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Motivated by the geological sequestration of carbon dioxide (CO2), we study the
propagation of gravity currents in a porous medium bounded by a thin layer of
much lower permeability. We formulate a model for drainage assuming that the fluid
remains simply connected throughout. Using this model we examine the propagation
of both two-dimensional and axisymmetric currents numerically. We find that for the
fixed-flux situation solutions approach a steady state which is described analytically.
The approach to this final solution depends on both the permeability contrast and
thickness of the thin layer, and in many cases the current first overshoots before
relaxing back to its ultimate steady state. Finally, we examine propagation along
multiple thin, lower permeability layers as a reduced-order model of the plume of
CO2 currently being injected at Sleipner in the North Sea.

1. Introduction
Global energy consumption has roughly doubled from 1970 to 2005 and shows no

sign of abating (Rogner et al. 2007). Approximately 80 % of this consumption comes
from the combustion of fossil fuels, resulting in current anthropogenic emissions of
approximately 27 gigatonnes per year of carbon dioxide (CO2). Emissions on such
a large scale have led to an increase in the atmospheric concentration of CO2 from
280 parts per million (p.p.m.) in 1950 to 379 p.p.m. in 2005, likely responsible for the
concomitant increase in the average global temperature. While several strategies have
been proposed for both short- and long-term mitigation of anthopogenic emissions,
carbon capture and storage (CCS) promises to be one of the dominant mechanisms
for easing the transition from an energy infrastructure built around the combustion
of fossil fuels to a more carbon-neutral scheme. Storage of CO2 is potentially an
attractive solution and may take place by pumping supercritical (liquid-like) CO2

into large, porous geological formations which exist beneath many continents and
under the oceans. The largest industrial-scale example of such a scheme has been
operated by Statoil and partners at Sleipner in the North Sea, where approximately
1 million tonnes of CO2 have been sequestered each year since 1996. Other such
experiments are either ongoing or planned in Algeria, Australia, Canada, China and
the United States.

Experiments of this scope and scale motivate both fundamental investigations and
a deeper understanding of the dynamics involved as fluids propagate through complex
porous media, and this understanding in turn underlies estimates of the long-term
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viability of sequestered CO2. In the case of the Sleipner field, supercritical CO2 is
injected near the base of the Utsira sand formation and, due to its relative density,
rises as a buoyant plume through the approximately 200 metre thick formation before
it is ultimately stopped by the Nordland shale, a relatively impermeable cap rock at
the top of the formation. The rise of this CO2 has been imaged seismically in 1999,
2001 and 2002 (together with a pre-injection survey in 1994), and recent analyses by
Arts et al. (2004) and Bickle et al. (2007) show that the rise of the CO2 plume is greatly
affected by nine intervening, low-permeability mudstone layers of typical thickness
1 metre and with maximum thickness of 5 metres. They showed that as the buoyant
CO2 plume impinges on these layers it spreads out as a gravity current, before
ultimately leaking through either a series of discrete fractures in the thin, low-
permeability shale layers or as a diffuse, buoyancy-driven flux through these layers.
By neglecting any leakage through these thin shale layers, Bickle et al. (2007) analysed
the spreading, using the similarity solutions of Lyle et al. (2005). This analysis
clearly showed the controlling influence of the shale layers in directing the buoyant
propagation of the CO2 plume and provided valuable constraints on the physical
properties of the Utsira formation which govern fluid flow.

The injection of CO2 into a heterogeneous reservoir saturated in brine is a rich and
complex problem. At the typical temperatures and pressures encountered in saline
aquifers CO2 is a supercritical fluid which is immiscible with the ambient brine.
In addition, depending on the specific conditions the CO2 may be 5–40 times less
viscous than the interstitial brine (Nordbotten, Celia & Bachu 2005), leading to a
highly convoluted interface, or multiphase region, separating the two pure fluids.
Models incorporating both the viscosity contrast and the multiphase region have
been proposed by Nordbotten & Celia (2006) and Hesse, Orr, & Tchelepi (2008)
respectively, and each model illustrates the critical importance of the large density
contrast between CO2 and the interstitial brine in the dynamics of injection. In what
follows, we neglect the complex dynamics of the multiphase region, focusing solely on
the role of buoyancy on propagation in heterogeneous media in an effort to capture
the leading-order behaviour of such currents.

The buoyant propagation of fluids within porous media of uniform permeability
has been studied previously by a number of authors. The axisymmetric propagation
of a current along an impermeable barrier has been studied by Lyle et al. (2005), who
found a series of similarity solutions describing these flows. In particular, they found
that for currents driven by a constant flux of fluid the radius of the current spreads
like the square root of time since the initiation of injection, a result which compares
extremely well with their experiments in that geometry. Further work by Vella &
Huppert (2006) investigated the influence of a sloping cap rock on the propagation
as a function of the angle of inclination and showed that at early times these currents
propagate axisymmetrically before transitioning to a regime in which the downslope
nose spreads linearly with time. These results may be useful in interpreting data from
the Otway project in Australia (Berly, Sharma & Cook 2008) in which up to 100 000
tonnes of CO2 are to be injected in 2008/2009 into a layer (the Waarre C formation)
which slopes at about 5◦.

The influence of drainage on the spreading of low-Reynolds-number gravity
currents in air has been investigated by a series of authors. Acton, Huppert & Worster
(2001) examined the case of low-Reynolds-number gravity currents propagating over a
deep porous medium. They formulated, and experimentally verified, a simple drainage
law which incorporates both the hydrostatic pressure associated with the overlying
current and the weight of the interstitial fluid. Models incorporating this drainage
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law well characterized a series of fixed-volume experiments. This drainage model
was subsequently used by Pritchard & Hogg (2002) to investigate the propagation of
two-dimensional gravity currents within porous media over a deep, lower permeability
layer. Finally, Spannuth et al. (2009) has compared the predictions of axisymmetric
propagation and drainage with the flow of a viscous fluid over a range of porous
media.

Similar work on the propagation of a gravity current within a porous medium which
drains through a thin, lower permeability layer has been conducted by Pritchard,
Woods & Hogg (2001). Their model assumes that once fluid penetrates through the
low-permeability layer it is immediately removed from the system in a presumably
convective manner. Thus, drainage from the current is driven solely by the weight
of the overlying current. We consider the alternate limit here, where fluid remains
simply connected as it drains through the low-permeability layer, giving rise to
the possibility that this drained fluid can affect subsequent flows. In all likelihood,
draining fluid will undergo a Rayleigh–Taylor instability leading to a flux of fluid
through the lower permeability layer the nature of which is complicated by the effects
of both permeability heterogeneity and the contact between immiscible fluids of
differing viscosity. Our approach therefore constitutes an upper bound on the effect
the drained fluid may have on the subsequent evolution of the gravity current.

The present paper focuses on gravity currents which propagate within a uniform
porous medium over a thin layer of much lower permeability (an imperfect seal).
The effect of drainage through this low-permeability layer on the propagation of a
gravity current provides a model by which we analyse currents spreading in multi-
layered strata. We begin in § 2 by formulating a drainage law, assuming that the
fluid remains simply connected throughout. This drainage law is then used to study
currents propagating over thin, low-permeability layers in two dimensions. In § 3 we
extend the model and examine axisymmetric flows. These models are then used to
examine geometries comparable to those found in the North Sea at the Sleipner
carbon-sequestration site in § 4. We use the axisymmetric results to examine the
propagation of buoyant CO2 through multiple low-permeability layers. Finally, we
summarize the work and its relevance to CO2 sequestration in § 5.

2. Propagation over a thin, low-permeability layer: two-dimensional geometry
2.1. Geometry

We commence by considering the evolution of a gravity current within a uniform
porous medium of permeability k interleaved by a thin layer of much lower
permeability kb < k (0 > z > −b) as shown in figure 1. A gravity current of height
z = h(x, t) > 0 propagates under the action of gravity along the thin, low-permeability
layer, driven by a relatively small density difference Δρ with the ambient interstitial
fluid, and subsequently drains through this thin layer. We note that while for
experimental convenience we consider the case of a dense intruding current
propagating over a thin, low-permeability layer, the model constructed describes
equally well the propagation of a light intruding current at the base of a low-
permeability layer in the Bousinesq limit Δρ/ρ � 1, where ρ is the density of
the ambient interstitial fluid. Finally, to examine the dynamics of propagation and
drainage we restrict our attention to the case of uniform viscosity μ but note that
differences between the viscosity of the injected and ambient fluids may play a key
role in the dynamics of a spreading CO2 plume (Nordbotten et al. 2005; Thompson &
Huppert 2009).
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Figure 1. Schematic illustration of the propagation of a fluid of density ρ + Δρ over a
low-permeability layer of width b and permeability kb . The interface between the injected fluid
and the interstitial fluid is given by h(x, t) and the draining current by l(x, t). The radial extent
of the current in the upper layer is given by xN (t) and in the lower layer by xB (t).

2.2. Drainage

After an initial transient, such currents are typically much larger in their lateral extent
than they are in their depth. In such a circumstance motion within the overriding
current is predominantly horizontal, and so pressure can be assumed to be nearly
hydrostatic within the overriding current:

p = ρg′(h − z), (2.1)

where g′ = gΔρ/ρ is the reduced gravity and h(x, t) varies as a function of the distance
from the injection point x and the time since initiation t . We fix our vertical coordinate
z to the top of the low-permeability layer (occupying the region −b < z < 0). Flow
within both the underlying low-permeability layer and the lower high-permeability
layer is predominantly vertical and is driven by both the hydrostatic head of the
overriding current and the weight of the draining current as expressed by the vertical
component of Darcy’s law

∂pi

∂z
= −ρg′ − μ

ki

wi, (2.2)

where pi , ki and wi are the pressure, permeability and vertical velocity of layer i. If
we assume that this draining region remains simply connected, then pressure within
the lower two layers can be expressed as

p2 = ρg′
{

h

(
1 +

z

b

)
− (l − b)z

b

[
h + (1 − Λ)b

l − (1 − Λ)b

]}
(2.3)

and

p3 = ρg′(l + z)

[
h + (1 − Λ)b

l − (1 − Λ)b

]
, (2.4)

where Λ = k/kb is the ratio of permeabilities; l(x, t) is the depth to which the fluid
has drained; and the subscripts 2 and 3 refer to regions −b < z < 0 and z < −b
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respectively. Note that this solution follows from continuity of both pressure and
vertical fluxes at z = −b. The resulting drainage velocity at z = 0 is given by

w(x, 0, t) =

⎧⎪⎪⎨
⎪⎪⎩

−kbg
′

ν

[
1 +

h

l

]
, l < b,

−kg′

ν

[
h + l

(Λ − 1)b + l

]
, l � b.

(2.5)

The evolution equation governing the height of the current, and the depth to which
it penetrates, is given by

φ
∂h

∂t
− kg′

ν

∂

∂x

(
h

∂h

∂x

)
= w(x, 0, t) (2.6)

and

−φ
∂l

∂t
= w(x, 0, t), (2.7)

following Acton et al. (2001) and Pritchard et al. (2001). Here φ is the porosity
of the matrix which, for simplicity, we have taken as equal in all three regions.
Following many previous authors (Huppert 1982; Acton et al. 2001; Lyle et al. 2005,
for example) we consider the case of a current whose volume increases as qtα for
constants q and α. However, instead of tracking this volume in both the advancing
current and the drainage front, we impose a flux at the origin. Therefore we write the
boundary conditions on the system as[

kg′

ν
h

∂h

∂x

]
0

= −αqtα−1, (2.8)

[
kg′

ν
h

∂h

∂x

]
xN

= 0, (2.9)

h(xN (t), t) = 0 (2.10)

and

l(xB(t), t) = b, (2.11)

where (2.8) defines the flux at the origin; (2.9) requires zero flux through the nose
of the current; and (2.10) and (2.11) respectively define the nose of the current xN (t)
and the point at which drainage passes through the bottom of the low-permeability
layer xB(t). We note further that the boundary conditions (2.8) and (2.9) are related
to a global statement of conservation of mass,∫ xN

0

φh dx −
∫ t

0

∫ xN

0

w(x, 0, t) dx dt = qtα, (2.12)

through both temporal and spatial integrals of (2.6).

2.3. Scaling

The governing equations can be made non-dimensional through the introduction of
the dimensionless variables

H = h/SV , L = l/SV , B = b/SV , X = x/SH and T = t/ST ,

(2.13a, b, c, d , e)
where the horizontal, vertical and temporal scales are given by

SH = SV = (q/φγ α)1/(2−α) and ST = (q/φγ 2)1/(2−α) (2.14a, b, c)
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respectively, and γ = kg′/(φν) is the settling velocity within the porous medium.
Finally, we note that the vertical velocity scales with the settling velocity γ .

The non-dimensional evolution equations governing the height and depth of the
current then become

∂H

∂T
− ∂

∂X

(
H

∂H

∂X

)
= W (X, 0, T ) (2.15)

and

−∂L

∂T
= W (X, 0, T ), (2.16)

where the drainage velocity is given by

W (X, 0, T ) ≡

⎧⎪⎨
⎪⎩

−H + L

ΛL
L < B,

−H + L

Υ + L
L � B.

(2.17)

Here we see that the current initially begins to drain through the low-permeability
layer with the drainage velocity proposed by Acton et al. (2001). However, once the
fluid penetrates through the low-permeability layer the form of the drainage law is
modified by the additional parameter

Υ ≡ (Λ − 1)B, (2.18)

which is the product of the non-dimensional permeability contrast and the non-
dimensional thickness of the low-permeability layer. It is this parameter which plays
the dominant role in determining the evolution of the current.

Equation (2.15) is subject to the non-dimensional boundary conditions[
H

∂H

∂X

]
0

= −αT α−1, (2.19)

[
H

∂H

∂X

]
XN

= 0, (2.20)

where again

H (XN (T ), T ) = 0, (2.21)

L(XB(T ), T ) = −B (2.22)

define the nose and lateral extent of drainage into the lowermost layer respectively.
The draining current admits a steady state solution, irrespective of Υ , for α = 1. In

the limit T → ∞, where L 	 H and L 	 Υ ,

∂

∂X

(
H

∂H

∂X

)
= 1. (2.23)

Integration thus yields the steady state extent and profile, which are

XN = 1 and H (X, T ) = XN − X, (2.24a, b)

respectively. We note that this steady state extent and profile, which we have arrived
at through the long-time consideration of drainage modelled by (2.17), is similar to
the steady state profile found by Pritchard et al. (2001), using a fixed vertical drainage.
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Figure 2. Profiles of a two-dimensional gravity current of fixed volume release (α = 0) for
B = 0.1 and Υ =2 (Λ=21). The current profiles are shown for T =0.03 (solid line), 1.0 (dashed
line) and 2.0 (dotted line).
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Figure 3. The extent of a two-dimensional porous gravity current of fixed volume (α = 0) is
plotted as a function of time in the limit of no drainage (similarity solution, bold solid line),
for Υ = 100 (solid line), Υ = 5 (dashed line), Υ =2 (dotted line) and Υ = 0.1 (dashed–dotted
line).

2.4. Constant volume: α =0

The model described by (2.15) and (2.16) was solved numerically on a fixed grid
X = [0, 10] with N = 1501 points, using an implicit Crank–Nicholson scheme centred
in time and space (see Press et al. 1997). A predictor–corrector iteration was used,
first assessing the nonlinear diffusivity at the original time step and subsequently at
the half time step. The results were tested against the solutions of Pattle (1959) and
Lyle et al. (2005) and were found to be in excellent agreement.

Numerical solutions showing profiles of the the two-dimensional spreading of a
fixed volume of fluid for Υ = 2 are shown in figure 2, and the extent as a function
of time are shown for a variety of Υ in figure 3. In each case the propagation is
initiated at time T0 = 0 with H = L = 0. The current subsequently evolves through
several distinct regimes, each characterized by a differing mode of drainage.
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Figure 4. Comparison of the extent of a porous gravity current of fixed volume (α = 0) in the
limit of no drainage given by the similarity solution (solid line), the model of Pritchard et al.
(2001) (dashed line) and the present analysis for which Υ = 10 (dotted line).

At early times when H 	 L and especially for Υ 	 1 there is little drainage.
The current is essentially non-draining, in which case it is well approximated by
the similarity solution first described by Pattle (1959). In this limit the height of the
current is described by

H (X, T ) =
1

6
T −1/3

(
92/3 − X2

T 2/3

)
, (2.25)

and its extent evolves as

XN (T ) = 91/3T 1/3. (2.26)

This similarity solution represents an upper bound on both the height and extent of
the current for all Υ , as is clearly seen in figure 3.

At intermediate times, for which H >L, limited drainage becomes important to
the propagation of the current. For Υ 	 1 the solution of Pritchard et al. (2001) is
recovered. Their work, which modelled the propagation of a fixed volume current
over a low-permeability layer, resulted in the evolution equation

∂H

∂T
− ∂

∂X

(
H

∂H

∂X

)
= −H

Υ
(2.27)

((2.14) in their work) for the height of the current but neglected enhanced drainage
due to the presence of the bottom high-permeabiltiy layer. They found an analytic
expression for the extent of the current given by

XN (T ) =
[
9Υ

(
1 − e−T/Υ

)]1/3
, (2.28)

which is compared to both the similarity solution and our numerical solution for
Υ = 10 in figure 4. At early times, when drainage is driven primarily by the weight
of the overriding current, the agreement between the two models is quite favourable.
However, at later times the drainage becomes dominated by the weight of the fluid
in the lower layer, thus increasing the drainage through the low-permeability layer.
This slows the advance of the front.

For large values of Υ the current drains completely once it has reached this
maximum extent as indicted in both figure 2 and figure 3, whereas for small Υ
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Figure 5. Profiles of a two-dimensional porous gravity current with fixed flux at the origin
(α = 1) and in which B = 0.1 and Υ = 2 (Λ= 21). Current profiles are shown for T = 1.0 (solid
line), 5.0 (dashed line) and 7.0 (dotted line). Note that only the portion of the draining fluid
affecting the propagation of the overriding current has been plotted for clarity.

the current continuously recedes to the origin. The limit of Υ → 0 has been studied
previously by Pritchard & Hogg (2002) for fixed-volume currents. Their results show
a similar pattern of propagation followed by recession of the current driven by
drainage.

2.5. Fixed flux: α =1

The spreading of a current from a source with fixed flux is shown in figure 5 for
a variety of Υ . The behaviour for fixed flux is more varied than that for the fixed-
volume case, with propagation showing at least three distinct regimes. At early times,
before drainage has become fully established, the current first propagates at the rate
given by the non-draining similarity solution

XN (T ) = ηNT 2/3, (2.29)

where ηN 
 1.48 is obtained through integration of the similarity function found in
Huppert & Woods (1995) for α = 1. As is the case for fixed-volume release, this
similarity solution provides a bound on the maximal extent of the current and is
recovered in the limit Υ → ∞. Once drainage is established, but while H > L, the
current rapidly extends to a value in excess of its ultimate steady state extent for
Υ > 1. Then as the depth of penetration L 	 H the current gradually relaxes back
to its steady state extent of XN =1 as predicted by (2.24a). Example profiles for
the intermediate value Υ = 2 are shown in figure 5 in which, for clarity, only the
portion of the drained fluid still actively contributing to the propagation of the
gravity current has been plotted. The resultant evolution of the extent of the current
is then plotted in figure 6 for a variety of Υ . It is important to note that, while the
depth of drainage monotonically increases with time, the height of the gravity current
and hence its maximum lateral extent depend sensitively on the form of the drainage.
These quantities therefore reflect the increasing importance of drainage through a
succession of regimes, leading to an ultimate steady state.
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Figure 6. The extent of a two-dimensional porous gravity current of fixed flux (α = 1) is
plotted as a function of time in the limit of no drainage (similarity solution, bold solid line),
for Υ = 10 (solid line), Υ = 3 (dashed line), Υ = 2 (dotted line) and Υ = 0.1 (dashed–dotted
line). For all finite values of Υ the curves approach the steady state limit XN = 1 as T → ∞.

3. Propagation over a thin, low-permeability layer: axisymmetric geometry
A similar analysis can be made for the spread of an axisymmetric current over a

thin, low-permeablity layer. Using the same model of drainage, we find the equations
governing height and depth of penetration are

φ
∂h

∂t
− kg′

ν

1

r

∂

∂r

(
rh

∂h

∂r

)
= w(r, 0, t) (3.1)

and

−φ
∂l

∂t
= w(r, 0, t), (3.2)

where w(r, 0, t) is given by (2.5). Equations (3.1) and (3.2) are subject to the boundary
conditions

lim
r→0

[
2πr

kg′

ν
h

∂h

∂r

]
= −αqtα−1, (3.3)

[
2πrh

∂h

∂r

]
rN

= 0, (3.4)

h(rN (t), t) = 0 (3.5)

and

l(rB(t), t) = b, (3.6)

which again constrain the flux at the origin, require zero flux through the nose of the
current and define both the nose of the current and the furthest point at which the
draining current enters the lowermost layer.

3.1. Axisymmetric scalings

The vertical, radial and temporal scales are given by

SV = SR = (q/φγ α)1/(3−α) and ST = (q/φγ 3)1/(3−α) (3.7a, b, c)
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respectively, where again γ = kg′/(φν). Application of these scalings yields the non-
dimensional governing equations

∂H

∂T
− 1

R

∂

∂R

(
RH

∂H

∂R

)
= W (R, 0, T ) (3.8)

and

−∂L

∂T
= W (R, 0, T ), (3.9)

with the non-dimensional boundary conditions

lim
R→0

[
2πRH

∂H

∂R

]
= −αT α−1, (3.10)

[
2πRH

∂H

∂R

]
RN

= 0, (3.11)

H (RN (T ), T ) = 0 (3.12)

and

L(RB(T ), T ) = 0. (3.13)

The long-time evolution of the fixed flux (α = 1) spreading axisymmetric current
can be evaluated in a manner identical to the two-dimensional case. In the limit
T → ∞ we find that both L 	 H and L 	 Υ , so

1

R

∂

∂R

(
RH

∂H

∂R

)
= 1. (3.14)

Integration with boundary conditions (3.10)–(3.12) therefore yields the steady state
radius and current profile, which are

RN = π−1/2 and H (R, T → ∞) =

√
1

2

(
R2 − R2

N

)
− R2

N log (R/RN ), (3.15a, b)

respectively. This steady state position and profile are similar to the steady state
solutions found by Pritchard et al. (2001), using a fixed vertical drainage.

3.2. Axisymmetric propagation

Both the constant-volume and fixed-flux cases display a behaviour similar to that
found in two dimensions. For constant volume, profiles (figure 7) and plots of
the radial extent (figure 8) show that currents ultimately drain completely into the
underlying low-permeability layer. For fixed flux (α = 1) the same transition from
a drainage velocity dominated by the hydrostatic pressure of overriding fluid to a
velocity dominated by the weight of the draining fluid is seen. Here profiles (figure 9)
and plots of the radial extent of the current (figure 10) show the initial extension of
the current followed by a retreat to the same analytical steady state radius RN = π−1/2

independent of Υ .

4. Multiple layers: CO2 sequestration at the Sleipner field
CO2 has been sequestered on an industrial scale at the Sleipner field in the North

Sea since 1996. Seismic images analysed by Arts et al. (2004) and Bickle et al. (2007)
clearly show that the dynamics of the plume propagation within this 200 metre thick
sand formation is dominated by a series of nine thin, low-permeability shale layers.
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Figure 7. Profiles of a fixed volume (α = 0) axisymmetric porous gravity current propagating
over a thin, low-permeability layer with B = 0.1 and Υ = 2 (Λ= 21). Current profiles are shown
for T =0.04 (solid line), 1.0 (dashed line) and 1.5 (dotted line).

0 2 4 6 8 10
T

0.5

1.0

1.5

2.0

2.5

3.0

RN

Υ = ∞

Υ = 100

Υ = 10

Υ = 2
Υ = 0.1

Figure 8. The radial extent of a fixed volume (α = 0) axisymmetric porous gravity current is
plotted as a function of time in the limit of no drainage (similarity solution, bold solid line),
for Υ =100 (solid line), Υ = 10 (dashed line), Υ = 2 (dotted line) and Υ = 0.1 (dashed–dotted
line).

These layers, which are typically one meter thick, spread the buoyant plume laterally.
To date, seismic images remain inconclusive as to whether vertical flow within the
formation is dominated by leakage through these layers or through a series of high-
permeability fractures. Here we examine the limit of uniform leakage driven by both
the hydrostatic pressure of the underlying CO2 and the fluid which has penetrated
through these layers.

We build our model of this multi-layered system, using the results of § 3 in which we
have examined the propagation of a gravity current along a single low-permeability
layer. In our multi-layered model, propagation at each layer is analysed separately.
The buoyant rise of CO2 within the formation is initiated with a constant flux of
fluid beneath the first layer (layer 0). The propagation along each subsequent layer
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Figure 9. Profiles of a fixed flux (α =1) axisymmetric porous gravity current propagating over
a thin, low-permeability layer with B = 0.1 and (Υ = 2) Λ= 21. Current profiles are shown
for T = 1 (solid line), 5 (dashed line) and 7 (dotted line). Note that only the portion of the
draining fluid effecting the propagation of the overriding current has been plotted for clarity.

0 2 4 6 8 10

T

1

2

3

4

RN

Υ = ∞

Υ = 10.0

Υ = 5.0

Υ = 2.0

Υ = 0.1

Figure 10. The radial extent of a fixed flux (α = 1) axisymmetric gravity current is plotted
as a function of time in the limit of no drainage (similarity solution, bold solid line), for
Υ = 10 (solid line), Υ = 5 (dashed line), Υ = 2 (dotted line) and Υ = 0.1 (dashed–dotted line).
All values for finite Υ approach the steady state limit RN = π−1/2 as T → ∞.

is then driven by the integrated flux draining through the preceding layer as pictured
in figure 11.

The results of the model are presented in figure 12 which show a series of snapshots
in time of the buoyant plume as it rises through the formation. Flow in each layer
is driven by the flux through the preceding layer and in turn provides a flux into
subsequent layers as shown in figure 13. The ultimate radial extent at each layer is
plotted as a function of time in figure 14. The picture which develops is of the rise
of a plume whose head broadens through interaction with each subsequent layer as
shown schematically in figure 15. However, as found in the model of a single low-
permeability layer, the radial extent at any given layer ultimately returns to the scaled
value RN = π−1/2. In a typical reservoir geometry such as that found at Sleipner, the
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Figure 11. Schematic illustration of a CO2 plume rising in a reservoir with multiple layers.
A constant flux of buoyant fluid is injected beneath the first horizon under which it spreads
axisymmetrically and through which it drains. The spatially integrated drainage through each
layer is then input as a time-dependent flux into the subsequent layer. At each layer the spread
of the buoyant CO2 is illustrated by the solid line, while the vertical dashed line indicates the
lateral extent of the plume.

behaviour of the rising plume illustrated in figure 15 is replicated throughout all N

layers until an impermeable cap rock is reached. At much longer times, propagation
along this cap rock may more closely resemble the similarity solution presented by
Lyle et al. (2005) with deviations due to the vertical permeability structure of the
form given by Anderson, McLaughlin & Miller (2003).

The value of such simplified models of buoyant propagation within complex
reservoir geometries is in their ability to predict universal behaviour from which
reservoir properties can be assessed. In the present model the key components are the
separation distance between subsequent layers ΔB , the thickness of each layer and
permeability contrast with the bulk reservoir as expressed by the parameter Υ , the
source flux q and the bulk drainage velocity γ .

5. Discussion and conclusion
The propagation and drainage of gravity currents through, and into, porous

media are motivated by a host of environmental and geophysical problems. An
understanding of such currents may play a key role in determining the long-term fate
of sequestered CO2. Here, motivated by seismic observations of buoyant supercritical
CO2 upwelling from the injection point at the Sleipner field, we have studied
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Figure 12. The outer envelope of a buoyant CO2 plume rising in a multi-layered porous
medium plotted for times T = 5 (solid line), 10 (dotted line), 15 (short-dashed line), 20
(dash–dotted line), 25 (long-dashed line) and 30 (dashed–dotted–dotted line). Low permeability
layers are located at z = 0, 2, 4, 6, 8 and 10, with parameters B =0.1 and Υ = 2 (Λ=21) and
layer separation ΔB = 2. At the early times shown in (a) the plume impinges on each layer
and spreads dramatically. At the later times shown in (b), the lateral extent of the plume
decreases as drainage due to upwelling material increases, ultimately asymptoting to its steady
state extent.
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Figure 13. The non-dimensional flux is plotted as a function of time into layer 0 (solid
line), layer 1 (dashed line), layer 2 (dotted line), layer 3 (dashed–dotted line) and layer 4
(dashed–dotted–dotted line). Parameter values are B =0.1 and Υ = 2 (Λ= 21) with layer
separation ΔB = 2. Note that the flux into the original layer (layer 0) is held fixed with time,
with non-dimensional value 1.
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Figure 14. Radial extent as a function of time of a buoyant plume spreading at a series of
low-permeability layers characterized by B = 0.1 and Υ = 2 (Λ= 21) and with vertical spacing
ΔB = 2.

Source Source Source

Figure 15. An illustration showing the propagation of a CO2 plume through a reservoir
composed of layered strata. We note that the plume has maximum lateral extent at the head,
while width of the tail is given by the analytic steady state.

the propagation of such currents along thin, low-permeability layers in both two-
dimensional and axisymmetric geometries. The propagation of porous gravity currents
across thin layers of much lower permeability has been previously examined assuming
that fluid plays no role in drainage once it passes through the low-permeability layer.
However, in the limit in which the fluid remains simply connected we find that
propagation can occur in three distinct regimes. First, fluid propagates over the low-
permeability layer, and drainage is driven primarily by the weight of the overlying
fluid. This mode of drainage leads to rapid extension of the current. Subsequently,
as the thickness of the draining fluid exceeds the depth of the low-permeability
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layer, the weight of the drained fluid contributes to the drainage velocity, thereby
halting further propagation of the gravity current. Finally, as the weight of the
underlying fluid dominates drainage we find that the extent of both two-dimensional
and axisymmetric currents recedes to a steady state value, which we have determined
analytically.

This model for propagation along single thin, low-permeability layers has been
extended to examine flow within layered strata, motivated by the industrial-scale
CO2 project at Sleipner in the North Sea. Propagation of the buoyant CO2 takes
place as a plume whose head broadens and thins as it progresses towards the top
of the formation before it ultimately recedes to the analytically determined steady
state. We find that propagation can be characterized by only a few key parameters
defining the input flux, the thickness and vertical separation of the thin layers and
the permeability contrast between the thin, low-permeability layers and the host
formation. This reduction in the number of reservoir parameters needed to predict
the behaviour of such a buoyant plume is important given the dearth of quantitative
measurements of key rock properties such as the permeabilities and the uncertainty
in seismic reconstructions of the geological structure.

Finally, the present study provides the basis for addressing the role of viscosity
differences between CO2 and the ambient fluid, residual trapping of the injected CO2

and flow in tilted formations (such as those seen at the Otway project in Australia)
on the propagation of injected CO2 through layered strata. This study also highlights
the importance of future work constraining the form of drainage through layered
media, particularly in the presence of large viscosity contrasts, surface tension and
lateral heterogeneity in structures of low-permeability layers in the form of fractures.

We are grateful for insightful comments by Peter Cook, Jonathan Ennis-King,
Mark Hallworth, Andrew Hogg, Lincoln Patterson and David Pritchard on an earlier
version of this paper. The research of H. E. H. is partially supported by the Royal
Society Wolfson Merit Award.
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