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We analyse the exchange of energy for an axisymmetric gravity current, released
instantaneously from a lock, propagating over a horizontal boundary at high Reynolds
number. The study is relevant to flow in either a wedge or a full circular geometry.
Attention is focused on effects due to a linear stratification in the ambient. The
investigation uses both a one-layer shallow-water model and Navier–Stokes finite-
difference simulations. There is fair agreement between these two approaches for
the energy changes of the dense fluid (the current). The stratification enhances the
accumulation of potential energy in the ambient and reduces the energy decay
(dissipation) of the two-fluid system. The total energy of the axisymmetric current
decays considerably faster with distance of propagation than for the two-dimensional
counterpart.

1. Introduction
Gravity currents occur whenever fluid of one density flows primarily horizontally

into fluid of a different density. Many such situations arise in both industrial and
natural settings, as reviewed by Simpson (1997) and Huppert (2000, 2006). Various
important features of these processes have now been fairly well investigated. Our aim
here is primarily to elucidate the energy flow during the propagation of high-Reynolds-
number currents, such as those resulting from the instantaneous release of finite
volumes of constant-density fluids over a horizontal boundary. We are particularly
interested in effects due to a continuously stratified ambient. Applications of our work
include areas such as oceanography, atmospheric winds and environmental control.
For example, submarine wakes in oceans, contrails in the atmosphere, and the crests
of lee waves in air streams over a mountain are typically regions of ‘mixed’ fluid whose
density difference from the ambient produces a driving force of the type considered
here, for example see Wu (1969).

The study of gravity currents and intrusions into a continuously stratified ambient
has made significant progress in the last few years. Earlier works aimed at the
elucidation of the high-Reynolds-number motion of a fixed volume of fluid released
instantaneously from a lock were concerned mostly with intrusions at the level
of neutral buoyancy (Wu 1969; Kao 1976; Manins 1976; Amen & Maxworthy
1980; Faust & Plate 1984; de Rooij 1999). (Related investigations concerning the
waves produced in the ambient have been presented by Schooley & Hughes 1972;
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Maxworthy 1980, 1983; Flynn & Sutherland 2004, but this phenomenon is beyond
the scope of the present work.) The pertinent theoretical interpretations, based on
box models with adjustable parameters, were found to have a quite restricted range of
applicability. For example, Faust & Plate (1984) on the basis of careful comparisons
with their experimental data, concluded that ‘intrusions into a linearly stratified
environment behave very differently from theoretical calculations’.

A turning point came with the work of Maxworthy et al. (2002). They considered
the propagation of a saline current released from behind a lock over a horizontal
bottom into a linearly stratified saline ambient in a rectangular container whose upper
boundary was open to the atmosphere. The density of the current, ρc, was larger
than, or equal to, that of the ambient at the bottom, ρb (the ‘intrusion’ corresponds
to the particular case ρc = ρb). The investigation was a combination of laboratory
and numerical experiments. Maxworthy et al. (2002) observed that the speed of
propagation is time independent for a significant period after release (following a
short adjustment interval). They obtained a quite general empirical correlation of
the experimental data for this slumping velocity as a function of two governing
dimensional parameters: S, which expresses the strength of the stratification, and
H , which expresses the depth ratio of the ambient to the lock. Maxworthy et al.
(2002) also provide data on the ‘criticality’ of the speed (with respect to the fastest
internal wave in the ambient) and the position where the first significant wave–nose
interaction is observed.

Motivated by the lack of theoretical interpretation of the careful observations
of Maxworthy et al. (2002), Ungarish & Huppert (2002, 2004) and Ungarish
(2005a) developed and verified the corresponding one-layer inviscid shallow-water
formulation. This theory is based on rigorous volume and momentum balances, which
are reduced to a hyperbolic system of equations for the thickness h and velocity u

of the current as functions of x (the horizontal distance) and t (time), amenable to
realistic initial and boundary conditions, without using any adjustable parameters.
Extensions of this shallow-water formulation to the prediction of the propagation
of axisymmetric and rotating currents were developed and the parameters which
govern the stratification–Coriolis interactions were derived. Extensions to the flow
of intrusions were presented by Ungarish (2005b). The new results are in very good
agreement with the measurements of Faust & Plate (1984), thus resolving the dilemma
of the incompatibility between theory and experiment pointed out by these authors.
The new results also clarified the previously overlooked differences between intrusions
released from behind a rectangular lock (Amen & Maxworthy 1980; de Rooij 1999)
and a cylinder lock (Wu 1969), and proved that the propagation is always sub-critical
in a linearly stratified ambient (the last result strengthens an earlier approximate
deduction by Flynn & Sutherland 2004). The propagation with t1/2, indicated by the
experiments of Wu, turns out to be a similarity solution of the shallow-water balances.
Ungarish (2006) generalized the nose Froude and dissipation analysis of Benjamin
(1968) to a linearly stratified ambient, and showed that the classical unstratified results
are fully recovered in the limit S → 0.

The behaviour of the energy of the current (or intrusion) in a linearly stratified
ambient is also an important issue for understanding the interaction between the
current and the ambient and the behaviour of various natural hazards. In particular,
it is important to clarify what is the influence of stratification on the behaviour of the
energy of the current; and whether the one-layer shallow-water model, which neglects
motion in the ambient, reproduces well the energy budgets of the current. A study
for the two-dimensional geometry was presented by Ungarish & Huppert (2006). The
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results were encouraging: the shallow-water one-layer model provided quite sharp
insights into the influence of the linear stratification on the time-dependent energy
budgets of the dense fluid. Navier–Stokes simulations (without turbulence closures)
corroborated these predictions, and provided additional information on the energy of
the ambient.

The object of this paper is to extend the investigation to an axisymmetric geometry.
This has both practical and academic motivations. In various natural and industrial
applications gravity currents and intrusions can propagate in an unrestricted (fully
cylindrical) manner, or in an expanding wedge. There are significant qualitative and
quantitative differences between the two-dimensional and axisymmetric currents (see
Patterson et al. 2006 and Ungarish 2007 where other references are also given). For
example, the two-dimensional currents display a slumping stage of propagation with
constant speed, while the speed of an axisymmetric current decays from the beginning;
also, the ratio of inertial to viscous effects decays much faster in an axisymmetric
geometry. An axisymmetric intrusion develops a peculiar self-similar propagation
in which all the dense fluid is in a ring of constant inner-to-outer radius ratio of
about 0.5; this has no counterpart in the two-dimensional geometry (Ungarish &
Zemach 2007; Zemach & Ungarish 2007). Moreover, the numerical simulation of the
axisymmetric current is still a challenge. There is evidence that numerical simulations
with a fairly large number of discretization points reproduce successfully the initial
motion, up to about 2.5 to 3 lock lengths, but then the simulated current is significantly
slower than experimental observations, and even becomes incoherent (Hallworth,
Huppert & Ungarish 2001; Patterson et al. 2006). The remedy is still unclear; at
present, only fully three-dimensional computations seem to be able to overcome
this difficulty (Cantero, Balachandar & Garcia 2007), but these simulations are very
expensive and slow. For this problematic range the shallow-water predictions are the
only available practical theoretical tool (see Ungarish 2007).

It is clear that the energy behaviour of the axisymmetric current requires a dedicated
investigation. A combined analytical and numerical attempt in this direction is
presented in this paper.

To our knowledge, there are no previous investigations on the time-dependent
energy behaviour in this configuration. The related analytical investigations of the
energy of steady lenses in a rotating fluid (Stegner, Bouruet-Aubertot & Pichon 2004
and Ungarish & Huppert 2004) are relevant only to the final stages of adjustment
of a current when Coriolis effects are dominant. There are no relevant experimental
investigations for this geometry, to our knowledge. We hope that our results will
be used for laboratory verification and extensions, in particular concerning the wave
energy in the stratified media. Related works on the energy budgets of gravity currents
which propagate into a homogeneous ambient were presented by Necker et al. (2005),
Shin, Dalziel & Linden (2004) and Ungarish (2008). The first work is a careful
numerical investigation, based on a high-resolution code, which focuses on the effects
of particle-driven currents. The second uses a box model and various simplifications
which restrict its applicability to very short distances of propagation and shallow
ambients. The third paper presents a more general analysis of energy balances of
two-layer models for gravity currents (and in particular clarifies the advantages and
disadvantages of ‘dissipative’ and ‘energy-conserving’ approximations). We emphasize
that these investigations were for a two-dimensional geometry only.

The system under consideration is sketched in figure 1: a deep layer of ambient fluid,
of density ρa(z), lies above a horizontal surface at z = 0. Gravity acts in the negative
z-direction. The system is cylindrical about the z-axis, either as a full circle, or as a
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Figure 1. Schematic description of the system: (a) the geometry; and (b) the density profiles
in the current (solid line) and ambient (dashed line).

wedge bounded by vertical, smooth, impermeable surfaces. The current propagates in
the radial r-direction. At time t =0 a given volume of homogeneous fluid of density
ρc � ρa(0) ≡ ρb and kinematic viscosity ν, initially at rest in a cylinder of height h0

and radius r0, is instantaneously released into the ambient fluid. An axially symmetric
current starts to spread. We assume that the Reynolds number of the horizontal
flow, Re, defined below, is large, and hence viscous effects can be neglected. (After a
significant spread of the current, when both its thickness and velocity are reduced,
viscous forces become important. This phase is outside the scope of the present work.)

The investigation is based on a combination of shallow-water (SW) and Navier–
Stokes (NS) solutions. The structure of the paper is as follows. In § 2 the energy
balances are developed, first in the SW model and then in the NS formulation.
A criterion for the validity of the inviscid assumption is also introduced. In § 3
we present results and comparisons of the SW and NS calculations for typical
configurations. These comparisons and related discussions indicate that that, overall,
the SW model captures fairly well the features of the energy transfers. In § 4 we present
some concluding remarks about the effects of stratification. We also claim that the
stratification of the ambient enhances the potential (wave) energy accumulation, and
hence is expected to reduce the viscous dissipation (which acts on a reduced amount
of kinetic energy).

2. Formulations
The configuration is sketched in figure 1. We use a cylindrical coordinate system,

with the radial coordinate r along the horizontal bottom and z pointing upward.
The radial and vertical velocity components are u and w. We assume that the flow
does not depend on the azimuthal coordinate and that there is zero velocity in this
direction. This is appropriate for the description of flow in a wedge or in a full circular
geometry.

Initially, the height of the propagating current is h0, its radius r0 and its density
ρc. The height of the ambient fluid is H (dimensional). The ambient fluid is stably
stratified: the density at the top (usually an open boundary) is ρo, and it increases
linearly with depth by the increment �ρ to the value ρb at the bottom. We consider
situations with ρb � ρc.

It is convenient to use ρo as the reference density and to introduce the reduced
density differences and ratios between them (Ungarish & Huppert 2002):

ε = (ρc − ρo)/ρo, ε b = (ρb − ρo)/ρo = �ρ/ρo (2.1)
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and

S = ε b/ε , (2.2)

from which it follows that

ρc = ρo(1 + ε ), ρa = ρb − �ρ

H
z = ρo

[
1 + ε S

(
1 − z

H

)]
. (2.3)

The parameter S represents the magnitude of the stratification in the ambient fluid,
and we consider only 0 � S � 1. The homogeneous ambient is recovered by setting
S = 0. We also define the reference reduced gravity,

g′ = ε g, (2.4)

where g is the gravitational acceleration.
We recall that the buoyancy frequency is defined by

N2 = g�ρ/(ρoH ) = g′S/H, (2.5)

and that the leading, or mode-one, linear internal wave in a closed two-dimensional
channel propagates with velocity (Baines 1995)

uW = ±NH/π. (2.6)

It is convenient for purposes of interpretation to keep in mind the following picture:
S = 0 corresponds to a homogeneous ambient of density ρo and a current of density
ρc. For 0 <S < 1 the density of the ambient is stratified (increases linearly) from
the same ρo at the top to a larger density at the bottom. The extreme situation
S = 1 is achieved when the density of the ambient at the base matches that of the
current.

We note that the S = 1 case also describes a symmetric intrusion which propagates
at the level of neutral buoyancy. The inviscid Boussinesq current considered here
makes up the upper half of this intrusion, and the lower part is just its mirror image.
To achieve a similar mirror symmetry in the ambient, we must assume that the neutral
buoyancy level is at the middle of the container. (For more details on the flow field
see Ungarish & Zemach 2007.)

2.1. SW model

We shall use a one-layer approximation which omits the motion in the ambient.
This is the simplest shallow-water model. Actually, the propagation of the current
at the bottom must produce a return flow in the ambient above. Experimental and
numerical results (Wu 1969; Maxworthy et al. 2002; Ungarish & Huppert 2004;
Ungarish 2005b; Ungarish & Zemach 2007) show that this flow has a quite complex
z-dependence. Therefore, in contrast with the unstratified case, the flow field in the
stratified ambient cannot be directly expressed by averaged variables. A reliable two-
layer model for the stratified configuration is still lacking. Thus, although the one-layer
model represents a bold simplification, at present it is the only available framework
of governing equations for analytical investigation. Previous studies indicated that
this model captures well many of the important features of the flow in both two-
dimensional and axisymmetric geometries. This justifies the use of this model for the
energy calculations in the present problem.

To be specific, we assume that in the ambient fluid domain the velocity is zero and
hence the fluid is in purely hydrostatic balance and maintains the initial density ρa(z)
given by (2.3). Motion is assumed to take place in the lower layer only, 0 � r � rN (t)
and 0 � z � h(r, t), see figure 1. As in the classical inviscid shallow-water analysis
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of a gravity current in a homogeneous ambient, we argue that the predominant
vertical momentum balance in the current is hydrostatic and that viscous effects in
the horizontal momentum balance are negligibly small (the quantitative criteria will
be specified later in § 2.1.2). Hence the motion is governed by a balance between
pressure and inertial forces in this horizontal direction. As in the situation with a
homogeneous ambient, an order-of-magnitude analysis indicates that the perturbation
of the upper free surface introduced by the flow can be neglected when ε � 1, as
assumed here.

A relationship between the pressure fields and the height h(r, t) can be obtained.
The hydrostatic balances are ∂pi/∂z = −ρig, where i = a or c, and in the motionless
ambient the pressure does not depend on r . Use of (2.3) then yields

pa(z, t) = −ρo

[
1 + ε S

(
1 − 1

2

z

H

)]
gz + C, (2.7)

pc(r, z, t) = −ρo(1 + ε )gz + f (r, t), (2.8)

where C is a constant. Pressure continuity between the ambient and the current on
the interface z = h(r, t) determines the function f (r, t) of (2.8) and we obtain, after
some algebra,

pc(r, z, t) = −ρo(1 + ε )gz + ρog
′
[
h − S

(
h − 1

2

h2

H

)]
+ C, (2.9)

and consequently

∂pc

∂r
= ρog

′ ∂h

∂r

[
1 − S

(
1 − h

H

)]
. (2.10)

This relationship between ∂pc/∂r and h(r, t) allows us to eliminate the pressure
from the radial momentum balance and to obtain the SW equations as a hyperbolic
system for h(r, t) and u(r, t). The equations of motion will be presented in § 2.1.2. We
shall first consider the energy terms in this model.

2.1.1. Energy

In the SW framework the speed of motion is represented by the z-independent
average horizontal velocity, and hence the kinetic energy of the current (denoted by
subscript c) is given by

Kc(t) =
1

2
ρc

∫ rN (t)

0

u2(r, t)h(r, t)rdr. (2.11)

The vertical displacement of the dense fluid particles is resisted by the hydrostatic
pressure of the surrounding ambient fluid. The resulting buoyancy acceleration is [ρc

−ρa(z)]g and the corresponding work needed to move a unit volume from the bottom
to some z, in the present linear density profile ρa(z), is g[(ρc − ρb)z + (1/2)�ρ z2/H ].
The potential energy of the current is therefore

Pc(t) = g

∫ rN (t)

0

r dr

∫ h(r,t)

0

[
(ρc − ρb)z +

1

2

�ρ

H
z2

]
dz

= g

∫ rN (t)

0

[
1

2
(ρc − ρb)h

2 +
1

6

�ρ

H
h3

]
r dr. (2.12)
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Initially, at t = 0, h = h0, rN = r0 and u = 0. Consequently, Kc(0) = 0 and, using (2.1)–
(2.4), we obtain

Pc(0) =

(
1

4
ρor

2
0h

2
0g

′
)[

1 − S +
1

3

S

H/h0

]
. (2.13)

This indicates that energy in the problem under investigation is conveniently scaled
with (ρor

2
0h

2
0g

′)/4, as is done in (2.14). For a particular system it is convenient to refer
the energy to Pc(0), as is done in §§ 3 and 4.

2.1.2. Governing SW equations

It is convenient to scale the dimensional variables (denoted here by asterisks) by

{r∗, z∗, h∗, H ∗, t∗, u∗, E∗} = {r0r, h0z, h0h, h0H, T t, Uu, (1/4)ρoU
2h0r

2
0E}, (2.14)

where

U = (h0g
′)1/2 and T = r0/U. (2.15)

Here h0 and r0 are the initial height and length of the current, U is a typical inertial
velocity of propagation of the nose of the current and T is a typical time period for
longitudinal propagation over a typical distance r0. The variable E denotes the energy
(per radian of azimuthal angle). Note that the horizontal and vertical lengths are
scaled differently, which removes the initial aspect ratio h0/r0 from the SW analysis
in the homogeneous case (Ungarish & Huppert 1999), and this applies also to the
stratified case considered here. A representative Reynolds number of the current is
defined as Re = Uh0/ν, where ν is the kinematic viscosity, assumed constant in the
system.

The relevant volume and momentum balances have been developed and verified in
previous investigations (Ungarish & Huppert 2002, 2004; Ungarish 2005a). Here we
briefly mention the equations used in the present work.

In conservation form, the continuity and momentum equations can be written as

∂h

∂t
+

∂

∂r
(ruh) = 0 (2.16)

and
∂

∂t
(uh) +

∂

∂r

[
u2h +

1

2
(1 − S)h2 +

1

3
S

h3

H

]
= −u2h

r
. (2.17)

Following the standard procedure, we calculate the speeds of propagation of the
characteristics

λ± = u ±
[
h

(
1 − S + S

h

H

)]1/2

. (2.18)

On dr/dt = λ±, the dependent variables satisfy

dh ±
[
1 − S + S(h/H )

h

]−1/2

du = −uh

r
dt. (2.19)

The initial conditions are zero velocity and unit dimensionless height and length at
t = 0. Also, the velocity at the axis r = 0 is zero, and an additional condition is needed
at the nose r = rN (t). As in previous investigations (Ungarish & Huppert 2002, 2004;
Ungarish 2005a), we write

uN = Fr h
1/2
N

[
1 − S

(
1 − 1

2

hN

H

)]1/2

. (2.20)
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Here the Froude number Fr expresses the ratio of the velocity of propagation of the
nose, uN , to the effective pressure head (per unit mass) at the nose whose thickness
is hN . The term in the square brackets of (2.20) is equal to 1 in the non-stratified
case (S = 0), and smaller than 1 for S > 0. This term indicates the explicit slowing
of the head due to stratification effects. We argue that the effective Fr is a function
of hN/H only, and the practical numerical value is well approximated by the simple
semi-empirical correlation of Huppert & Simpson (1980)

Fr =

{
1.19 (0 � hN/H � 0.075)

0.5 (hN/H )−1/3 (0.075 � hN/H � 1).
(2.21)

Ungarish (2006) presented a generalization of the classical analysis of Benjamin
(1968) to the linearly stratified ambient. These more rigorous results also show that
(2.20) and (2.21) are a good approximation for a current released instantaneously from
behind a lock into a linearly stratified ambient. Strictly speaking, these justifications
were derived for a two-dimensional flow. However, in the framework of the SW
formulation the nose is treated as a thin jump, and hence the curvature terms of
the present cylindrical geometry are unimportant. We therefore adopt (2.21) as a
prototype correlation in the following study, but it will be evident that the essence of
the analysis and conclusions are not affected by the details of the functional form of
Fr(hN/H ).

The effect of viscous friction on the motion of the current increases with time
and distance of propagation. Even for quite large values of Re, the inviscid SW
formulation may become invalid at moderate values of rN . This tendency is enhanced
by stratification as shown below. To monitor this effect, we use the previous results
for u and h to estimate the time-dependent ratio of global inertial, FI , to viscous,
FV , effects. Since the inertia per unit volume is well represented by ρcuur , and the
viscous force per unit area is expected to be proportional to ρoνu/h we obtain, in
dimensionless form,

FI

FV

≈ Re
h0

r0

∫ ΓN (t)

0

uurhrdr∫ ΓN (t)

0

(u/h)rdr

= Re
h0

r0

θ(t). (2.22)

The function θ(t) is expected to be of the order of unity at the beginning of the
propagation and decay to quite small values. This function can be easily calculated
from the SW results for u(r, t) and h(r, t), but can also be estimated analytically using
box-model considerations as follows.

Assuming that the current is a cylinder box of height hN (t), and accordingly
u = uNr/rN , we obtain θ ≈ uNh2

Nr−1
N . The value of uN is estimated from (2.20) and

(2.21) as: (a) [(1 − S)hN ]1/2 for S not close to 1; and (b) hN/H 1/2 for S ≈ 1. In this
estimate we consider Fr to be a constant because the current is expected to be
thin when viscous effects are relevant. Finally, we use volume conservation to obtain
hN = 1/r2

N (t). This yields

θ ≈
{

(1 − S)1/2r−6
N (S not close to 1)

H −1/2r−7
N (S ≈ 1).

(2.23)

Using these results, we can estimate the importance of the viscous terms, and also
the limit of validity of the inviscid assumption, for a real gravity current with given
Re and h0/r0. The inviscid theory is expected to be relevant for, roughly, FI/FV > 3.
The stratification enhances the effect of viscosity. The contribution of the viscous
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terms increases very fast with the radius of propagation, in particular when S is close
to 1. The transition from inertial to viscous dominance is not a clear-cut experimental
observation, because is is expected to occur gradually, first in the thinner layer of
fluid near the centre and later in the thicker front domain. The cases discussed in
this study are in the inertia-dominated regime. We recall that for the two-dimensional
current the first and second lines of (2.23) show decay with x

−7/2
N and x−4

N , respectively,
where xN is the counterpart of rN . The axisymmetric current is more prone to viscous
influence because its thickness decreases like r−2

N .

2.2. Navier–Stokes considerations

We consider, again, an axisymmetric cylindrical domain with velocity v = ur̂ + w ẑ.
We employ the following dimensional balance equations.
1. Conservation of volume

∇ · v = 0. (2.24)

2. Momentum balance

ρ
Dv

Dt
= −∇p − (ρ − ρb)g ẑ + μ∇2v, (2.25)

where p is the pressure reduced with ρbgz and μ is the dynamic viscosity coefficient,
assumed constant and equal for both fluids.
3. Density transport

Dρ

Dt
= 0. (2.26)

In the numerical computations a small diffusion term, κ∇2ρ, was added to the right-
hand side of (2.26). This was done for smoothing purposes, but its effect on the results
is within the bounds of the numerical truncation errors.

For energy considerations, we multiply the horizontal and vertical components of
(2.25) by u and w, respectively and add the results. After some algebra and use of
(2.24), we obtain

ρ
D

Dt

[
1

2
(u2 + w2)

]
= −∇ · pv − (ρ − ρb)gw + Φ, (2.27)

where Φ = μv · ∇2v, is the standard viscous dissipation function for the Navier–Stokes
formulation.

Consider the integral of (2.27) over the volume Ω of the two-fluid system. For
simplicity, we consider a closed cylindrical domain 0 � r � rw, 0 � z � H . This
domain Ω is the union of Ωc (for the current) and Ωa (for the ambient fluid). Within
the Boussinesq approximation O(ε ) error bounds, the slightly varying ρ on the left-
hand side can be replaced by the constant ρo. The integrated left-hand-side term thus
yields the rate of change of the total kinetic energy, defined by

Ki(t) = ρo

∫
Ωi

1

2
(u2 + w2) dV, (2.28)

where i is a for the ambient, c for the current, and no subscript for the whole system.
On the right-hand side, the integrated contribution of the pressure term vanishes
on account of the boundary conditions. The effect of the dissipation term on the
time-dependent energy behaviour of the system enters via

D(t) =

∫ t

0

dt

∫
Ω

ΦdV. (2.29)
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The integral of the second term on the right-hand side of (2.27), which represents
the work of the buoyancy force, can be manipulated into an informative form as
follows. We introduce the vertical upward displacement η(r, z, t) of a particle of
density ρ in the ambient fluid from its initial position in the linear density profile.
The conservation of density of the particle, combined with (2.3), yields

η(r, z, t) = z − [ρb − ρ(r, z, t)] H/�ρ. (2.30)

Consequently,∫
Ω

g(ρ − ρb)wdV = g

∫
Ωc

(
ρc − ρb +

�ρ

H
z − �ρ

H
z

)
wdV

+ g

∫
Ωa

[
ρb − �ρ

H
(z − η) − ρb

]
wdV

=
D

Dt

[
g

∫
Ωc

[
(ρc − ρb)z +

1

2

�ρ

H
z2

]
dV

]
+

D

Dt

[
ρo N2

∫
Ωa

1

2
η2dV

]

− g
�ρ

H

∫
Ω

zw dV, (2.31)

where the definition (2.5) of N and the continuity equation (2.26) were also used. The
last term on the right-hand side vanishes because of the velocity boundary conditions.
The first and second terms represent the rate of change of the potential energy of the
current and ambient, respectively. If mixing and turbulence are important, a more
complex energy-budget analysis is required; in particular, the method suggested by
Winters et al. (1995) seems appropriate for this extension. In this study we focus our
attention on the fundamental forms of energy transfers in an idealized gravity current
system, and this is conveniently described by the present simplified balances.

Hereafter, dimensionless variables are used unless stated otherwise. The scaling
is provided by (2.14); in particular, the energy is scaled with (1/4)ρor

2
0h

2
0g

′ and η

with h0.
As expected, the energy terms for the current are similar to these derived for the

SW case. In the SW approximation the contribution of w to the kinetic energy has
been discarded. According to (2.31), the second term on the right-hand side, the scaled
form of the potential energy of the ambient is

Pa(t) = 2
S

H

∫
Ωa

η2 dV. (2.32)

This indicates that for weak stratification (small S) most of the energy transferred
to the ambient is of kinetic type, and hence more prone to viscous dissipation. This
trend is consistent with the observation of Necker et al. (2005) that higher levels of
kinetic energy are associated with larger values of viscous dissipation.

We are concerned with the behaviour of the mechanical energies; total energy refers
to the sum of kinetic and potential components. The total energy of the two-fluid
system is expected to decay due to irreversible viscous dissipation.

The numerical solution of the NS axisymmetric formulation was obtained by using
a finite-difference method which provides the values of u, w and ρ on a fixed r, z-grid.
The details of this numerical numerical code are as reported in Ungarish & Huppert
(2004); for the present work, the same code was extended for the calculation of the
energy terms. The propagation predictions of this code were compared in previous
works with non-stratified experiments and SW results. For example, consider the
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case S3 displayed in figure 10 in Hallworth et al. (2001). We see that, as mentioned
previously, the NS results are in good agreement with the experiment for about
rN = 3; then, the finite-difference current lags behind the experimental data, but the
SW current remains in good agreement for a significantly longer distance. Such
comparisons for stratified ambients could not be performed because no reliable
experimental data is available, to our knowledge.

For the convenience of both numerical simulation and presentation of the results,
we introduce the density function φ(r, t) defined by

φ(r, z, t) =
ρ(r, z, t) − ρo

ρc − ρo

=
1

ε

[
ρ(r, z, t)

ρo

− 1

]
, (2.33)

where ε is the reduced density difference given by (2.1). We expect 0 � φ � 1, with
φ = 1 in the domain of the ‘pure’ dense fluid and 0 � φ � S in the domain of the
ambient fluid.

The parameters of the numerical computation are: first, as in the SW formulation,
the values of S and the (dimensionless) depth H ; and, in addition, the values of
Re = (g′h0)

1/2h0ρo/μ, ε , the initial aspect ratio of the dense fluid h0/r0, and length
of the tank, rw (scaled with r0). (The coefficient of the artificial diffusion term which
was added on the right-hand side of the density transport was typically (10Re)−1. The
actual Schmidt number, ν/κ , is significantly larger in a typical two-liquid system, but
the physical diffusion process is beyond the resolution of the present computations.)
The details will be given in § 3.2.

The initial conditions at t = 0 are

v = 0 (0 � r � rw, 0 � z � H ), (2.34)

φ =

{
1 (0 � r � 1, 0 � z � 1)

S(1 − z/H ) elsewhere.
(2.35)

The boundary conditions of the code are, briefly: the bottom and outer wall are
treated as solid boundaries, the top as a shear-free impermeable fixed boundary, and
at the axis r = 0 the radial fluxes vanish and the variables are regular.

The finite-difference results provide the values of u, w and φ at grid points. This
allows the calculation of the potential and kinetic energies of the current and of the
ambient. The values of ηij (at grid points ri, zj ) were calculated with the aid of (2.30)
and (2.33) by

ηij = zj + H (φij/S − 1). (2.36)

3. Results
We consider the influence of the stratification, S, on the the energy behaviour

of the gravity current released from behind a lock in a configuration with H =3
(dimensionless). This geometry is expected to be typical of currents in a non-shallow
ambient. The parameters H and S considered here are also compatible with those used
in the previous investigation of the two-dimensional current (Ungarish & Huppert
2006), which facilitates the comparison between the axisymmetric and the Cartesian
geometries. The results are presented in dimensionless form subject to the scaling
(2.14).
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Figure 2. The propagation of the nose as a function of time for H =3 and various values of
S. SW results (curves) and NS results (curves with symbols) for various values of S.

3.1. SW results

In general, the SW governing equations (2.16) and (2.17) with the appropriate initial
and boundary conditions must be solved numerically. For large times analytical
similarity solutions for the cases S =0 and S = 1 are available; these will be used later
in this section.

The main SW results were obtained as follows. We solved the governing equations
by a two-step Lax–Wendroff method (see Morton & Mayers 1994; Press et al. 1992).
The typical grid has 500 intervals over [0, rN (t)] and a time step of 10−3. The resulting
discrete values of h and u were used to calculate the energy integrals (2.11) and
(2.12) by the trapezoidal rule. The estimated numerical errors are less than 1%.
The predicted propagation of the nose is presented in figure 2. As expected, as the
stratification parameter S increases, the speed of propagation is reduced. Cases S = 0
and S = 0.29 are super-critical with respect to uW , while S =0.72 and S = 1 are sub-
critical, see (2.6). (To be more specific, we mention that the SW values of (uN, uW ) are
(0.54, 0.30) for S = 0.29 and (0.38, 0.47) for S = 0.72 shortly after release.) The super-
and sub-criticality of two-dimensional currents with similar initial conditions has been
confirmed experimentally by Maxworthy et al. (2002). However, there is a significant
difference between the two-dimensional and the axisymmetric cases: in the former
there is a stage of propagation with constant speed for several lock lengths, while in
the latter the speed decays with t from the beginning (see (2.19)). Consequently, the
super-critical axisymmetric current will become sub-critical after a relatively short
propagation.

Figure 3 shows the decay of the ratio of inertial to viscous effects calculated from the
SW results. At the initial stages the rate of decay varies, according to the adjustment
stages of the gravity current, but a constant slope (on the log-log axes) is eventually
achieved. The decrease of θ when S increases, and these constant slopes confirms the
estimates (2.23). The present inviscid approach is valid as long as θRe(h0/r0) remains
large (say> 3). Thus, for the typical value of Re(h0/r0) = 103, viscous effects may
become dominant after a propagation to about rN = 3.5 for small S and rN = 2.5 for
S close to 1. We shall restrict our analysis to these values. Although this is not a very
significant propagation, the mean thickness of the current is reduced by a factor of
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about 10. This implies a very significant decay of the potential energy Pc, see (2.12),
and hence the main process is covered.

The typical behaviour of the current as predicted by the SW solution is shown
in figure 4. Both the height and the speed display a quite complex dependence on
both time and radius. There is an initial ‘dam-break’ phase during which a backward-
moving rarefaction wave sets into motion the fluid in the lock. At t =1 the interface
is still quite high near the centre, and there is still a core with u = 0. By t = 2 all the
fluid is moving and the height of the interface is everywhere below 0.4. Next, most
of the fluid is concentrated in a quite prominent external ring, followed by a thin
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Figure 6. SW results. The kinetic and potential energy of the current as functions of time
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horizontal tail. The velocity in this tail is quite large (the small oscillation about the
sharp changes are spurious numerical effects, with insignificant contributions to the
energy calculations). Eventually, the current becomes a thin layer with a slight upward
inclination, and the velocity tends to a linear profile. These complex variations of h

and u are expected to affect dramatically the energy exchanges of the current. Unlike
the two-dimensional case, we cannot define a clear-cut slumping phase of motion
with constant speed.

Figures 5 and 6 display the SW energy balances of the current as functions of time
and of distance for various values of the stratification parameter S. The energies of
each system are referred to the initial potential energy Pc(0), see (2.13). In all cases,
the potential energy decays monotonically, while the kinetic energy has an initially
increasing and then decreasing profile with a maximum of about 0.4 at t ≈ 2 to 3.
These energy trends can be understood in view of the h and u profiles shown in
figure 4. The kinetic energy of the current develops from zero during the ‘dam-break’
phase of the motion. The rarefaction wave which travels backward into the bulk of
stationary fluid sets this fluid into motion and increases the kinetic energy. Then the
current evolves to, roughly, a cylinder of height hN ≈ 0.4. This geometry contains
less than half of the original potential energy. Here the kinetic energy reaches the
maximum, and the kinetic and potential energy are roughly equal. Next, both the
kinetic and potential energies of the current decay at about the same rate.
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We note that the energy decay as a function of the distance of propagation rN

is quite insensitive to the value of S for approximately S < 0.7. The case S = 1 (i.e.
ρc = ρb, the strongest stratification in the present framework) displays a different
behaviour with rN to the other cases: the total energy of the current, Ec =Pc + Kc,
decays faster, and the maximum of the kinetic energy is attained after a shorter
propagation. The interpretation is as follows. The total energy of the current decreases
with time because of the work of pushing the nose against the ambient pressure. An
estimate gives dEc/dr ≈ −0.5�phNrN , where �p is the pressure difference between
current and ambient at the botom of the front (r = rN, z = 0). Using (2.7) and (2.9)
we find that: (i) for S not close to 1, [(dEc/dr)/Pc(0)] ≈ −h2

NrN ; and (ii) for S ≈ 1,
[(dEc/dr)/Pc(0)] ≈ − h3

NrN . These approximations explain the collapse of the curves
S = 0, 0.29, 0.72, as opposed to the faster decay curve for S = 1, in figure 6.

We can supplement the trends derived from the numerical solution with some
available analytical results of the SW equations at large t . At this stage the initial
conditions are ‘forgotten’ except for the prescribed fixed volume V (per radian), and
Fr has attained a constant value because hN/H is very small. A self-similar behaviour
appears for S = 0 and S =1. The space-similarity coordinate is

y = r/rN (t) = r/Atβ (0 � y � 1), (3.1)

where A and β are constants defined below.
The self-similar propagation for the non-stratified S =0 axisymmetric case has been

well investigated (see Grundy & Rottman 1985; Huppert & Dade 1998; Zemach &
Ungarish 2007). However, the corresponding energy results have not been reported
before, to our knowledge. The classical results are as follows.

The solution of the equations and nose boundary condition is

rN = At1/2, h = ṙ2
N

[
1

Fr2
+

1

2
(y2 − 1)

]
, u = ṙNy, (3.2)

where the overdot denotes time derivative and

A = 2

(
2Fr2

4 − Fr2

)1/4

V1/4. (3.3)

Since ṙN =(1/2)At−1/2, (3.2) can also be expressed as

rN = At1/2, h =
1

4
A4r−2

N

[
1

Fr2
+

1

2
(y2 − 1)

]
, u =

1

2
A2r−1

N y. (3.4)

These results cover the entire domain 0 � y � 1.
We calculate the energy by using the definitions (2.11) and (2.12). In scaled form

we obtain

Kc = 4r2
N

∫ 1

0

1

2
u2(y, t)h(y, t)ydy = 2

(
A

2

)6 (
1

Fr2
− 1

6

)
t−1, (3.5)

Pc = 4r2
N

∫ 1

0

1

2
h2(y, t)ydy = 2

(
A

2

)6 (
2

Fr4
− 1

Fr2
+

1

6

)
t−1, (3.6)

Ec = Kc + Pc =

(
1

2Fr

)4

A6t−1. (3.7)

(The integrals in (3.5) and (3.6) are multiplied by 4 because of the energy scaling,
see (2.14).) The conclusion is that the energy of the axisymmetric current in a
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non-stratified ambient decays like t−1 or r−2
N . In the self-similar stage Kc >Pc. In the

present case V = 1/2. This analytical result is in good agreement with the numerical
solution of the SW equations.

For the S = 1 case the similarity solution presented by Ungarish & Zemach (2007)
and Zemach & Ungarish (2007) is

rN (t) = At1/3, h(y, t) = ṙN

√
2H

(
y2 − y2

1

)1/2
, u(y, t) = ṙN y, (3.8)

where

y1 =

(
1 − 1

Fr2

)1/2

, (3.9)

A = 3Fr

[
V

3
√

2H

]1/3

. (3.10)

For the present value of Fr = 1.19 we obtain y1 = 0.54. The entire volume of
the dense fluid is in the ring y1rN (t) � r � rN (t). It was shown in Ungarish &
Zemach (2007) that an intrusion released from behind a lock indeed converges to this
particular solution. In addition, there is a thin disk-tail left behind, whose volume is
small compared with that in the ring and decays like t−4/3.

We calculate the energy by using the definitions (2.11) and (2.12). Now the
integration is for the y domain [y1, 1]. In scaled form we obtain

Kc =
4

34

√
2H

(
1

2Fr3
− 1

5Fr5

)
A5t−4/3, (3.11)

Pc =
4

34 × 5

√
2H

1

Fr5
A5t−4/3, (3.12)

Ec = Kc + Pc =
2

34

1

Fr3

√
2HA5t−4/3. (3.13)

The conclusion is that the energy of the axisymmetric current in an S = 1 stratified
ambient, at large times, decays like t−4/3 or r−4

N . In the self-similar stage Kc >Pc.
In the present case V = 1/2. This analytical result is in good agreement with the
numerical solution of the SW equations. The decay of energy in the S = 1 stratified
case is significantly faster than for the non-stratified S = 0 counterpart. We recall that
this case corresponds to an intrusion which propagates along the plane of neutral
buoyancy.

There is, again, a sharp difference between the axisymmetric self-similar behaviour
for S =1 and the two-dimensional counterpart. In the latter case xN ∝ t1/2 (see
Ungarish 2005b), and hence the energy decays like t−1 or like x−2

N .
We have verified analytically for the self-similar solutions that dEc/dt is equal to

the rate of pressure work performed by the nose. This is the mechanism by which
energy is transferred from the current to the ambient fluid. The one-layer model does
not predict how this energy is distributed in the ambient. However, the volume ratio
of ambient to current is large, and hence this energy is so diluted in the ambient that
it cannot affect significantly the assumed hydrostatic pressure field which embeds the
current. This argument explains why the SW one-layer model is expected to remain
a good approximation to the real motion in spite of the fact that a continuous
and significant energy transfer to the ambient takes place from the beginning of the
motion. The comparison with the NS results lends support to this interpretation.
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The advantage of the self-similar results is that they can be applied to locks of
various shapes by simply substituting the appropriate V. For example, for an ellipsoid

lock h =
√

1 − r2 (0 � r � 1), we use V = 1/3 instead of 1/2 for the cylinder. However,
we keep in mind that some care is necessary in the practical use of the self-similar
results. Since the initial conditions are not satisfied, these results are accurate for
large times only. There are indications that the predicted trends are relevant after
a spread to rN ≈ 3. On the other hand, we noticed that for large times the inviscid
approximation becomes less valid. In any case, these effects affect the energy of the
current in a consistent manner: a very fast decay is expected after propagation to
rN ≈ 3. This conclusion is supported by the NS simulation discussed next.

3.2. Navier–Stokes results

The corresponding NS computations were performed on grids of 400 × 220 intervals.
In these simulations H = 3 and h0/r0 = 0.25, rw = 8, Re =9.62 × 103 and the values
of S were 0, 0.29, 0.72 and 1. The values of ε were 0.115, 0.115, 0.0804, 0.115,
respectively. These parameters were chosen so that the second and third cases
reproduce axisymmetric counterparts of the experimental two-dimensional runs 5
and 19 of Maxworthy et al. (2002). Similar parameters were used in the previous
study of the energy budgets in the two-dimensional case (Ungarish & Huppert 2006).
The coefficient κ of the artificial smoothing term ∇2ρ was grid-dependent, of the order
of magnitude of the grid interval squared; in any case, κ < 1/Re, which corresponds
to a Schmidt number σ > 1. (In real saline systems σ ≈ 103, but this is beyond the
resolution of the grids used in this work. However, since the Reynolds number is
large, the value of the Schmidt number can influence only slightly the structure of the
current. A recent investigation of this effect is presented in Bonometti & Balachandar
2008.)

Various verifications of the consistency and reliability of the numerical results were
performed. These included changes of grid and time step, reduction of ε (to test the
possible non-Boussinesq effects), and the reproduction of numerical results for S =0
reported in Patterson et al. (2006). Results of earlier versions of this code also show
fair agreement in comparisons with experimental data, see for example Hallwworth
et al. (2001, figures 10, 13 and 15). Overall, we think that the numerical results are
sufficiently reliable to provide support to the present investigation on energy transfer
in the initial stage of propagation.

The propagation of the current is considered for the time (or distance) during
which the influence of the wall at rw = 8 can be neglected and during which the inertia
effects are dominant. In contrast to the SW model, whose numerical solution required
insignificant computer resources and the analysis of the data was straightforward, the
NS simulation required significant CPU-time and storage space, and a large effort to
process the data. (A typical simulation with our code ran for about 30 CPU-hours
on a Sun V20z server, with processor 250, 2.4GHz, 4GB memory.)

Typical results of the NS simulations are shown in figures 7 and 8. We see that the
shape of the current is very complex in the region of the nose. Stronger stratification
(figure 8) reduces the height of the head compared to the case of weaker stratification
(figure 7). The isopycnals of the ambient fluid are considerably displaced above
the head of the current almost from the beginning of the process. (At advanced
times the density contours also show significant perturbations near the axis r < 0.1,
approximately, but the volume in this region is very small and hence this effect is
unimportant.)



320 M. Ungarish and H. E. Huppert

0.05

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

0.250
.3

r r

z

0 1 2 3 4 5

1

2

3

0 1 2 3 4 5

1

2

3

z

0 1 2 3 4 5

1

2

3

0 1 2 3 4 5

1

2

3

t = 0.5

0.3

t = 2

t = 4 t = 8

0
.3 0.25 0
.3

0.05

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

0.25
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the value of φ defined in (2.33).
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The NS and SW predictions of the radius of propagation as a function of t are
shown in figure 2. The agreement is good for initial times. Eventually, the NS results
lag considerably behind the SW predictions. This can be attributed to the following
effects. First, as previously mentioned, the axisymmetric NS simulations tend to
lose accuracy and to underpredict the real propagation. As mentioned above, we
verified the robustness of the results on different grids and time steps. The simulated
current tends to disperse and lose coherence after propagation to about rN = 2.5. We
noticed that this effect is slightly reduced when the stratification and Re increase,
and when ε decreases. This seems to indicate that shear-mixing about the nose
generates some vortical motion which is numerically unstable in the axisymmetric
geometry. This is consistent with the conclusions of Patterson et al. (2006). The
implication is that the most severe discrepancy between the SW and axisymmetric
NS results represents a deficiency of the latter solution rather than a limitation of the
former approximation. This interesting relationship between the models has support
for the unstratified case. Ungarish (2007) shows that the SW results are in good
agreement with the experiments of Patterson et al. (2006) and Hallworth et al. (2001)
for propagation to about rN = 6, while the axisymmetric NS results show agreement
only up to about rN = 3. Cantero et al. (2007) also notes that SW models capture
better the front velocity than highly resolved two-dimensional simulations. However,
these conclusions still await confirmation for the stratified counterpart and intrusions.
We also reiterate that three-dimensional high-resolution simulations are expected to
resolve the deficiency of the axisymmetric (or two-dimensional) NS computations,
but the computational cost is high and renders these verifications a topic for future
work.

The second effect is that the propagation of the gravity current is hindered by
effects which have not been incorporated in the SW model. This is further elucidated
by comparing typical NS and SW profiles of the current. For the case S = 0.72,
consider figures 4 and 9. We see that the NS-simulated current has a complex, wavy
profile, with a prominent high head. The SW theory uses smooth profiles, with a sharp
jump of the height from hN to 0 at the nose. This difference justifies the larger drag
and slower motion in the more realistic simulation. In spite of these discrepancies,
it is clear that the SW approximation captures the effect of the stratification
well.

To support the theoretical analysis, we verified the SW energy behaviour with
the corresponding NS results. The pertinent comparison is shown in figure 10. We
emphasize that the energies are normalized with the initial potential energy of the
system, Pc(0), given by (2.13). We observe that the SW and NS results are fairly close
during the initial propagation. Eventually, the NS results decay more quickly to zero
than the SW predictions. The agreement between the SW and NS potential energies
of the current is better than that for the total energy of the current. This can be
attributed to the same effects as the discrepancy observed for rN (t), because a slower
propagation implies an even more significantly reduced kinetic energy. We conclude
that, overall, the NS computations are consistent with the energy predictions of the
simplified SW model. Again, the influence of the stratification is well captured. The
graphs of figure 10 cover a fairly wide range of different systems. To illustrate this,
let us apply these graphs to a fixed geometry and fixed densities of current ρc and
at the top of the ambient ρo; we vary the stratification so that at the bottom ρb

increases from ρo (S =0) to ρc (S = 1). The unscaled initial potential energy for S =1
is 9 times smaller than that of the unstratified, S = 0, counterpart. The initial speeds
of propagation also differ by a factor of about 4. We find that for all these systems
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the SW model predicts the scaling and the trends of the energies of the current fairly
well. This strengthens confidence in the general insights derived from the SW model
about the effects of stratification.

Figures 11 and 12 provide information on the total mechanical energy (kinetic plus
potential) of the two-fluid system and the energies of the ambient. This is obtained
from the NS computations. Evidently, the total (mechanical) energy is not conserved
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Figure 11. NS results for the total mechanical energy of the two-fluid system as a function
of time for various S.
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Figure 12. NS results for the kinetic (a) and potential (b) energy of the ambient as a
function of time for various S. (The potential energy result for S = 0 is zero.)

because of irreversible viscous dissipation. We note that stratification hinders the decay
of the total mechanical energy. The interpretation can be inferred from the behaviour
of the kinetic and potential energies in the ambient. The stratification enhances the
ability of the ambient to accumulate potential energy. Thus, as S increases, the ratio
of kinetic to potential energy in the ambient is reduced. This reduces the velocity
differences in the ambient field and hence also the viscous dissipative friction.

4. Concluding remarks
The shallow-water analysis presented here, which neglects motion in the ambient,

seems to capture well the energy exchange of the axisymmetric gravity current in the
inertia-dominated stage of propagation. In particular, this approach is able to elucidate
by comparatively simple means the effects of stratification on the energy balances
of the gravity current. It is somewhat surprising that the one-layer shallow-water
model is relevant in spite of the fact that the ambient gains a significant part of the
energy of the current. This can be attributed to two effects: (i) The energy transfer is
a rather one-sided process. The current performs work on the ambient (mostly at the
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propagating nose), and thus loses energy. From the point of view of the current, it is
unimportant how this energy is further propagated. (ii) The volume of the ambient is
large, and the initial disturbances there are zero. Consequently, when space and time
averaged, the feedback to the current of the perturbations in the ambient are rather
small for a significant distance of propagation.

In general, the trends of the energy budgets in the axisymmetric system are similar
to those in the two-dimensional system (Ungarish & Huppert 2006). However, the
transfers are more rapid in the diverging geometry: the axisymmetric current displays
very sharp energy changes with radius of expansion, rN (scaled with the initial r0).
When rN ≈ 2 the kinetic energy attains a maximum, and then both potential and
kinetic energy decay: (a) like r−2

N for a weak stratification; and (b) like r−4
N for

a strong stratification. The latter case is relevant to an intrusion at the neutral
buoyancy level. As stratification increases, the capability of the ambient to store
potential energy by the wavy displacement of the isopycnals increases. This reduces
the portion of kinetic energy in the ambient and the friction dissipation.

We observed that the agreement between the predictions of the NS simulations and
SW model is better for two-dimensional cases than for the axisymmetric counterpart.
We think that this is due to a deficiency of the numerical finite-difference method used
in the simulation, because previous studies (e.g. Patterson et al. 2006) reported similar
discrepancies between NS simulations and experiments for the non-stratified case. This
intriguing issue should be resolved by experiments and more sophisticated simulations.
In this context we note that the three-dimensional high-resolution simulations of
Cantero et al. (2007) provided good agreement with experiments for up to rN ≈ 6 in
a full-depth lock release. Our expectation is that the more accurate data will show
better agreement with the SW predictions than the present NS computations, and
will sharpen the understanding of the process under discussion. These verifications
require a great deal of additional work, which is left for the future.

We did not find a clear-cut difference between super- and sub-critical currents. We
think that this is because in the axisymmetric case the speed of the nose decays from
the beginning of the motion, and hence (a) in any case the sub-critical state prevails
after a short propagation, and (b) when the interaction of the waves with the nose
occurs (after a propagation of several lock lengths), the speed of the current is already
so small that viscous effects dominate in our calculations. This is different from the
two-dimensional geometry, in which the current propagates with constant speed for
several lock lengths, and the interaction with the waves causes a dramatic reduction
of the speed.

A major limitation of the SW energy balances used in our investigation is imposed
by the neglected viscous friction. This effect cannot be easily incorporated into the
analysis. We have presented a criterion for estimating the end of validity of the
inviscid approach, but the understanding of the energy exchanges afterward requires
a special investigation. Other deficiencies of the present SW model are the omission
of the motion in the ambient and the development of three-dimensional structures
for longer times. These topics are left for future work.

A comparison between the present results for the axisymmetric geometry and the
previous results for the rectangular two-dimensional case (Ungarish & Huppert 2006)
shows a similar quality of predictive power of the SW approximations. This indicates
that, in spite of the above-mentioned restrictions, the SW model is a plausible
and versatile tool which can be recommended for use in and extensions to other
configurations.
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