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This paper extends previous studies of saline gravity currents at high Reynolds
number flowing along a tank with a V-shaped valley. We use experiments and a
box model to determine the primary features of the flow. The particulate gravity
currents were initiated by releasing a fixed volume of fluid consisting of pure water
mixed with silicon carbide particles from a lock at one end of the tank. The resulting
motion and deposit pattern differ significantly from those for the propagation of
a particulate gravity current along a flat-bottomed tank. The front of the current,
seen from above, is approximately parabolic (with axis parallel to the flow direction)
in contrast to the current in a flat-bottomed tank where it is nearly a straight line
perpendicular to the flow. This feature mimics the results for pure saline currents.
When seen in profile the currents do not have a clearly defined raised head, which is a
feature of the flat-bottomed currents. The mass deposited per unit area varies nearly
monotonically with respect to distance down the tank, again in contrast to the case
of the flat-bottomed tank. The exceptions to this are the two experiments which have
the highest ratio of lock height to length. The mass deposited per unit area across
the V-shaped valley is much larger in the central part of the valley than it is on the
flanks for any position along the valley. We find that the results can be described
with remarkable accuracy by a box model using a generalization of the equation
for sedimentation from a turbulent medium due to Martin and Nokes. Our results
further show that the factor used in the deposition rate equation which is commonly
assumed to be 1 should be smaller, typically 0.7.

1. Introduction
Gravity currents in nature usually flow over complex terrain which can include

valleys, basins, changes of slope and obstacles which may completely or partially
block the flow (for a convenient and comprehensive discussion of field observations
of gravity currents, and the associated experimental work, the review of Kneller &
Buckee (2000) is extremely useful). Most experimental work has focused on gravity
currents flowing in tanks designed so that the flow is close to two-dimensional. The
simplest of these tanks are flat bottomed (Simpson 1997 provides a comprehensive
description of experiments using these tanks). The effect of obstacles in the form of
ridges on the flow and deposit of particulate matter has also been studied (Rottman,
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Simpson & Hunt 1985; Rottman & Simpson 1989; see also Kneller & Buckee 2000
for further references). A related problem which has been studied experimentally is
the flow of gravity currents down ramps onto a horizontal surface (Britter & Linden
1980; Monaghan et al. 1999).

There has been much less research on gravity currents flowing along valleys. Similar
solutions for low Reynolds number currents in V-shaped valleys have been determined
by Takagi & Huppert (2007, 2008), and shown to accurately predict the experimental
results while high-Reynolds-number flows of saline currents along V-shaped valleys
have also been studied both theoretically and experimentally (Monaghan et al. 2008).
The results show that the change in topography causes significant changes in most
properties of a gravity current. For example, in the case of saline currents flowing
at high Reynolds number, the currents in the V-shaped valley, when seen in profile,
no longer have the raised head characteristic of the flat-bottomed case (see, for
example, figure 2 of Rottman & Simpson 1983). When seen from above, the front
has a parabolic shape. In addition, the variation of the speed of the head with time
is different from that in the case of a flat-bottomed valley.

Experiments involving gravity currents carrying particulate matter provide useful
models of pyroclastic and turbidity flows (comprehensive discussions of the occurrence
of particulate-driven gravity currents are given by Huppert 1998 and by Kneller &
Buckee 2000). During the flow, which is usually highly turbulent, the particulate
matter is deposited on the valley bottom and, as a consequence, the density difference
between the current and the ambient fluid is reduced and the flow slows down. Studies
of such currents flowing in horizontal tanks with flat bottoms have been carried out
by Bonnecaze, Huppert & Lister (1993) for constant volume currents, and by Garcia
(1994) and Altinakar, Graf & Hopfinger (1996) for constant flux currents. Bonnecaze
et al. (1993) compared their experiments with calculations based on a two-layer
fluid model together with an equation due to Martin & Nokes (1988, 1989) which
describes the loss of particulate matter in a turbulent flow. The agreement between
the experimental and numerical results for the variation of the length of the current
with time was, however, very good. The agreement between the variation of the mass
deposit with distance for their numerical model and the experiments was satisfactory
except in the early stages of the flow where the experiments indicate a significantly
lower deposit than the theoretical models. Dade & Huppert (1995a) presented an
approximate box model based on a first approximation for which the deposit did not
affect the motion of the front, and this gives a reasonable fit to the experiments.

The only previous experiments of particulate carrying gravity currents flowing
along valleys are those of Mohrig & Buttles (2007) who studied the deposition of
particulate matter flowing in a tank with a bed of silica particles in which was carved
a shallow channel with two bends. Their experiments show that a channel can have a
significant effect on the deposit even when the height of the current is a factor of four
greater than the depth of the channel. In contrast with Mohrig & Buttles (2007), this
paper considers channelized currents flowing along a non-erodible valley that defines
the geometry of the tank. As a consequence, the lateral spreading of the currents
and possible flow over the channel margins, and the erosion of a pre-existing channel
that occurred in the experiments of Mohrig & Buttles (2007) do not occur in our
experiments.

The key questions answered in this paper are first, the extent to which the
topography of the V-shaped valley affects the deposit pattern in the valley and
second, how it affects the speed of the current. We first describe currents of constant
volumes in the flat-bottomed case and compare data from both Bonnecaze et al. (1993)
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and our own experiments with results from our box model to provide a reference
for our V-shaped-valley experiments for fixed volumes. We then describe the currents
in the V-shaped valley. The experiments reveal that the deposit pattern is strikingly
different from that in the flat-bottomed tank. In particular, the mass deposited varies
nearly monotonically with respect to distance down the tank, in contrast to the case
of the flat-bottomed tank. The deposit across the V-shaped valley, for any position
along the valley, is much larger in the central part of the valley compared to the
flanks. We find that the results can be described with remarkable accuracy by a
box model which uses a generalization of the mass deposit equation of Martin &
Nokes (1988, 1989) to take account of the geometry of the valley. The experiments
are described in § 2. In § 3, we present the flow patterns, which we observed in both
the experiments with the flat- and V-shaped-bottom tank. Section 4 details our box
model and experiments for the flat-bottomed tank. Section 5 describes the box model
and experiments for the V-shaped valley. We discuss our results and concludes in
§ 6. The sensitivity of the Froude number and a sedimentation parameter in our box
models is discussed in the Appendix.

2. The Experiments
2.1. The experimental setup

The experiments were carried out in a rectangular tank made of Perspex with two
sets of floors (figure 1). The primary floor had a V-shaped bottom while the second
floor was flat and could be inserted along the tank at the height of the valley a.
Dimensions of the tank were averaged from four sets of measurements along the
tank because, subsequent to the design of the V-shaped-bottom tank, we found that
lengths could vary by 2–3 mm. The tank was 500 cm long with a depth of 40 cm with
the flat bottom, and an averaged maximum depth of 46.6 cm for the V-shaped bottom,
corresponding to a valley of depth a = 6.6 cm. The averaged width of the tank W

was 28.26 cm. Note that the slope of the valley walls was then inclined at 25◦ to the
horizontal, which is an angle less than the typical values of the angle of repose for
angular materials, i.e. 30◦–40◦. This implied that no movement of the settled particles
was to occur after deposition. We note that our deposits never showed any ripples or
irregularities at the surface that could have suggested sliding and/or re-suspension.

The tank was horizontal and initially filled with tap water up to a fixed depth h0

measured from the surface of the water to the bottom of the valley. A removable lock
gate with foam seals around its edges was positioned at a fixed distance L = 13 cm
from one end of the tank. The characteristic diameters of the silcone carbide (SiC)
particles were in the range 20–32 microns and we used the mid-point value 26 microns
for our models. A measured mass m0 of particles composed of SiC was added to
the volume of water held behind the lock gate. This mixture was stirred vigorously
to bring all the particles into suspension before the gate was rapidly lifted. Each
experiment was recorded by a video camera.

Measurements of the position of the front of the current as a function of time were
obtained from frame by frame replay of the video recording. Measurements of the
deposits were made once the particles had settled and the tank had been carefully
drained.

Strips of fixed length within a range 5–10 cm were then cut into the wet cohesive
deposits across the width of the tank at given distances along the tank. In two of the
V-shaped-valley experiments (3 and 5, table 1), each strip was cut into three slices
consisting of two symmetric flank sub-strips, each of approximate length 12 cm, and a
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Figure 1. Geometry of the tanks: (a) V-shaped valley and (b) flat-bottomed tank. The
evenly spaced strips from which mass samples were taken are indicated.

central sub-strip of approximate length 6 cm (see figure 1). The mass of the particles
within each strip was collected in a beaker, then dried in a microwave oven and
weighed. The mass of particles that had remained in the lock were also collected and
weighed. This mass ranged from 5 % to 10 % of the initial mass.
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(ρc − ρa)/ρa h0 m0 g′
0

Experiment Valley (%) (m) (kg) ϕ0 (m s−2) γ Re

1 Flat 4.6 0.049 0.123 0.021 0.45 0.7 7276
2 Flat 4.6 0.115 0.289 0.023 0.45 0.5 26 161
3 V-shape 4.5 0.066 0.082 0.021 0.45 0.7 11 374
4 V-shape 4.8 0.126 0.246 0.022 0.48 0.7 30 987
5 V-shape 4.4 0.126 0.225 0.021 0.44 0.7 29 668
6 V-shape 6.1 0.126 0.310 0.028 0.60 0.7 34 644
7 V-shape 2.3 0.246 0.268 0.011 0.23 0.5 58 515
8 V-shape 2.3 0.126 0.117 0.011 0.23 0.7 21 450
9 V-shape 1.0 0.246 0.114 0.004 0.10 0.7 38 584

10 V-shape 1.0 0.126 0.050 0.004 0.10 0.7 14 143

Table 1. Initial experimental conditions. The density of the particle material ρp is 3190 kg m−3,
the density of water ρa is ∼1000 kg m−3 . The mean diameter of the SiC particles was 26 μm.
γ refers to the factor introduced and discussed in (4.1). The initial Reynolds number is

estimated by using Re =
√

g′
0h

3
0/ν

2, where the kinematic viscosity of water ν is 10−6 m2 s−1.

The currents are driven by the effective gravity

g′ = (ρc − ρa) g/ρa, (2.1)

where ρc is the density of the current, ρa is the density of water and g is the
gravitational acceleration. Equation (2.1) can be written in terms of the mass m of
the particulate matter in the current at any time and the mass M of the water in the
lock and the densities, which give

ρc = (m + M)/(m/ρp + M/ρa), (2.2)

where ρp is the density of the particles.
Substituting for ρc in (2.1) gives

g′ = g
m

M

(1 − ρa/ρp)

(1 + mρa/Mρp)
. (2.3)

In this paper the volume concentrations of particles in the current

ϕ =
m

M

ρa

ρp

(2.4)

are assumed to be small. Values of ϕ in the experiments are much less than unity with
a typical value of 0.03. Thus, to within an error of 3 %, (2.3) can be approximated by

g′ = g(1 − ρa/ρp)
m

M
. (2.5)

Table 1 gives the parameters of each experiment, where the initial values of h, m, ϕ

and g′ are denoted by h0, m0, ϕ0 and g′
0, respectively. Table 1 also includes the factor

γ that is discussed in § 4.1 and the initial Reynolds numbers of each experiment,
which shows that the gravity currents were turbulent.

3. The flow patterns
In this section we compare general features of the flow along a flat-bottomed tank

and the flow along a V-shaped valley. Figure 2 shows the gravity currents seen from
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(a)

(b)

Figure 2. Particulate gravity currents from above flowing in a flat-bottomed tank: (a) and
(b) correspond to experiments 1 and 2 of table 1. Note the nearly straight front and turbulent
structures near the surface roughly parallel to the front in (a), and the weak turbulence away
from the head of the current especially in (a).

(a)

(b)

Figure 3. Particulate gravity currents from above flowing along a V-shaped valley: (a) and
(b) correspond to experiments 3 and 4 of table 1. Note the shape of the front and the fact that
the turbulence remains strong along most of the current.

above for experiments 1 and 2 (flat bottom). The flows are close to two-dimensional
with fronts which show small convolutions about a straight line. In both figure 2(a)
and 2(b) it appears that the turbulence is strong near the head but decreases rapidly
with distance from the head. In figure 2(a) the structure in the turbulence seen from
above appears to be aligned parallel to the front, but this is less clear in figure 2(b).
A qualification we need to make to these comments is that because the current fluid
is opaque we are constrained to surface observations.

Figure 3 shows the gravity currents seen from above for experiments 3 and 4
(V-shaped valley). In this case, as with saline gravity currents, the front of the current
is parabolic with a smaller radius of curvature for the current with the smaller value
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Figure 4. A close-up of the head of particulate gravity current, seen from above, flowing
along a V-shaped valley. The topography of the turbulence is similar to a rugged mountainous
region separated by level plains about 2 cm wide.

of h0. In contrast to the case of the flat-bottomed tank, the turbulence is maintained
for a much larger distance away from the head. Figure 4 is a close-up of the front of
a gravity current. Noticeable features of the turbulence are the flat-looking regions
with a typical length scale of about 2–3 cm surrounded by large disordered regions
with a typical length scale of 1 cm.

Studies of the velocity field in saline gravity current experiments along flat-bottomed
tanks show that strong fluctuations in the velocity field are associated with the
billows generated by Kelvin–Helmholtz instabilities generated as the front rolls up
(Kneller, Bennett & McCaffrey 1997). The analog three-dimensional direct numerical
simulations (DNS) of planar gravity current in the lock-exchange configuration and
finite volume release (Cantero et al. 2008) show this in detail for Reynolds numbers in
the range 8950 to 15 000 using between 31×106 and 131×106 grid points. In particular
the numerical calculations show that the downstream velocity is partly determined by
the complex interaction between Kelvin–Helmholtz vortices. Saline gravity currents
in a V-shaped valley differ from their counterpart in the flat-bottomed valley because
Kelvin–Helmholtz billows propagate around the sides of the current as well as over
the top. This difference in the dynamics of the interface between the gravity current
and the ambient fluid may be the cause of the apparent difference in the turbulence
in the flat and V-shaped-valley experiments. Finally, we note that the numerical
simulations of Cantero et al. (2008) reports that the speed of the front is predicted
equally well by two and three-dimensional simulations during the initial and slumping
phases but begin to diverge in the inertial and viscous phases.

4. Flat-bottomed tanks
In order to provide a comparison with the gravity currents in a V-shaped valley

two of the experiments used a flat-bottomed tank. In the following we describe the
box model and the experimental results for this case.

4.1. Box model for the flat-bottomed tanks

Box-models (Huppert & Simpson 1980; Dade & Huppert 1995a) assume the gravity
current remains homogeneous, the upper surface is horizontal, there is little mixing
between the current and the ambient fluid, and the speed of the front can be obtained
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from a Froude number condition using the height of the current as a length scale. It
is assumed that the main average velocity is along the tank and constant across the
tank. In the case of particulate currents we make the further assumption (also used
by Bonnecaze et al. 1993) that the current is sufficiently turbulent to ensure that the
particulate mass density is nearly uniform, and that the deposit formula of Martin &
Nokes (1998,1989), when suitably generalized, can be used.

Martin & Nokes (1988, 1989) deduced their deposit equation from experiments and
theory for turbulent thermal convection in a flat-bottomed container. They assumed
that, in any time δt , the particulate matter δm in a layer of thickness vsδt (where vs

is the sedimentation velocity) adjacent to the bottom of the tank would be deposited.
For a flat-bottomed tank, with height of current h, this represents an area fraction
vsδtW/(hW ), which is the negative of the mass fraction δm/m and leads to the deposit
equation

dm

dt
= −γ

mvs

h
. (4.1)

Martin & Nokes (1988, 1989) found that the values of the factor γ were in the range
0.6 <γ < 1.1. The lower values occurred for values of the ratio of vs/v > 0.5, where
v is the root mean square velocity at the mid-point of their tank. Martin and Nokes
pointed out that smaller values of γ may be associated with the non-uniform mixing
they observed in some experiments. Although it has become customary to use γ equal
to 1 we should expect that γ will vary with the mixing process associated with gravity
current and be space and time dependent.

In the case of saline gravity currents the mixing and entrainment in the head is
known to differ from that along the tail of the current (Hacker et al. 1996; Hallworth
et al. 1996) and to depend on the aspect ratio (height to length) of the lock (Hacker
et al. 1996). Although these results are for saline currents, they suggest that the mixing
in particulate currents may vary along the current, and may depend on the aspect
ratio of the lock and in this way affect the deposit. This is confirmed for the case of
particulate currents in flat-bottomed tanks for which the rate of mass deposit has a
maximum under the head of the current (De Rooij & Dalziel 2001, and unpublished
experiments of De Rooij, Dalziel and Linden, private communication). We therefore
expect that a box model, which assumes the rate of deposit is uniform along the
current with a constant γ , would predict the final deposit and the speed of the head
of the current with only moderate accuracy. This is the case for the box model results
for flat-bottomed tanks shown below, and those of Bonnecaze et al. (1993), for which
the predicted deposit is too high for the first few lock lengths. The box model does,
however, give a good estimate of the deposit beyond this distance, and predicts the
velocity of the head of the current with satisfactory accuracy.

When the gravity current flows in a tank with a V-shaped bottom the turbulence
in the current, and hence the mixing appears to be nearly uniform along the current
(see for example figure 4). This suggests that, in this case, a single value of γ might
be appropriate for the entire current. We will show that for the majority of the
experiments in the V-shaped valley we get good agreement between the box models
and the experiments using γ = 0.7.

We denote the coordinate of the front measured from the end of the tank by X

and assume the velocity of the front is

dX

dt
= Fr

√
g′h, (4.2)

where Fr ∼ 1 is a Froude number, and h is the height of the current.



Particulate gravity currents along V-shaped valleys 427

We use an estimate of vs valid for the particle Reynolds number R � 1 and arbi-
trary ϕ. For the former we take an arithmetic average of the values for ln CD given by
Batchelor (1967) for the first- and second-order approximations for the drag CD . For
the latter we note from the results of Segrè et al. (2001) that the theoretical estimates
of the fluctuations in the sedimentation velocity require a factor (1 − ϕ)5. The final
result is

vs =
d2g(ρp/ρa − 1)(1 − ϕ)5

18ν(1 + 3R/32)
. (4.3)

where d is the diameter of a typical particle, ν is the kinematic viscosity coefficient of
the ambient fluid and the particle Reynolds number R is defined by

R =
dvs

ν
. (4.4)

Because vs depends on ϕ it changes during the flow. In our experiments, where
ϕ0 � 0.02 this change is ∼10 % and the effect of the factor (1 − ϕ)5 is small, but in
other experiments with higher values of ϕ it would be essential to include this factor.

In the case of the flat-bottomed tank the fixed volume V of the current is given by

V = hXW, (4.5)

and the longitudinal cross-section A is V/W . Substituting this in (4.1) we obtain

dX

dt
= Fr

√
mḡA

MX
, (4.6)

where ḡ = g(1 − ρa/ρp). If the variation of vs with ϕ is neglected we can find the
variation of m with X by taking the ratio of (4.1) to (4.2) and integrating to get

m = k2
1(X

5/2
RF − X5/2)2, (4.7)

where

k1 =
γ vs

5Fr

(
M

ḡA3

)1/2

, (4.8)

while the run out distance XRF is given by

XRF =

(
L5/2 +

m
1/2
0

k1

)2/5

. (4.9)

If we define a length scale for the flat-bottomed valley by �F = A1/2, and neglect the
contribution from the term L5/2, we can write XRF in the form

XRF = �F

(m0

M

)1/5
(

5Fr

γ

)2/5 (
�F ḡ

v2
s

)1/5

, (4.10)

where it is useful to note that Fr and γ occur in the combination Fr/γ , and the
last factor involves a sedimentation Froude number. In the case of axisymmetric
particulate currents, run out distances were estimated by Dade & Huppert (1995b).

We solve (4.1) and (4.2) numerically using an integrator with errors (δt)3 per time
step. The deposit was calculated in the following way. The bottom of the tank
was divided into strips of width Δx and, at the end of each time step, the total
mass deposited Δm during the time step was assigned equally to each strip k where
1 � k � X/Δx. If mk is the final mass in strip k, the mass per unit area at the position
of the strip is mk/(WΔx).
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Figure 5. The mass/area against distance x along the tank for our experiments 1 and 2
(flat-bottomed tank). The filled triangles are the experimental results and the results of the
box model are shown by the continuous curves. The key parameters associated with these and
all other experiments are in table 1. Here, and in all figures, SI units are used.

4.2. Experiments in the flat-bottomed tank

Figure 5 shows the variation of the mass deposited per unit area with distance along
the flat-bottomed tank (experiments 1 and 2). The symbols show the experimental
results and the continuous curve shows the box model results obtained using γ equal
to 0.7 and 0.5 for experiments 1 and 2, respectively. A characteristic feature of the
experimental mass deposit is the nearly flat profile for a distance of a few lock lengths,
the indication of a peak near x = 0.4 for experiment 1 and near x =1 for experiment
2, followed by a monotonic decrease for both experiments. The deposit predicted by
the box model is significantly higher than the experimental data over the first few
lock lengths.

The run out lengths XRF can be calculated using the following parameters for
experiment 1. These are �F = 0.0798 m and, if the initial value of ϕ is used in the
definition of vs , then ḡ�F /v2

s = 1.72 × 106, giving XRF = 1.55 m. If the factor (1 − ϕ)5

is replaced by 1.0 then ḡ�F /v2
s =1.83 × 106 and XRF = 1.62 m.

For experiment 2 we find �F = 0.122 m and, if the initial value of ϕ is used in the
definition of vs then ḡ�F /v2

s = 2.278 × 106, giving XRF =2.70 m. If the factor (1 − ϕ)5

is replaced by 1.0 then ḡ�F /v2
s = 2.25 × 106, giving XRF = 2.59m. The differences in

XRF produced by including or excluding the initial values of ϕ in the calculation of
vs are small, and typically 4 %. Reference to figure 5 shows that these box model
estimates are satisfactory.

The variation of X with distance x along the tank is shown in figure 6 for
experiments 1 and 2. It can be seen that the results for experiment 2 are in excellent
agreement with the box model whereas those for experiment 1 are less satisfactory.
We note that the results of Bonnecaze et al. (1993) for particles with diameters in the
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Figure 6. The position of the head of the current X against time for a particulate gravity
current flowing over a flat-bottomed valley for experiments 1 and 2. The filled triangles are
the results from our experiments. The continuous curves are the present box model.
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Figure 7. The mass/area against distance x along the flat-bottomed tank for a particulate
gravity current carrying particles of diameter 53 μm. The filled triangles are the experimental
results of Bonnecaze et al. (1993). The black dots are the present box model. The continuous
curve shows the results of a numerical solution by Bonnecaze et al. and the dashed curve
shows the results of an approximate box model due to Dade & Huppert (1995a).

range 23–37 microns show similar discrepancies between model and experiment for
X as a function of distance x along the tank (see their figures 11 and 12).

Figure 7 shows a direct comparison between some experimental data and models
of Bonnecaze et al. (1993) with the above box model within general agreement. This
figure shows that the deposit profile has the characteristic plateau for distances of
several lock lengths after which it falls monotonically to zero as in our experiments.
The figure also shows the theoretical results obtained by Bonnecaze et al. (1993) using
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a two layer model, and the results of Dade & Huppert (1995a) using an approximate
box model. For this case our box model gives a good fit with γ = 0.3. We do not
know why the best fit γ is smaller for this case than in our experiments.

5. V-shaped valleys
In this section we generalize the box model to apply to the V-shaped valley.

Following the discussion in § 4 we expect that the mixing in the case of V-shaped
valleys will be more uniform than for the flat-bottomed valleys and that the box model
assumptions will be more accurate. This is verified by comparison with experiment
as shown below.

5.1. Box model for the V-shaped valley

The box model for a V-shaped valley has the same set of equations as before, except
that the height of the current h is now measured from the bottom of the valley.
Again, the velocity is assumed to be the same across the valley, and the deposit at
any time to be the same across that part of the valley reached by the current. Hence
the assumption of a two-dimensional flow. The change in depth across the valley is
taken care of through the relations between the geometry, the depth of the current
and the volume of the current. When seen from above the box model approximates
the current at any time by a rectangle which becomes longer and narrower as the
flow proceeds. These assumptions have been shown to be satisfactory in the case of
saline currents (Monaghan et al. 2008).

Provided the initial water level is not below the edge of the valley, the volume
V =WL(h0 − a/2) and the longitudinal cross-section A= L(h0 − a/2). When h � a

h =
a

2
+

V

WX
=

a

2
+

A

X
, (5.1)

and when h < a

h =

√
2aV

XW
=

√
2aA

X
. (5.2)

The gravity currents in our experiments are turbulent but, as noted by Martin &
Nokes (1998, 1989), the turbulence becomes negligible close to the boundary because
both the normal and tangential velocities are zero on the boundary. We do not know
if the turbulence has the same energy and spectrum across the valley, nor whether
the sedimentation velocity entering the non-turbulent boundary is necessarily vertical,
nor whether the non-turbulent boundary has the same thickness across the valley. The
simplest assumption is that the direction of vs is vertical and is identical across the
valley. The component of vs perpendicular to the walls of the valley is then vs cos θ

where tan θ = 2a/W , and θ is the angle of the valley side to the horizontal. Provided
h � a, each side of the valley has length s = W/(2 cos θ) and the cross-sectional area
from which mass deposit occurs is 2svs cos θδt . The total cross-sectional area of the
valley is W (h − a/2). The fraction of the mass in the current which is deposited on
the valley in time δt is then given by

|δm|
m

=
Area of deposit

Total area
=

(2svs cos θδt)

W (h − a/2)
, (5.3)

or

|δm|
m

=
vsδt

(h − a/2)
. (5.4)
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Taking account of the sign, and including the factor γ as in (4.1), we obtain the
equation for the mass deposit when h � a

dm

dt
= − γmvs

(h − a/2)
. (5.5)

If h � a we find, following the previous argument, that

dm

dt
= −2γmvs

h
. (5.6)

As before we can determine the variation of m with X by assuming there is no
ϕ variation in vs then taking the ratio of dm/dt and dX/dt and integrating. When
h > a, we find that

dm

dX
= −γ vs

√
M

Fr

√
ḡ

m1/2

(h − a/2)h1/2
, (5.7)

and

h =
a

2
+

A

X
. (5.8)

Substituting for h in terms of X from (5.8), and solving the resulting differential
equation, we obtain

m1/2 = k2

{
q3/2(1 + q)1/2 − 3

8

(
q1/2(1 + q)1/2(1 + 2q) − ln

(
q1/2 +

√
1 + q

))}
+ c,

(5.9)

where c is an arbitrary constant, q = X/Xv , Xv is the value of X when h = a and k2

is given by

k2 =
γ vs

Fr

(
25MA2

ḡa5

)1/2

. (5.10)

The arbitrary constant c is determined by the condition that, when x = L, m is the
initial mass of particles in the current.

When h<a we find that

m = k2
3

(
X

7/4
RV − X7/4

)2

, (5.11)

where XRV is the run out distance and k3 is given by

k3 =
4vsγ

7Fr

(
M2/3

2aAḡ2/3

)3/4

. (5.12)

Accordingly, if the flow is entirely in the valley then

XRV =

(
L7/4 +

m
1/2
0

k3

)4/7

. (5.13)

If the term involving L is neglected, and a length scale defined by �V = (2aA)1/3, then
we can write XRV in the form

XRV = �V

(
7Fr

4γ

)4/7 (m0

M

)2/7
(

ḡ�V

v2
s

)2/7

, (5.14)

where, as in the case for the flat-bottomed valley, the last factor is a Froude number
involving vs though this time with a different length scale. As in the case of flat-
bottomed tanks the parameters Fr and γ occur in the combination Fr/γ .
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Using (4.10) and (5.14), we can compare the run out length between currents in a
flat-bottomed tank and currents in a V-shaped valleys for similar initial conditions.
An example relevant to the present experiments is to assume the current in the
V-shaped valley is always in the valley and extends to upper edge of the valley (as
for experiment 3). If we assume that, in both cases, the initial volume of the current
V , the initial width W and the length the lock L are the same, V = 1/2aWL with

�v = (2aA)1/3 =

(
4V 2

W 2L

)1/3

, (5.15)

and

�F = (V/W )1/2. (5.16)

The ratio of run out length for the V-shaped valley XRV to that for the flat-bottomed
tank XRF is then given by

XRV

XRF

=

(
720

514210

)1/35 (
ḡm0

Mv2
s

)3/35 (
Fr

γ

)6/35
(

1

L15

(
V

W

)9
)1/35

. (5.17)

It can be seen that, for the above conditions, the ratio of runout distances for the
V-shaped and flat-bottomed valleys increases as V/W increases, but decreases as the
lock length L increases. The ratio also increases as the initial effective gravity ḡm0/M

increases, and decreases as the sedimentation velocity vs increases as it would do for
coarser particulate matter. The initial velocity of the current is larger in the case of
the V-shaped valley because, for the same V and maximum width W , the height of
the fluid h is less for the flat-bottomed tank. For the above conditions, the initial
height of the fluid in the flat-bottomed tank is half the initial height of the fluid in
the V-shaped valley.

In practice we find it more convenient to determine m as a function of x by
integrating the original differential equations giving m and X as functions of t rather
than use the previous algebraic expressions, though they provide convenient checks of
the numerical algorithm. As before, the equations were integrated using a mid-point
predictor–corrector algorithm with errors per time step O(δt3). The results to be
described use a Froude number Fr of 1.0 and the values of γ given in table 1 (see the
Appendix for further discussion of the sensitivity of the results to the values of γ and
Fr ). The deposit was calculated by first dividing the valley into strips (perpendicular
to the line of the bottom of the valley) and the strips into slices. At any time the
mass deposited was divided equally amongst the slices which the current could reach.
Initially the current occupies the entire width of the valley and can deposit onto all
the slices of those strips reached by the head of the current. Eventually the current
is confined entirely to the valley and the more extended the current the narrower it
must be. The deposit then extends a decreasing distance up the sides of the valleys.
The result is that the deposit is concentrated in the central regions of the valley.

5.2. Experiments in the V-shaped valley

Figure 8 shows the variation of the position of the head of the current against time
for experiments 3 and 4. The box model results are shown by a continuous curve,
and the experimental results are shown by filled triangles. The agreement is good.
Figure 9 shows the experimental and theoretical results for the mass deposited per
unit area as a function of distance x along the tank. The agreement between theory
and experiment is much better in this case than for the flat-bottomed tank. Note the
difference in profile between that in figure 9 and those in figure 5 (flat bottom). In
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Figure 8. The position of the head of the current flowing along the V-shaped valley against
time for our experiments 3 and 4. The experimental results are shown by filled triangles and
the box model results by a continuous curve.
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Figure 9. The mass deposit/area against distance x for flow along the V-shaped valley for
experiments 3 and 4. The experimental results are shown by filled triangles and the box model
by the continuous curves. The agreement between theory and experiment is much better for
the V-shaped valley than for the flat-bottomed tank.
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Figure 10. The position of the head of the current flowing along the V-shaped valley against
time for our experiments 7 and 8. The experimental results are shown by filled triangles and
the box model results by a continuous curve.

particular the absence in the figure of the flattened region for small x and the slight
peak evident in the results for the flat-bottomed tank in figures 5.

The run out distance for experiment 3 calculated using the parameters
�V =0.0827 m, with the initial value of ϕ is included in the definition of vs is
XRV = 3.37 m. If the factor (1−ϕ)5 in vs is replaced by 1.0 we find XRV = 3.18m. This
result is in good agreement with the results for experiment 3 shown in figure 9. The
ratio XRV /XRF estimated using (5.15) is 2.60, which shows that the run out distance
is greatly extended by the V-shaped valley compared to that for a current of the same
initial volume flowing along a flat bottom. The formula for XRV cannot be applied
to experiment 4 because in that experiment h0 >a.

The results for experiments 5 and 6 are similar to those shown for experiments
3 and 4. These experiments (3–6) all have g′

0 ∼ 0.45 and h0 values which result in
the current being entirely within the V-shaped valley either at the start or after the
current length is approximately two lock lengths.

Figure 10 shows time variation of the head of the current for both experiments
and box models for experiments 7 and 8. These experiments have lower g′

0 than
experiments 3–6, namely 0.23 compared to 0.45, and the lock aspect ratios differ by
a factor of 2. The results for the box model use γ = 0.5 for experiment 7 and γ = 0.7
for experiment 8. The agreement between the experiments and the box model is very
good.

Figure 11 shows the mass deposit profile for the two experiments. The agreement
with experiment is good though the results for experiment 7 are significantly higher
than those for the experiment within the first few lock lengths. Experiment 7 has
the higher lock aspect ratio and the results suggest that the lock aspect ratio affects
particulate gravity currents as it does for saline gravity currents. In this case the
V-shaped valley is initially only a small perturbation to the flow. Over the first few
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Figure 11. The mass deposit/area against distance x for flow along the V-shaped valley for
experiments 7 and 8. The experimental results are shown by filled triangles and the box model
by the continuous curves. Note that the lock aspect ratio of experiment 7 is twice that of
experiment 8.

lock lengths the flow is therefore similar to the flat-bottomed gravity current with its
generic flattened deposit profile. Experiments 9 and 10 involve an effective gravity
which is less than half that in the other experiments and experiment 9 has the same
lock aspect ratio as experiment 7. We noticed from the movies of the experiment that,
immediately after the lock gate was lifted, the particulate current produced slowly
moving eddies from the surface to the bottom of the valley. This continued for a
few lock lengths after which the normal gravity current developed. This behaviour
was most conspicuous for experiment 9 which has the largest aspect ratio. After this
initial period a gravity current similar to those in the previous experiments developed.

Figure 12 shows the run of X against t for these two experiments. The agreement
between the box model results and those from the experiments is reasonable but not
as good as those from experiments 3–8. Figure 13 shows the mass deposit/area for
experiments 9–10. The agreement between experiment and box model for experiment
10 is excellent. The agreement for experiment 9 is less satisfactory and this may be
due to its higher lock aspect ratio.

The difference in the deposit across the valley is shown by figures 14 and 15. There
is a factor 4–5 difference in the magnitude of the mass per unit area in the centre
region and on the flanks of the valley. This variation is quite different to that in
a flat-bottomed tank whose deposits are uniform across the bottom. To determine
if the greater deposit in the central region was due to particles sliding or rolling
down the slope under gravity we performed simple experiments where a small amount
of the SiC particles used in the experiments were released without and under water
to sediment in the V-shaped valley. Once they were on the slope they showed no
sign of moving down to the bottom of the valley even when subject to a disturbance.
The simplest explanation of the deposit pattern is that, as the current extends down
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Figure 12. The position of the head of the current flowing along the V-shaped valley against
time for our experiments 9 and 10. The experimental results are shown by filled triangles and
the box model results by a continuous curve.
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Figure 13. The mass deposit/area against distance x for flow along the V-shaped valley for
experiments 9 and 10. The experimental results are shown by filled triangles and the box model
by the continuous curves. The lock aspect ratio of experiment 9 is twice that of experiment 10.

the valley, it narrows, and is eventually unable to deposit outside the central region.
This assumption is implicit in our box model calculations. Furthermore, despite the
fact that the box model can only be a very crude model of the complex processes
occurring in these experiments, it provides an excellent description of the variation in
the deposit across the valley.
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Figure 14. The mass deposit/area against distance for flow along the V-shaped valley for
experiment 3. Strips were cut into three slices consisting of two symmetric flank sub-strips,
each of length 12.6 cm, and a central sub-strip, of length 6 cm (see figure 1). The experimental
results are shown by filled triangles and the continuous and dashed curves are the mass/area
predicted by the box model. The upper curve shows the results for the central region and
the lower shows the results for the flanks. The experimental results for either flank are nearly
identical.
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Figure 15. The mass deposit/area against distance for flow along the V-shaped valley for
experiment 5. The symbols have the same meaning as in figure 14.
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6. Discussion and conclusions
The results of this paper show that the presence of the V-shaped valley causes

significant changes to the deposit pattern compared with a flat-bottomed tank for
constant volume particulate gravity currents. In the V-shaped-valley experiments
with lock aspect ratios ∼1, the deposit monotonically decreases whereas, for the
flat-bottomed tank, the deposit for x < 1 m is either flattened or shows a peak. The
V-shaped-valley experiments 7 and 9, which have a high lock aspect ratio ∼2, and
initial height of the current a factor ∼4 times the depth of the valley have mass
deposit profiles similar to that for the flat-bottomed tanks. We believe that this is due
to the V-shaped valley having less influence on the deposit over the first few lock
lengths of the flow when the height of the current is significantly greater than the
depth of the valley.

Our experiments show that the mass/area deposit in the central part of the V-
shaped valley (taken as that area within a strip of 7.6 cm length centred on the bottom
of the valley) is considerably greater than that on either of the flanks of the valley.
This appears to be largely due to the fact that, as the current extends down the valley,
it narrows and is eventually unable to deposit outside the central region.

We have generalized the deposit equation of Martin and Nokes and used it with
a box model to predict the speed of the front, the mass deposited along the valley
and the difference between the deposits in the central regions and the flanks of the
valley. For all these cases the box model gives predictions in very good agreement
with experiments. The agreement is better in the case of the V-shaped valley than for
the flat-bottomed tank. Our results show that the factor used in the deposition rate
equation which is commonly assumed to be 1 should be smaller, typically 0.7.

In addition to the changes in the deposit pattern produced by the V-shaped valley
there are other changes to the flow. The first of these changes is the shape of the
front when seen from above. When it is straight for the flat-bottomed valley, it is
parabolic for the V-shaped valley. This feature had also been found for saline gravity
currents in a V-shaped valley (Monaghan et al. 2008). Associated with this is the
obvious, but important, fact that the current becomes narrower as it extends further
down the V-shaped valley. By contrast, in a flat-bottomed tank, the current always
extends from one side of the tank to the other. The run out distance of the current in
the case of the V-shaped valley also differs from that in the flat-bottomed valley. In
the simple case of two particulate currents of equal volume, and equal initial upper
surface width and for a V-shaped-valley current entirely in the V-shaped valley, we
have derived the ratio of the run out distance in a V-shaped valley by the one in
a flat-bottomed valley. Applied to our experiment 3, we predict that the V-shaped
valley run out distance is a factor 2.60 greater than that in the flat-bottomed valley.

There are numerous questions which remain to be answered. For example, it would
be interesting to study gravity currents where the faceted SiC particles are replaced by
nearly spherical glass beads which we expect to move down the sides of the valley more
freely than SiC particles. A related question is how the dynamics of a gravity current,
and the deposit from it, changes when the current contains particles of different sizes
with very different sedimentation velocities. An important generalization is to the
case where there are a small number of much larger particles since this configuration
mimics pyroclastic or turbidity currents with accessory lithics (larger rocks and
boulders). These processes are currently being studied in our laboratory.
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Appendix. Sensitivity of the Froude number Fr and the sedimentation
parameter γ in the box model

In this paper the Froude number Fr was set at 1.0, and we found that a good
fit to six of the eight V-shaped-valley experiments was achieved with sedimentation
parameter γ = 0.7. The exception was experiment 7 where we used γ = 0.5. No
attempt was made to find the best choice of parameters for each experiment because
the agreement between the model and the experimental results was already reasonably
good.

To show the insensitivity of our results to the values of Fr and γ we ran calculations
in which we varied Fr by ± 10 %, and γ by ± 14 %. The effect of varying Fr and
γ on the box model mass deposition occurs through the ratio Fr/γ which, in the
flat-bottomed valley, occurs as a factor (Fr/γ )2/5 in XRF . Changes of 25 % in this ratio
therefore result in changes to XRF of ∼10 %. The estimate of XRV for the V-shaped
valley when h0 � a involves the factor (Fr/γ )4/7 in XRV . In this case, changes of 25 %
in this ratio therefore result in changes to XRV of ∼14 %.

The variation of the X, t curve with changes in Fr and γ is more complicated
though we expect it will be dominated by the factor Fr in (4.2). The complication
comes about because the mass deposit depends on γ and this affects g′. To estimate
the sensitivity of the X, t curve to these changes we ran box model calculations for
experiment 5. These included a set with Fr = 1 and γ = 0, 0.7, 0.8, and a set with
γ = 0.7 and Fr =0.9, 1.0, 1.1.

The results are shown in figure 16 where it is clear that the changes to the X, t

curves are small when Fr is fixed and t � 40 s, but steadily increase until they reach
∼10 % at t ∼ 90 s. When γ is fixed and Fr changed there is a noticeable deviation
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between the curves for t � 15 s. This fractional deviation is approximately equal to
the fractional change in Fr .
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