocity and pressure head at the front (cf. von Kármán 1940; Benjamin
1968). The subscripts u and d denote upstream and downstream respectively, and
f the values just behind the front. For ideal fluids this may be used as a closure
condition and is consistent with the shallow-water equations (Klemp, Rotunno &
Skamarock 1994).

The head of a real gravity current is a complex and unsteady three-dimensional
flow and in addition to form drag, there are viscous drag and Reynolds stresses
acting upon it. Experimentally (2.5) is found to be modified and may be written as
(Simpson & Britter 1980)

ûuf − kU = −β

√
g′ĥuf , ûdf − kU = β

√
g′ĥdf , (2.6)

where k is the fraction of the ambient flow velocity felt by the current and β is
an imposed frontal Froude number in the frame moving with velocity kU . Where
we explicitly take values for these parameters we set β =0.91 and k = 0.62, from
the experimental data of Simpson & Britter (1980). (Their experiment investigated
currents with height ratios in the range 0.15 to 0.25 relative to the ambient. Similar
ratios were also used in the experiments of HHH, and so we take these values for
comparison purposes. For deeper ambients β was observed to be closer to

√
2.)

Explanations for the current experiencing only a fraction of the ambient flow speed
are provided by Hallworth et al. (1998) and Ross (2000).

The boundary conditions are completed by the kinematic conditions

dx̂uf

dt̂
= ûuf ,

dx̂df

dt̂
= ûdf , (2.7)

where x̂uf , x̂df are the upstream and downstream front positions respectively. We
note that taking values just behind the physical front to impose (2.6) and (2.7) yields
numerical and analytical profiles that end much more abruptly than true fronts.

The system (2.1)–(2.7) is also valid for non-Boussinesq homogeneous currents,
although β and k take different values. We discuss solutions for such currents in § 3
and thus need to examine how these parameters change. For light currents relative
to the ambient, β is small, while for very dense currents it is large (Benjamin 1968;
Gröbelbauer, Fanneløp & Britter 1993; Ungarish 2007). To our knowledge, the
variation of k with density contrast has not been explored; however for a low-density
current k might be expected to be close to one, whereas for a high-density current it
should be effectively zero. Because k only enters the governing equations in a product
with the parameter U , its precise value is immaterial to the analysis.
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2.4. Particle deposit profiles

To complete the description, we give the expression for the particle deposit per unit
area, Φ̂(x̂, t̂), collected above point x̂ by time t̂ , as

Φ̂(x̂, t̂) = ρpWp

∫ t̂

0

φ̂(x̂, t̂ ′) dt̂ ′. (2.8)

Finally we note that variations of (2.1)–(2.8) have been extensively and successfully
used to study high-Reynolds-number gravity currents in a number of configurations
(e.g. Fannelop & Waldman 1972; Hoult 1972; Rottman & Simpson 1983; Bonnecaze
et al. 1993, 1995). In particular, Hallworth et al. (1998) obtained good agreement
between similarity solutions, numerical and experimental results for constant-volume
homogeneous and particle-driven currents in an ambient flow.

Our numerical code for solving the system (2.1)–(2.8) is described in Appendix B.
As initial conditions we set the height and particle volume fraction to be constants
and the velocity to be zero inside a small symmetric region neighbouring the source
(specific details are given for the solutions presented).

3. Homogeneous gravity currents
We begin by considering the evolution of gravity currents driven solely by

compositional differences. Such currents are described by the three dimensionless
parameters

U = kU/(g′Q)1/3, M = g′Qm/(g′Q)4/3, D = g′Qd/(g
′Q)4/3,

representing the normalized strength of the ambient flow, normalized net momentum
flux and normalized momentum dipole, together with the frontal Froude number, β .
For small values of U, the source buoyancy flux dominates and we expect the current
to be only weakly affected by the ambient flow. Conversely, for large values of U it
will be strongly affected by the flow and above some threshold value, Uc(β, M, D), it
cannot spread upstream at long times. In the next two subsections we present solutions
for the height and velocity profiles of the current at long times and find expressions
for this threshold value. In § 3.3, we compare our solutions with experiments.

3.1. Similarity solutions

The system has no intrinsic length scale (assuming that the source scale is no longer
relevant) and thus we expect a similarity solution to exist and for profiles to tend
towards it. In order to find this global solution, we construct separate similarity
solutions in the upstream and downstream sections of the current and join them by
conditions across the source.

We commence by presenting the similarity solutions in each section. For a quiescent
ambient, Gratton & Vigo (1994) used a phase-plane technique to show that three
solution structures are possible, consisting of combinations of sections where û and
ĥ are constant and sections where the solution is represented by a rarefaction wave.
Using the same approach, it may be readily shown that the same three structures
are also the only permissible ones in both the up- and downstream sections of
our flowing ambient problem. We classify them below using the nomenclature of
Gratton & Vigo (1994) (augmented by the special case type IIs), and give
the expressions for the non-dimensional velocity, u = û/(g′Q)1/3, and celerity,
c =(g′ĥ)1/2/(g′Q)1/3, in terms of the similarity variable, η = x̂/(g′Q)1/3 t̂ . The solutions
given in (3.1)–(3.3) are written to satisfy the frontal boundary conditions with the
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upper sign relating to upstream solutions and the lower to downstream. The Froude
numbers at the front and just outside the source are denoted by Ff = uf /cf and
Fs = us/cs respectively, with negative values upstream and positive values downstream,
on the assumption that flow is outwards from the source region. Using these
conventions, we obtain the following four types of similarity solution.

Type I: a single constant state given by

(u, c) = (Ff , 1)
1

Ff ± β
U, 0 � |η| �

|Ff |
Ff ± β

U. (3.1)

Such solutions only exist for Ff � ∓β .
Type II: two constant states joined by a rarefaction, given by

(u, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(Fs, 1)
1

Fs ∓ 2

Ff ∓ 2

Ff ± β
U, 0 � |η| � |ηj |,

1

3

(
2η +

Ff ∓ 2

Ff ± β
U, −|η| ∓ Ff ∓ 2

Ff ± β
U

)
, |ηj | � |η| �

|Ff ± 1|
Ff ± β

U,

(Ff , 1)
1

Ff ± β
U,

|Ff ± 1|
Ff ± β

U � |η| �
|Ff |

Ff ± β
U,

(3.2)
where ηj = (Fs ± 1)(Ff ∓ 2) U/(Fs ∓ 2)(Ff ± β) is the value of the similarity variable
at the inner join. Such solutions only exist for |Ff | � |Fs | � 1 and Ff � ∓β .

Type IIs: the special form of type II with |Fs | =1, for which ηj = 0 and the constant
state neighbouring the source is absent.

Type III: two constant states joined by a shock, given by

(u, c) =

⎧⎨
⎩

(Fs, 1) cs, 0 � |η| � S,

(Ff , 1)
1

Ff ± β
U, S � |η| �

|Ff |
Ff ± β

U,
(3.3)

where S is the non-dimensional shock velocity and cs the celerity of the near-source
solution, both given by the solution of the non-dimensional form of the Rankine–
Hugoniot conditions (2.3). Solutions of this type only exist for |Fs | � max(1, |Ff |)
and Ff � ∓β , and they are subject to the Lax entropy condition (2.4).

Before proceeding to discuss the required patching between solutions at the source,
we briefly describe the physical properties of these different solution types. An example
of each is shown in figure 2 (which will be discussed in greater detail below): on the
upstream branch all solutions are type I, while progressively further from the source
on the downstream branch types IIs, II and III are observed. The structure selected
reflects the ambient resistance to propagation of the current, relative to the strength
of the source. If ambient resistance is relatively small, then a current can intrude more
readily than it is supplied and at some distance from the source it accelerates and
thins (a type II solution). Conversely, if ambient resistance is relatively large, then
a current cannot intrude as readily as it is supplied and at some distance from the
source it slows and deepens (a type III solution). Finally, if ambient resistance is very
large or the source is very weak, then the current is choked and deepening occurs
immediately (a type I solution).

We now turn to the description of the source. To specify the complete similarity
solution, conditions across it are required in order to select the type of the up- and
downstream structures and determine the four unknowns Fus,ds and Fuf,df , where
subscript us (ds) indicates values at x̂ = −x̂s (+x̂s). The form of (2.1) is not conducive
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Figure 2. (a) Buoyancy and (b) velocity similarity profiles for homogeneous currents with
U = 1, M = 0 and β = 0.91. The profile with smallest up- and downstream extent is for both
D = 0 and D = 0.5 and is type I–type IIs. The profile of intermediate extent is for D = 1 and is
type I–type II. The profile of greatest extent is for D = 1.5 and is type I–type III. The location
of these solutions in (D, U) parameter space is given in figure 3. The notation X–Y denotes a
solution that is type X upstream and type Y downstream.

to analysis; a more useful alternative is the following analogy with conditions across
a shock. (Gratton & Vigo (1994) did not encounter this complication for a quiescent
ambient since they specified the source in terms of its mass flux and its Froude
number, rather than its momentum flux.)

(a) The equivalents of the Rankine–Hugoniot conditions are obtained by
integrating (2.1) from −x̂s to 0 and from 0 to x̂s , yielding

u0c
2
0 − uusc

2
us = 1/2, u2

0c
2
0 + c4

0/2 − u2
usc

2
us − c4

us/2 = M/2 − D, (3.4)

udsc
2
ds − u0c

2
0 = 1/2, u2

dsc
2
ds + c4

ds/2 − u2
0c

2
0 − c4

0/2 = M/2 + D, (3.5)

respectively. These provide four conditions, although also introduce the two new
unknowns u0 and c0, denoting the velocity and celerity at x̂ =0.

(b) The equivalents of the Lax entropy condition provide the final conditions. To
specify the states u and c on either side of the source, exactly two pieces of information
additional to (3.4) and (3.5) must be supplied along characteristics. Thus exactly two
characteristics must reach each line x̂ = ± x̂s . The possibilities are summarized in
table 1, where the plots illustrate the directions of the characteristics u ± c just
outside the source and at the origin. Further details of this argument are presented
in Appendix A, where we discuss conditions for more general source distributions.

Our solutions are now essentially complete: for each possible combination of up-
and downstream structures, we now have at most six unknowns (Fus,ds , Fuf,df , c0

and u0) and an equal number of conditions ((3.4), (3.5) and table 1), yielding a set of
algebraic equations that may be readily solved numerically. For a solution to be valid,
it must also satisfy the inequalities outlined in the definitions of types given above
and those given in table 1. It appears that these are sufficient to ensure uniqueness of
solutions for given parameter values.

Before discussing solution regimes and profiles, we finally note that a substantial
simplification is possible for solutions with |Fus,ds | � 1 both up- and downstream. In
this case Fus,ds are completely specified by the solution outside the source. Thus (3.4)
and (3.5) may be reduced to udsc

2
ds −uusc

2
us = 1 and u2

dsc
2
ds +c4

ds/2−u2
usc

2
us −c4

us/2 = M,
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Table 1. The possible directions of the characteristics in the vicinity of the source. Here
subscript 0 refers to values at the origin. Solutions that are type I and have |Fs | > 1 on
either the up- or downstream section are not included in this classification because they
are overdetermined: such solutions only exist on three-dimensional hypersurfaces in our
four-dimensional parameter space and we omit them for clarity.

with the full form only required to specify u0 and c0. A consequence is that the
momentum dipole only influences the exterior solution once it exceeds a threshold
value at which the Froude number at the origin has magnitude unity, |F0| =1.

3.2. Solution regimes

All 16 different combinations for the up- and downstream structures may be shown to
be realizable. Regime diagrams illustrating the location of different solution structures
in a selection of parameter spaces are given in figure 3: (a) depicts (β, D) space for
currents in a quiescent ambient with no net source of momentum, (b) depicts (β, U)
space for currents in an ambient flow with no source or dipole of momentum,
(c) depicts (D, U) space for Boussinesq currents (β = 0.91) without a net source
of momentum, while (d ) depicts (M, U) space for Boussinesq currents without a
dipole of momentum. The behaviour observed is consistent with that anticipated
from the qualitative description given earlier: type I solutions are observed for a
weak or moderate source (small momentum dipole) and large ambient resistance
(light currents in a heavy ambient or, on the upstream side, large ambient flow
strengths). Type IIs solutions are found for a weak source (small momentum dipole
or, on the downstream side, an upstream-directed momentum flux) and a weak
ambient resistance (heavy currents in a light ambient or, on the downstream side,
large ambient flow strengths), while type II solutions are observed for a moderate
source and weak ambient resistance. Finally, type III solutions are found whenever
the source is very strong. Another important observation is that the presence of a
momentum dipole does not alter the solution type until a threshold value is reached
in figures 3(a) and 3(c), as predicted in the last paragraph.

The boundary Uc(β, M, D), above which upstream propagation cannot occur at
long times, is indicated by solid bold curves in figure 3, and occurs where the upstream
frontal velocity is zero. It may be expressed analytically, when both 2M � 3−(1−1/β)4
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Figure 3. Location of the different solution structures in (a) (β, D) parameter space with
M = U = 0, (b) (β, U) space with M = D = 0, (c) (D, U) space with β = 0.91 and M = 0, and
(d ) (M, U) space with β = 0.91 and D = 0. The notation X–Y denotes a solution that is type X
upstream and type Y downstream. The dots, •, in (c) indicate the locations in parameter space
of the solution profiles given in figure 2.

and β � 1 (corresponding to solutions that are not type I downstream), as

Uc =

{
(3 − 2M)1/4β, for M + 2D + 3/24/3 � 3,(
3/24/3 + 2D − M

)1/4
β otherwise.

The maximum ambient flow speed for which a current can propagate upstream thus
depends sensitively on its density relative to the ambient (dense currents, with large
β , can propagate into significantly stronger ambient flows than light currents, with
small β) and less sensitively on the net momentum source and the momentum dipole,
with the latter only becoming important above a non-zero threshold value.

A second type of boundary beyond which no similarity solutions can be found is
indicated by dashed bold curves in figure 3. It occurs where the downstream frontal
height becomes zero because of acceleration induced by the faster-flowing ambient.
Beyond it, the downstream boundary condition, (2.6b), is no longer valid. The analysis
outside this boundary is beyond our scope. However we note that it is of limited
physical significance in figure 3(b) since it occurs for dense currents where we expect
k � 1. This behaviour is analogous to a dambreak in which the frontal height is zero,
which sets its maximum speed of advance (cf. Whitham 1974).

Finally, height and velocity profiles for several regimes are shown in figure 2,
with the choice of parameters corresponding to the dots in figure 3(c). A significant
observation is that the profiles for the two smallest momentum dipole values are
everywhere identical. As the momentum dipole is increased beyond its threshold
value, the average speed of the current both up- and downstream increases and the
average height decreases correspondingly.
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Figure 4. The dimensionless velocities of the up- and downstream fronts as functions of
the dimensionless ambient flow speed. The symbols are the experimental data of HHH, the
solid curve is the similarity solution result with M = 0 and the dashed curve is that with
M = 0.9 U/k; both have D = 0.

3.3. Comparison with experiments

In order for a comparison between our similarity solutions and experimental data
to be valid, the former must be attained within the time frame of the latter. For
type I and type II currents numerical and analytic results suggest that the similarity
solutions are rapidly achieved, with time scales proportional to the initial volume
(Slim 2006, see also Miller & Bernoff 2003).

Figure 4 provides a comparison between model results and the experimental data
of HHH. (HHH argued that all their experiments were in the inertia–buoyancy
regime. We provide a brief discussion of the time scales for transition to an interfacial
drag- or viscous-dominated regime in § 5). In their experimental investigation, HHH
observed that the front velocities were effectively constant from initiation; the figure
(corresponding to figure 9 of HHH) shows the front velocities of the current,
non-dimensionalized by (g′Q)1/3, as a function of U/k = U/(g′Q)1/3 for both the
experiments and our similarity solution with D = 0. Relatively good agreement is
observed, especially when the data are compared to our predictions with M = 0.9 U/k.
With M = 0 the similarity solution and experimental data diverge for U/k � 0.8. A
possible explanation for this discrepancy is that interfacial drag becomes important
in this range and thus the shallow-water equations are no longer valid: in the
limit that the upstream velocity goes to zero, the observed state is a density wedge.
However, in the experiments of Simpson & Britter (1980) the current was arrested
and presumably interfacial drag was significant, suggesting that some of the effect
of drag may already be captured in the imposed value of β . Instead, we propose
that entrainment of ambient fluid into the downwelling plume generating the current
provides a source of downstream momentum (as also suggested by Cederwall 1971).
For the experimental arrangement of HHH, M ≈ 0.9 U/k (using the model of Hoult,
Fay & Forney 1969) and, as observed above, agreement is indeed improved for larger
U by adding its effect.

Despite the good agreement in the frontal velocities between theory and
experiments, the profiles of the shallow-water solutions and the experiments agree less
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well: for the shallow-water results the upstream section is thicker than the downstream
(this has also been found in numerical simulations by Valentine & Kao 1984 and
Liu & Moncrieff 1996), whereas the reverse can be inferred from the experiments
of Hallworth et al. (1998) and HHH. The disagreement may result from motion in
the ambient (Hallworth et al. 1998), neglected in our infinite-ambient model, since
the experimental currents filled about a third of the depth of the tank. The fact that
good agreement for the front velocities is nevertheless observed might suggest that the
essential physics is captured by the frontal Froude number and the source conditions;
the precise dynamics within the bulk of the current and ambient is of secondary
importance. An alternative explanation is that entrainment preferentially deepens
the thin downstream section of the current without altering its buoyancy (although
concomitant entrainment of momentum presumably modifies the solution structure
more subtly); and therefore a comparison between experimental and theoretical
buoyancy profiles would be more correct. Unfortunately, to our knowledge, such
measurements are not available for this configuration.

In summary, we have presented a framework for finding similarity solutions for
a homogeneous gravity current in a uniform ambient flow with a source specified
by its mass and momentum fluxes. A total of 16 different regimes are feasible
depending on the momentum supplied to the current, the ambient resistance and the
ambient flow speed. For sufficiently strong ambient flow speeds a solution with an
upstream section does not exist at long times (and any initial upstream propagation
is dependent on the initial condition). Our frontal velocities compare well with
experiments.

4. Particle-laden and particle-driven gravity currents
Gravity currents in which particles contribute to the driving density difference

are more complex than their homogeneous counterparts because the buoyancy force
changes continuously as particles are advected and settle out of suspension. Similarity
solutions are no longer possible because a length scale exists: the typical distance
over which particles are advected as they settle, Q/Wp . Nevertheless some long-time
asymptotic solutions may still be found as we describe below (see also Harris et al.
2001, for alternative techniques).

Using unhatted symbols to denote non-dimensional and rescaled variables, we
non-dimensionalize and rescale the governing equations based on the length scale of
settling and the velocity scale of the particle source by

x̂ = (Q/Wp)x, t̂ =
[
Q/Wp(g′

pφ0Q)1/3
]
t,

ĥ =
[
Q/(g′

pφ0Q)1/3
]
h, û = (g′

pφ0Q)1/3u, φ̂ = φ0φ,

}
(4.1)

where g′
p = (ρp − ρi)g/ρa . Substituting (4.1) into (2.1) we obtain

∂h

∂t
+

∂(uh)

∂x
=

1

2xs

Θ(xs − |x|), (4.2a)

∂(uh)

∂t
+

∂

∂x

[
u2h +

1

2
|γ + φ|h2

]
= 0, (4.2b)

∂(φh)

∂t
+

∂(uφh)

∂x
= −φ +

1

2xs

Θ(xs − |x|), (4.2c)
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where we ignore any source of momentum for simplicity, Θ(·) is the Heaviside function
and xs = Wpx̂s/Q. Here

γ =
g′

i

g′
pφ0

is the ratio of the buoyancy source due to interstitial fluid to that due to particles, and
g′

i = (ρi − ρa)g/ρa . Dense currents propagating over a lower boundary have γ +φ > 0,
while light currents propagating below an upper boundary have γ + φ < 0. Values
of γ large (small) in magnitude indicate that the buoyancy flux is dominated by
the addition of interstitial fluid (particles). The limit γ → 0 corresponds to a purely
particle-driven current.

The frontal boundary conditions (2.6) and (2.7) become

dxuf

dt
= uuf , uuf − Up = −β

√
|γ + φuf |huf , (4.3)

dxdf

dt
= udf , udf − Up = β

√
|γ + φdf |hdf , (4.4)

where

Up = kU/(g′
pφ0Q)1/3.

The deposit, non-dimensionalized by ρp(φ2
0Q

2/g′
p)1/3, is Φ(x, t) =

∫ t

0
φ(x, t ′) dt ′.

4.1. Particle-laden gravity currents

We begin by considering numerical solutions for particle-laden currents. Sample
height, velocity, particle volume fraction and (scaled) deposit profiles at different
times are shown for Up = 1.2, γ = 1 and β = 0.91 in figure 5. At early times, the
height and velocity profiles are reminiscent of the homogeneous similarity solution
with the equivalent density difference (as suggested by the fair agreement between the
numerical solution and the corresponding homogeneous similarity solution at t =1
in figure 5c). This balance is progressively eroded, on a time scale of order unity, as
particles settle. Nearest the source, particles are completely replenished, but further
away depleted fluid cannot completely replenish the current ahead of it. At long times,
a new balance develops close to the source between particle advection and settling.
In this region the solution is steady, the particle volume fraction decays exponentially
away from the source (figure 5d ) and the height and velocity tend to constant values
(figures 5a and 5b). At the fronts, the current is effectively devoid of particles and the
length scale associated with settling is no longer relevant there. The current appears
homogeneous, with homogeneous similarity solutions observed in a moving frame.

4.1.1. Long-time asymptotic solutions

Using the numerical results for guidance, we look for asymptotic solutions consisting
of steady near-source solutions (which we refer to as the interior solutions, although
exterior to the source proper) and homogeneous solutions at the fronts (which we
refer to as the frontal solutions).

Interior solutions of (4.2) satisfy

uuihui = A, u2
uihui + 1

2
|γ + φui |h2

ui = B, φ = e−x/A (x < −xs), (4.5a–c)

udihdi = 1 + A, u2
dihdi + 1

2
|γ + φdi |h2

di = B, φ = e−x/(1+A) (x > xs), (4.6a–c)

where subscript i denotes interior; A � 0 and B are constants of integration and
we have assumed xs � 1. For large x in this near-source solution, φ → 0 and h and



14 A. C. Slim and H. E. Huppert

(a) (b)

(c) (d) (e)

uh

0

0.5

1.0

1.5

2.0

–0.8 –0.4 0 4 8 12 16
x

–0.8 –0.4 0 4 8 12 16
x

0

0.5

1.0

1.5

2.0

0

0.2

0.4

0.6

0.8

1.0

0 2 4 6
x

0 2 4 6
x

0

0.2

0.4

0.6

0.8

1.0

Φ

0

0.5

1.0

1.5

–0.5 0 0.5 1.0 1.5 2.0
x

h φ

�

t

Figure 5. Numerical (a) height, (b) velocity, (d) particle volume fraction and (e) scaled deposit
profiles at times t = 2.5, 5, 7.5 and 10 for a particle-laden gravity current with Up = 1.2, γ = 1
and β = 0.91. The dashed curve is the asymptotic solution at t = 10. The height at early times
(t = 0.25, 0.5, 0.75 and 1) is shown in (c) where the dash-dotted curve is the homogeneous
similarity solution at t = 1. Note the expanded x-axis for x < 0 in (a) and (b). The initial
conditions are h = φ = 1 and u = 0 for |x| � 0.01. The source occupies |x| � 0.0005.

u tend to constant values. We note that at a given x, both h and u are solutions to
cubic equations; uniqueness is ensured by the condition that the source cannot be
supercritical in the absence of a source of momentum. We justify this in Appendix A.

Matching (4.5a–c) and (4.6a–c) to a solution satisfying the appropriate frontal
boundary condition can be done in two ways. The most obvious is that the constant
far-field interior solution itself satisfies (4.3) or (4.4) (the upstream section of figure 5).
A second way is to connect it to a homogeneous similarity solution in a moving
frame (the downstream section of figure 5). This connection can be either via a shock
or continuous.

If the connection is via a shock, then the Rankine–Hugoniot conditions (2.3) apply
across it and the frame moves at the non-dimensional shock velocity, S. Requiring
that flow is away from the source in both the stationary frame and the frame of the
shock, we find that |Fs

uf,df | < 1 and

|Fui∞,di∞| > 1 (4.7a)

from the Lax entropy condition (2.4), where the superscript s indicates the Froude
number in the frame of the shock and the subscript i∞ indicates the far-field
interior solution. The former condition implies that the frontal homogeneous similarity
solution is type I (i.e. constant).

If the connection is continuous, then the frame moves at the velocity of one of
the characteristics of the (constant) far-field interior solution (Lax 1957). Thus a join
on the up- or downstream section travels at a velocity uui∞ + cui∞ or udi∞ − cdi∞
respectively (requiring flow outward from the source in the moving frame imposes
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Figure 6. The (h, u2h2) space for the downstream section of the interior solution for (a) γ > 0
and (b) γ < −1. The solid curves apply at the source (x = xs) where φ = 1. The dashed curves
apply in the far field (x 
 1) where φ = 0. Points in both the lighter and darker shaded regions
have |Fdi∞| > 1; points in the darker shaded region also have |Fdis | > 1. The curves selected
to represent u2h2 = (1 + A)2 apply both in the near and far fields.

the choice of characteristic). Because the join must move outwards from the source,
the Froude number in the far field satisfies

|Fui∞,di∞| � 1. (4.7b)

The magnitude of the Froude number in the moving frame is unity. Thus the
connecting similarity solution must be type IIs.

Having described the structure and conditions for the different types of connection,
we proceed to find the possible solution regimes by employing a graphical argument
and commence with the case γ > 0. Equations (4.5) and (4.6) may be represented by
curves in (h, u2h2) space whose intersections yield possible solution states u and h for
a given x. Figure 6(a) shows the (h, u2h2) space for the downstream section of the
interior solution with γ > 0. Two horizontal lines are drawn for which the (h, u2h2)
pairs satisfy the mass flux condition (4.6) for two different values of the (as yet
unknown) constant A. On the curves u2h2 = Bh− (1+γ )h3/2 and u2h2 = Bh−γ h3/2,
the (h, u2h2) pairs satisfy the momentum flux condition (4.6 b), for some value of the
constant B, at the source (x = xs) and in the far field (x 
 1) respectively. Intersection
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points of the two families of curves give possible interior states (for example points
P1 or P ′

1 at the source and points P2, P ′
2, P3 or P ′

3 in the far field).
On the curves |Fdis | =1 and |Fdi∞| =1, the (h, u2h2) pairs have a Froude number

of magnitude unity at the source and in the far field respectively. These curves pass
through the local maxima of the corresponding momentum flux curves. To the left of
each curve |Fdi | > 1 and to the right |Fdi | < 1. We require |Fdis | � 1 in the absence
of a momentum dipole. If |Fdis | < 1, then the solution at the source is represented by
a point such as P ′

1 in figure 6(a). Continuity in x (a steady shock cannot satisfy the
Lax entropy condition) demands that the far-field solution also has |Fdis | < 1, and is
represented by the point P ′

3. Because this solution has |Fdi∞| < 1, it must also be the
frontal state since the other forms of connection are precluded by (4.7). Conversely,
if |Fdis | =1, then the solution at the source is represented by the point P1 and in the
interior far from the source by the point P2 (the point P3 would be overdetermined).
The point P2 has |Fdi∞| > 1 and so may connect to the frontal state via a shock or
by a continuous connection to a homogeneous similarity solution.

In summary, for γ > 0 the up- and downstream solutions can both take one of the
following three forms.

Type I: the interior solution has |Fis | < 1 and satisfies the frontal boundary
condition directly.

Type IIi: the interior solution has |Fis | =1 and connects via a shock to a constant
frontal state.

Type IIii: the interior solution has |Fis | =1 and connects continuously to a
homogeneous similarity solution in a moving frame.

For γ < −1, performing a similar graphical argument on figure 6(b), we find the
following forms of solution.

Type Ii: the interior solution has |Fis | < |Fi∞| < 1 and satisfies the frontal boundary
condition directly. We label it distinctly from the equivalent type for γ > 0 because it
is structurally different, with the height decreasing away from the source rather than
increasing.

Type Iii: the interior solution has |Fis | < 1 and |Fi∞| =1 and connects continuously
to a homogeneous similarity solution in a moving frame.

Solutions to the algebraic equations (4.3)–(4.6), together with (2.3) or (3.2) for a
type-IIi or types-Iii and IIii solution respectively, now fully specify the asymptotic
solutions of the governing equations.

4.1.2. Solutions and parameter spaces

The location of solution regimes in (β, Up) parameter space for γ = 1 is shown in
figure 7(a). It is similar to that for homogeneous currents, figure 3(b), with additional
sub-regimes and solutions existing for stronger ambient flows because the source of
particles provides an additional buoyancy force. We emphasize that the governing
equations are not strictly valid for non-Boussinesq particle-laden currents, and so
only the range 0.7 � β �

√
2 of the figure is physically relevant. We include a broader

range of β to illustrate the different asymptotic structures. The change in solution
structure with changing balance between particles and interstitial fluid in the driving
density difference is illustrated by the (1/γ, |γ |−1/3Up) parameter space for β = 0.91
shown in figure 7(b). Solutions that are type II both up- and downstream occur when
the ambient flow is weak and the current is driven mainly by particles. Solutions that
are type I or Ii oth up- and downstream occur for very weak ambient flows and
light currents or almost homogeneous dense currents. Type I upstream and type II
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Figure 8. (a) Height and (b) velocity profiles, at non-dimensional time equal to 10, for
particle-laden gravity currents in six possible regimes. The parameter values are γ = 1 and
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downstream currents (respectively, type Ii and Iii for light currents) occur for strong
ambient flows.

As with homogeneous currents, there are two families of boundaries beyond which
asymptotic solutions of the assumed form do not exist. The solid bold curves in
figure 7 indicate where the upstream frontal velocity is zero; above them no solutions
with an upstream propagating section exist. For solutions that are not type I or
Ii downstream, these curves are given by Upc =31/4|γ |1/3[1 + max(0, 1/γ )]1/12β . The
dashed bold curve in figure 7(a) indicates where the downstream height becomes zero.

Typical height and velocity profiles for each regime are shown in figure 8. Where
solutions are type I, the ambient strongly resists the advance of the current, slowing
and deepening it away from the source. Where solutions are type II, the ambient
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resistance is weaker and the current can intrude more readily than it is supplied.
The flow accelerates and thins away from the source, becoming supercritical. Hence
information about the precise nature of the frontal resistance cannot reach the source.
In type-IIi solutions, the far-field flow produced by the source is too strong: the current
cannot intrude into the ambient as readily as it is supplied. The flow is slowed and
deepened again by a shock. In type-IIii solutions, the far-field flow is too weak: the
current can intrude more readily than it is supplied from the interior and it accelerates
and thins further, through a rarefaction.

We conclude this subsection by noting that figure 5 shows fairly good agreement
between the numerical and the long-time asymptotic solutions at t = 10.

4.1.3. Particle deposit profiles

The deposit at long times may easily be calculated using (4.5c) and (4.6c) to be

Φ =

{
t e−x/A for x < 0,

t e−x/(1+A) for x > 0.

For solutions that are type II both up- and downstream, the deposit is symmetric.
Otherwise, at a given distance from the source, it is deeper downstream than upstream.

4.2. Particle-driven gravity currents

We now turn our attention to currents driven solely by a sedimenting particle load.
For this case, HHH found numerical solutions of (4.2)–(4.4) under the assumption
that the supplied fluid and particles are equally distributed up- and downstream.
They obtained good agreement between their numerical and experimental frontal
velocities. We consider these flows in more detail, exploring the structure of solutions
and eliminating the assumption of equal partition of the source. As in § 4.1, there is
no similarity solution because a (dimensional) length scale, Q/Wp , exists. Unlike in
§ 4.1, we have been unable to find a complete asymptotic solution at long times and
instead we discuss numerical results that highlight typical properties.

For β = 0.91, a study of parameter space suggests that at long times there are
two possible regimes: one in which the ambient flow is weak (Up < Upc ≈ 0.37)
and the source is equally partitioned; and one in which the ambient flow is strong
(Upc < Up < Uc(0.91) ≈ 1.20) and the source fluxes are unequal. The evolution of the
height, velocity, particle volume fraction and deposit profiles for currents in the two
regimes is shown in figures 9 and 10 for representative values Up = 0.1 and Up = 0.8
respectively.

In both regimes, the solution initially tends towards the homogeneous similarity
solution having U = Up (suggested in the insets in figures 9a and 10a; cf. particle-
laden gravity currents in § 4.1). However, this balance is progressively eroded as
particles settle.

For a weak ambient flow, the pressure gradient induced by the decaying particle
profile causes the current to accelerate and thin away from the source until it catches
the slower moving front and abruptly deepens (figures 9a and 9b). Neighbouring the
source, a symmetric steady solution develops that is unaffected by the ambient flow.
It is given implicitly by

uh = −A, u2h + 1
2
φh2 = B, φ = e−x/A for x < 0,

uh = 1 + A, u2h + 1
2
φh2 = B, φ = e−x/(1+A) for x > 0,

}
(4.8)

with A = −1/2 and B = 3/4, and is equivalent to the interior solutions of type II–type
II particle-laden currents (cf. profiles (iv)–(vi) in figure 8). This solution connects to
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Figure 9. (a) Height, (b) velocity, (c) particle volume fraction and (d) scaled deposit profiles
at times t = 2.5, 5, 7.5 and 10 for Up =0.1 and β =0.91. The inset in (a) shows height profiles
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profile at t = 1 in the absence of particle settling (it extends marginally beyond the scales of the
plot). Note that the downstream shock at t = 10 has h > 20 and is cut off in (a). The ambient
flow is from left to right. The initial conditions are h = φ = 1 and u = 0 for |x| � 0.01. The
source occupies |x| � 0.0005.
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Figure 10. As figure 9 but with Up = 0.8 for t = 2.5, 5 and 7.5. Note the expanded x-axis for
x < 0 in (a–c), but not for (d). The downstream shock at t = 7.5 has h > 20 and is cut off in (a).
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a deep, relatively particle-rich frontal boundary layer. Such an evolution is similar
to that observed theoretically for constantly supplied axisymmetric particle-driven
currents in a quiescent ambient (Bonnecaze et al. 1995).

For a strong ambient flow the downstream evolution away from the homogeneous
solution is similar. However the ambient flow provides greater resistance to the
upstream propagation of the current and prevents the upstream section accelerating
and thinning in the same manner. Instead the current deepens away from the source.
This regime is analogous to type I–type II particle-laden currents, although the interior
solution is not steady since (4.8) (with unknown constants A and B) cannot satisfy
the frontal boundary condition (4.3). Instead, the solution evolves, and in figure 10
the upstream front is retreating at t = 5 and 7.5 (figure 10b).

At long times a large shock joins the frontal boundary layer to the interior in
both regimes, which is unlikely to be physically meaningful. The laminar model of
Ungarish & Huppert (1998) may be more appropriate at such times, but this extension
is beyond our scope.

For the weak flow regime we could not determine under what conditions the initially
upstream-propagating front eventually retreats. For flow strengths close to Upc ≈ 0.37
it always does so. For very weak flows, we found retreat at very long times in some
calculations. This was always outside the domain of validity of the shallow-water
equations, and may have been due to insufficient resolution of the shock. For the
strong flow regime, the upstream front always appears to retreat. The reason such a
current can propagate upstream at all is because it initially behaves as a homogeneous
current.

The evolution of the deposit is shown in figures 9(d ) and 10(d ) for weak and
strong ambient flows respectively. For weak flows, the deposit is symmetric about the
source and to leading order is proportional to t exp(−2|x|) at long times, as was also
observed by HHH. For strong flows it is deeper downstream than upstream.

A comparison between our numerical results and the experimental data of HHH is
shown in figure 11 (corresponding to their figure 16), indicating reasonable agreement.
As discussed in § 3, for stronger ambient flows the net source of momentum may be
significant and including it may improve agreement (particularly in figure 11d ). We
note that our results do not show any better agreement with the data than the
results of HHH, despite three of the four experimental ambient flow strengths being
in the strong flow regime (so an assumption of equal partition of the source is not
appropriate). A possible explanation for this coincidence is that HHH took k =1,
thus effectively increasing the ambient flow strength. This in some sense counteracts
the increased (decreased) tendency to spread upstream (downstream) due to increased
(decreased) supply of fluid upstream (downstream).

5. Conclusions
We have presented a series of solutions to describe constantly supplied

homogeneous particle-laden and particle-driven gravity currents in a uniform ambient
flow. The behaviour of currents is determined by the normalized strength of the
ambient flow and the normalized momentum source and dipole. For particle-laden
currents the ratio of the buoyancy flux due to the interstitial fluid to that due
to particles, γ (negative for light currents and positive for dense currents), is also
important.

For homogeneous currents, we found 16 possible forms of similarity solution
describing the intermediate asymptotics. A unique form is selected for given source
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Figure 11. Upstream and downstream front positions against time for the experimental
particle-driven currents of HHH (symbols) and for the corresponding numerical solutions
assuming no source of momentum (curves). For the numerical solutions we take (a)
Up/k = 0.57, (b) Up/k = 0.73, (c) Up/k = 0.91 and (d) Up/k = 1.15.

and frontal parameters. Any change in the ambient flow velocity or the net momentum
flux alters the observed solution, whereas a momentum dipole only affects the solution
above a threshold value. We have also presented an analytical prediction for the
ambient flow speed above which a current cannot penetrate arbitrarily far upstream,
given by

Uc =

{
(3 − 2M)1/4β, for M + 2D + 3/24/3 � 3,(
3/24/3 + 2D − M

)1/4
β otherwise,

when both 2M � 3 − (1 − 1/β)4 and β � 1 (corresponding to solutions that are not
type I downstream) with the dipole dependence specific to the simple source given by
(2.2).

For particle-laden currents in the absence of any source of momentum, we found
six families of long-time asymptotic solutions. These consist of steady solutions
close to the source, in which the particle volume fraction decays exponentially,
which connect to homogeneous similarity solutions in moving frames at the fronts.
For U > 31/4|γ |1/3[1 + max(0, 1/γ )]1/12β the current cannot penetrate arbitrarily far
upstream at long times (in the absence of any source of momentum, and where the
downstream solution is not type I or Ii).

We note that supplied fluid and particles are equally distributed up- and downstream
only for dense non-Boussinesq homogeneous currents and particle-dominated particle-
laden currents in weak ambient flows. For other types of current and stronger ambient
flows, the downstream section is always more voluminous.

For particle-driven currents, we conducted a numerical study for β = 0.91 and
no momentum source and found two regimes of solution. For weak ambient flows
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(Up � 0.37), the current is symmetric close to the source and the particle volume
fraction and deposit decay exponentially. For strong ambient flows, 0.37 � Up �
1.20, the current initially propagates upstream but eventually retreats. For both
homogeneous and particle-driven currents, we obtain good agreement between our
results and the experimental data of HHH.

Finally we briefly discuss some limits of validity of the shallow-water model using
a scaling argument. The total buoyancy force of the current scales as ρcg

′H 2, the total
inertial force as ρcV

2H , the total viscous force as νρc�V L/H and the total interfacial
drag as ρcCD(�V )2. Here V is a velocity scale for the current, H ∼ Q/V and L ∼ V t̂

are vertical and horizontal scales respectively, ν is the kinematic viscosity, CD is the
drag coefficient and �V ∼ (g′H )1/2 is the velocity difference between the current and
the ambient. On the upstream side of the source, either the force of the ambient flow
balances the buoyancy of the current (in which case the flow becomes increasingly like
a density wedge: close to the lower boundary the flow is towards the front but at the
interface it is away) or V ∼ (g′H )1/2 (which reproduces the scalings for a basal-friction-
dominated current (Huppert 1982; Hogg & Woods 2001)) or V ∼ �V ∼ (g′H )1/2. On
the downstream side of the source, either V ∼ U (in which case drag is negligible) or
V ∼ (g′H )1/2 or V ∼ �V ∼ (g′H )1/2. Considering V ∼ �V ∼ (g′H )1/2, we find the times
to transition to a drag-dominated or viscous-dominated regime are t̂ ∼ Q/CDU 2

(HHH) and t̂ ∼ Q2/νU 2. Hence for weak sources, strong ambient flows (in particular
our critical values to prevent upstream propagation) or small particle settling speeds,
the long-time behaviour we have described may not be observed before interfacial
drag or viscous forces affect the motion. The transition to a drag-dominated regime
was studied by HHH.

A less quantifiable limitation is the neglect of entrainment. Where the relative
Richardson number g′ĥ/(û − U )2 is less than a critical value of approximately
0.83, entrainment across the interface occurs (Ellison & Turner 1959). This will
be particularly prevalent on the thin downstream section of the current and may
substantially alter the height profile (although not the buoyancy profile) and the
momentum. In addition, the region immediately exterior to a supercritical source
entrains rapidly, potentially becoming subcritical. The current also engulfs and
entrains material along the front. For non-Boussinesq currents, the progressively
decreasing density difference with respect to the ambient should be reflected in a
progressive change in the effective frontal Froude number, β . This modification has
not been included in our model. Overall we expect the neglect of entrainment to be
the most limiting assumption in our model; however at present it is not possible to
estimate its effect.
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for helpful comments on an earlier draft. This research was partially supported by
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Appendix A. Source conditions
We provide details of the conditions across a general source for a homogeneous

current and briefly discuss implications for a particle-laden one.
In the homogeneous similarity solution structures of § 3.1, the height just exterior to

the source is constant in time, thus it is reasonable to consider steady solutions within
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Figure 12. Sample (multivalued) height profiles within the source region for the simple source

of (2.2) with x̂s = 1, Q = 1, Qm = 1, g′ = 1, ĥus = 1 and ûus = −0.813. The inner-most profile has
Qd = 1.5, the intermediate Qd = 2 and the outer-most Qd = 2.5. The bold curves have |F| = 1
with |F| < 1 above and |F| > 1 below.

the source region. Physically this reflects a balance between advection of material
away from the source and supply.

Integrating (2.1 a, b) and eliminating û in the resulting expressions, we obtain

f (ĥ, x̂) ≡ 1
2
g′ĥ3 −

[
û2

usĥus + 1
2
g′ĥ2

us + Qm(x̂)
]
ĥ +

[
ûus ĥus + Q(x̂)

]2
= 0,

which needs to be solved for the height, ĥ, at a point x̂ within the source region,
where

Q(x̂) =

∫ x̂

x̂us

q(x̂ ′) dx̂ ′, Qm(x̂) =

∫ x̂

x̂us

qm(x̂ ′) dx̂ ′,

x̂us is the maximum upstream extent of the source region and subscript us denotes
values at that point. Example height profiles for the distribution (2.2) with different
Qd are shown in figure 12. For general source distributions several features of the
corresponding profiles are significant. First, the solutions of f = 0 form two branches
for g′ĥ > 0, which merge into one and stop existing where dĥ/dx̂ becomes infinite, or
equivalently where the Froude number, F = û/(g′ĥ)1/2, has magnitude unity. Examples
of such points are labelled A in figure 12. Secondly, a steady shock cannot satisfy
the Lax entropy condition (2.4), hence a solution cannot transition between the two
branches except at a point where |F| =1, as exemplified by point T in figure 12.
Finally, to ensure flow outward from the source, ûus < 0 and ûds > 0, where subscript
ds denotes values at the maximum downstream extent of the source region. Continuity
then implies that û =0 at some point within the source region. On the lower branch
ĥ = 0 at this point.

Thus there are three possible combinations for the flow on either side of the source.
(a) It can be subcritical on both sides.
(b) It can be subcritical on one side and supercritical on the other, which is only

possible if there exists a point, x̂t , where |F| =1 and f has a saddle.
(c) It can be supercritical on both sides, generally only possible following the lower

branch through the point x̂0 where ĥ = 0, the derivative of the height changes sign
and û = 0.
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For our simple source (2.2), it may be shown that the transition point x̂t and zero
point x̂0 can only occur at the origin, thus (a–c) are equivalent to the combinations
given in table 1. For a general source, it may be shown that a point x̂t can only exist
if

8

3
g′ q

3

q2
m

<
d

dx̂

(
qm

q

)
, (A 1a)

at that point, while passing through the point x̂0 requires

qm(x̂0) = 0, (A 1b)

provided qm is non-zero somewhere within the source region (otherwise uushus =0, a
case we need not consider because no fluid propagates upstream). Conditions (A 1)
both require the distribution of the momentum source to differ substantially from
a constant multiple of the distribution of the volume source, in other words the
source must have a finite-momentum dipole. In consequence, if there is only a small-
momentum dipole, then |F| < 1 on both sides of the source, only the total volume
and momentum added are important (as described in § 3.1) and the details of the
source distribution are immaterial.

The same approach may also be applied to particle-laden currents. In particular, if
x̂s � Q/Wp , then φ̂ remains effectively constant over the source region and equal to
φ0. In this case the above results may be used directly.

Appendix B. Numerical method
Two features of the governing equations (2.1) and boundary conditions (2.6) and

(2.7) cause numerical difficulties. First, the equations are nonlinear and hyperbolic,
hence shocks may develop despite smooth initial conditions (Kevorkian 1991).
Secondly, the boundary conditions apply at a moving front. We employ a finite-
volume method to capture any shocks and a front-tracking method to impose the
conditions at the moving front. Complete details of the implementation are provided
by Slim (2006); here we provide a summary.

The interior of the current is broken up into uniform cells of width �x̂. At the fronts,
the cell sizes �x̂uf and �x̂df depend on time and satisfy α�x̂ � �x̂uf,df (t̂) < (1+α)�x̂

(α = 0.7 for the results presented). The computational domain is shown in figure 13.
The time-step �t̂ is chosen to satisfy the CFL condition υ = maxi |Si |�t̂/�x̂i < 1,
where υ is the imposed CFL number (υ = 1/2 for the results presented) and |Si | is the
maximum speed of waves in computational cell i. We approximate |Si | by the speed
of rarefactions, although this can overestimate the allowed �t̂ (Toro 1992, 2001) and
hence we check the true value of the CFL number at each step.
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System (2.1) is decomposed into source terms

dĥ

dt̂
= q(x̂),

d(ûĥ)

dt̂
= qm(x̂),

d(φ̂ĥ)

dt̂
= −Wpφ̂ + φ0q(x̂), (B 1)

and hyperbolic terms

∂ĥ

∂t̂
+

∂(ûĥ)

∂x̂
= 0,

∂(ûĥ)

∂t̂
+

∂

∂x̂

(
û2ĥ + 1

2
g′ĥ2

)
= 0,

∂(φ̂ĥ)

∂t̂
+

∂(ûφ̂ĥ)

∂x̂
= 0, (B 2)

and we use Strang splitting (LeVeque 2002) to alternate between solving (B 1) exactly
and (B 2) and the boundary conditions approximately. For homogeneous and particle-
laden currents, the hyperbolic terms (B 2) are solved using the (second-order) weighted
average flux (WAF) finite-volume method (Toro 1992, 2001) with exact Riemann
solvers (Slim 2006). A superbee-like limiter (Toro 1992, 2001) is used to dampen
spurious oscillations. For particle-driven currents, we use Godunov’s method (LeVeque
2002) because WAF produces slight undershoots on the lower side of shocks, which
results in negative heights at the large shocks that develop at long times. For all three
types of current we also calculate the flux of momentum through the fronts using
Godunov’s method and an exact Riemann solver incorporating (2.6) and (2.7). The
fronts are evolved according to (2.7) with the frontal velocities provided by the exact
solver. This treatment of the boundary conditions is a simple first-order variant of
the front tracking method of LeVeque & Shyue (1996).

Detailed validation of the code against analytic solutions for frontal Riemann
problem test cases (for which order-one convergence is obtained) and against previous
code is presented by Slim (2006). We note that the numerical solutions plotted in § 4
are essentially indistinguishable on reducing the spatial step size.
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