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a b s t r a c t

The motion of saline gravity currents propagating horizontally in a tank of rectangular upper cross
section and lower V-shaped valley is investigated both by lock-exchange experiments and a box model.
The experiments were performed for equal depths of heavy and light fluid on both sides of the lock gate.
The density ratio of the heavy fluid to the light fluid was in the range 1.04–1.13 and the lock height to
length aspect ratios ranged from 0.5 to 1.6. We show that a box model with the Froude number of the
head defined using the distance from the top of the current to the bottom of the valley predicts the
position of the head in close agreement with the experiments. The presence of the valley results in three
major differences in the gravity current compared to that flowing along a flat bottom. These are (a) the
front of the current is approximately parabolic with radius of curvature proportional to the initial depth
of the current, (b) for sufficiently large time t, the velocity of the current in the V-shaped valley varies as
t�1/5 compared to t�1/3 in the flat bottom case, and (c) the width of the current in the V-shaped valley
decreases with time t according to t�2/5. Based on the box model, we predict that the steeper the flanks of
the valley the faster the flow.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Gravity currents are flows driven by a difference in density
between the current and the ambient fluid into which it penetrates.
They are widespread in nature (Simpson [1]). Gravity currents are
affected by the bottom topography over which they flow, the
entrainment of the ambient fluid and, in many cases, the particulate
matter they carry. A comprehensive review and book by Simpson
[1,2] describes much of the early work on gravity currents.

While most effort has been directed towards investigating such
flows in flat-bottomed rectangular tanks, usually with homoge-
neous ambient fluids which are either initially at rest, or with
a simple prescribed motion, there have been studies of gravity
currents in other geometries. First constant volume gravity currents
propagating at high Reynolds numbers down planar slopes (ramps)
into a homogeneous fluid have been studied (see Ellison and Turner
[3], Britter and Linden [4], Beghin et al. [5], Webber et al. [6]). These
flows have shown characteristic differences from the horizontal
gravity currents along flat-bottomed tanks both in the speed and
form of the current (see for example the shadow photographs in
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Britter and Linden [4]). If the ramp flow is into a fluid stratified into
two layers the complex phenomena that arise depend on the
relative density of the current and the layers and depth of the layers
(Monaghan et al. [7]). Waves may be generated [8] and the current
can fill the upper layer, thereby making it continuously stratified,
while not penetrating the lower layer (Wells and Wettlaufer [9]). In
addition to studies of flows along planar surfaces horizontal or at an
angle, Ross et al. [10] combined experiment and numerical simu-
lations of the shallow water equations to study flows along cones
(slope< 5�) as a model of flow down a hill.

Flows of a single fluid along open channels of various shapes
including in the shape of a V have commonly been reported in the
hydraulics literature (see for example, [11]). Typically flows along
these channels are considered to be fed by a constant flux, or
discharge, rather than being that of a constant volume gravity
current. For example, Antenucci et al. [12] have studied a constant
flux flow along a V-shaped channel into a reservoir to model the
spread of pathogens and constant flux currents along sinuous
channels have been investigated using saline currents to model
turbidity currents [13,14]. In addition, experiments relevant to
oceanographic problems [15–18] make use of constant flux flows
down channels and canyons in a rotating fluid system.

In this paper we consider gravity currents of both constant
volume and high Reynolds numbers which flow along a tank which
is a more realistic model of the valleys that occur in nature. This
tank has a bottom that has the shape of a V and, above this valley,
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Fig. 1. Geometry of the V-shaped valley tank.
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has vertical side walls. As far as we are aware, there have been no
studies of such gravity currents in a tank of the type we consider.
We examine a series of 11 laboratory experiments involving
turbulent currents with Reynolds numbers greater than 10,000.
This study thus differs from those of Takagi and Huppert [19,20],
which have studied flows along tanks of cross section in the shape
of a V and more general shapes, but at low Reynolds numbers. In
particular, in most of our experiments, the gravity currents undergo
a transition from being above the V-shaped valley to being entirely
within it.

One alternative to laboratory experiments is to accurately simu-
late the flows. The most accurate numerical simulation of our gravity
current experiments would require a direct integration of the Navier
Stokes equations. As the Reynolds dissipation length is Dx¼ L(Re)�3/4,
where L is a typical macroscopic scale of the flow, we can estimate
that, for the problems we consider here, where the typical Reynolds
number Re at the end of the experiments is 6000, Dx z L/600. This
means that, disregarding details of the geometry of our tank, a direct
numerical solution would require at least L3 w 2�108Dx3 cells to
represent the domain. This estimate is greater than that used in the
recent high resolution simulations of gravity currents in a flat-
bottomed tank by Cantero et al. [21]. Note that an alternative to the
direct numerical simulation would be to use a Large Eddy Simulation,
or a model of the sub-grid dynamics. However, these would require
elaborate testing for the specific geometry of our tank, in addition to
very substantial computing resources.

The alternative we consider here is to explore approximate
models which we justify a posteriori by their ability to predict the
results of our experiments. The simplest of such models is a box
model, which, in particular, does not explicitly take into account
turbulence. This model cannot predict the details of the velocity
field nor the waves at the interface between the current and the
ambient fluid, but it can predict the speed and position of the head
of the current. To characterize the speed of the current, we use
a Froude number Fr ¼ U=

ffiffiffiffiffiffiffi
g0h

p
, where U is the current speed, g0 is

the reduced gravity and h is the depth of the current. This Froude
number differs from the Froude number based on wave propaga-
tion in a fluid along a channel [11,22]. Different Froude conditions
[23–27] have previously been proposed from theory and shown, in
particular, to depend on the depth of the current relative to the total
depth of the flow. For instance, von Kármán [23] was the first to
show that Fr ¼

ffiffiffi
2
p

for a deeply submerged heavy fluid flowing into
a semi-infinite lighter fluid, while Benjamin [24] showed that when
the current occupied one-half the depth Fr¼ 0.5. Shin et al. [26]
recently predicted that in a deep ambient fluid the Froude number
is one. Based on lock-exchange experiments, Huppert and Simpson
[25] reported a fit of their experiments in a rectangular tank with
the empirical relation, Fr¼ 1.19 for h/H less than or equal to 0.075
and Fr¼ 0.5(h/H)1/3 for h/H greater than 0.075, where h was the
height of the current measured behind the head. This depth ratio
dependence of the Froude number is much less for currents fed by
a constant flux compared to fixed-volume currents released from
a lock. The Froude number is then closer to

ffiffiffi
2
p

(See [1], Fig. 12.13).
It is beyond the scope of this paper to study in detail the Froude
condition for currents flowing in a rectangular tank with a
V-shaped bottom. However we will show that a Froude number of
1 gives a good fit to our experiments.

In this paper, we first consider a similarity model for flow in
a tank which has a cross section similar to our V-shaped valley.
When this solution is compared with a box model we find the
two approaches agree with errors of a few percent. We then work
out the more general box model appropriate to our experiments
and compare the results with the results of the experiments. The
agreement is generally very good except for one experiment for
which we will show that viscous effects became significant.
2. Laboratory experiments

2.1. Experimental setup and procedure

Fig. 1 shows the polycarbonate tank with its V-shaped bottom.
The dimensions of the tank are inside width W¼ 0.28 m with
vertical wall 0.40 m high and has a total length 5 m. The depth of
the valley a measured vertically from the lowest point to the
bottom of the vertical walls is 0.065 m. The slope of the valley is 25�

to the horizontal. A lock gate is used to isolate a lock from the rest of
the tank at a fixed distance L¼ 0.13 m from one end of the tank.

The tank was initially filled with fresh water while the lock was
filled with a more dense fluid, in this case an aqueous saline solu-
tion. Both the tank and the lock were filled to a fixed depth H0

measured from the water surface to the top edge of the valley (see
Fig. 1). The saline fluid in the lock was dyed to visualize the currents
on videos. Each experiment was initiated by rapidly lifting the gate.

The currents were filmed against a background grid of squares
to determine the speed of the current from video films, as seen
clearly in Fig. 2. The squares have side length 2.5 cm. The video film
generates a frame every 0.04 s, which is sufficiently accurate for
these experiments where the typical time for the current to reach
2 m is 7 s. A mirror was placed above the tank at a 45� angle to
enable the current to be filmed from above at the same time as it
was filmed from the side. Because the fluid in the V-shaped valley is
at an angle to the line of sight of the camera, images of the current
seen from the side can appear distorted when they are below the
edge of the valley. However, images taken from above, which
provide the data we discuss in this paper, are unaffected by the
distortion. Table 1 gives the parameters of the experiments.

Eleven experiments (see Table 1) were performed. In the first
nine experiments, saline solutions of densities rc¼ 1040, 1080, and
1130 kg/m3 were released into ambient fresh water of density
ra¼ 1000 kg/m3 at successive heights H0¼ 0.145, 0.065 and 0 m.
The density ratios defined by the ratio of the heavy fluid over the
light fluid were thus in the range 1.04–1.13. In experiments 10 and
11, the saline solutions had a fixed density of rc¼ 1080 kg/m3 and
H0 was respectively 0 and 0.035 m. The Reynolds number of each
current, which estimate is based on H0, are high (see Table 1) and
indicates the currents were turbulent. In experiments 1–9, the front
of the currents was measured over a distance of 2 m from the video
films. In experiments 10 and 11 the position of the front
was measured over 2 m from the video film and beyond
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Fig. 2. The water from the lock shown red exiting into an empty tank. The initial depth
of water above the valley was H0¼ 0.145 m, corresponding to a Reynolds number

Re0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðH0 þ aÞ3=n2

q
¼ 3� 105. Note the head and neck as seen in the 45� mirror in

the upper part and the side view of the rounded head, part of which can be seen in the

lower part of the photograph rising above the edge of the valley. The valley is covered

to prevent unwanted shadows.
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Fig. 3. The gravity current in experiment 3 (see Table 1) seen from above and from the
side for the case. Note the rounded shape of the head, the ripples due to waves running
from the head to the sides, and the disordered state of the top of the current seen from
the side in the lower part of the figure. The current is thinner at the sides because of
the valley.
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(up to a distance of 5 m) by recording the time the front reached
specified positions in the tank.

2.2. Flow regimes

2.2.1. Flow with no ambient fluid
Before describing the experiments it is interesting to show the

flow of water from the lock into air and compare it to flow from
a lock when the bottom is flat. In the latter case (often called a dam
break), the fluid flows out as a nearly two dimensional flow with
a rippled, but essentially straight front perpendicular to the flow
direction and height which gradually increases towards the lock
[28]. By contrast the flow in the V-shaped valley has a great deal of
structure, as shown in Fig. 2. The fluid emerges and forms a front
which is close to triangular with stream lines directed inwards
towards the lowest point of the valley. This quickly evolves to form
a more complex shape which, seen from above, has a neck and
a rounded head. The valley thus has a profound effect on the flow.
Table 1
Experimental and scaling parameters. Dr/ra is the ratio of the density difference
between the gravity currents rc and ambient fluid ra relative to ra. [ and s are
respectively the length and time scales defined for the box model of Section 4. The

initial Reynolds number Re0 is estimated by using Re0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðH0 þ aÞ3=n2

q
, where n

is the kinematic viscosity of water. Towards the end of the experiments the Reynolds

number Re is calculated as _Xh=n, where _X is the velocity of the head of the current
estimated over the last half of each experiment and the depth of current h at the final
position of the head in Figs. 5–9. The long run experiments 10 and 11 have small
Reynolds numbers at the end of the run.

Exp. H0 Dr/ra [ s Re0
_X Re

1 0.145 0.04 0.71 6.3 60,283 0.17 7600
2 0.145 0.08 0.71 4.5 85,253 0.24 10,000
3 0.145 0.13 0.71 3.5 108,676 0.30 13,000
4 0.065 0.04 0.39 3.5 29,362 0.14 4900
5 0.065 0.08 0.39 2.4 41,523 0.19 6700
6 0.065 0.13 0.39 1.9 52,932 0.25 8800
7 0.000 0.04 0.13 1.2 10,380 0.09 2000
8 0.000 0.08 0.13 0.81 14,680 0.12 2400
9 0.000 0.13 0.13 0.64 18,714 0.17 3400
10 0.000 0.08 0.13 0.81 14,680 0.12 w 1
11 0.035 0.08 0.27 1.69 28,014 0.19 w 1
2.2.2. Flow with ambient fluid
Fig. 3 shows a typical current seen from above for the case where

H0¼ 0.145 m. The points to note are: first the curved head; second
the ripples around the side of the head (presumably Kelvin Helm-
holtz instabilities); and third the fact that the current is thinner on
the sides of the valley (shown by the lighter shade of red). The lower
part of the figure shows the disorder of the top of the current and the
absence of a dominant head when seen from the side.

Fig. 4 shows a typical current from above for the case where
H0¼ 0 m so that the initial surface of the fluid is leveled with the
edge of the valley and subsequently remains within it. The head is
curved as before, but the radius of curvature is smaller than in
Fig. 4. Waves ripple the side of the head as in the previous case, but
the wavelength is less.

2.2.3. Parabolic front of the currents
Both for currents flowing at all times within the valley, as shown

in Fig. 5, and for currents flowing initially above the valley and then
Top View

Side View

Edge of the valley & Height of water

Bottom of the valley

Fig. 4. The gravity current in experiment 8 (see Table 1) seen from above for the case.
Note that the head is smaller than in the previous figure, and the radius of curvature of
the head is correspondingly smaller.



Fig. 5. The gravity current of experiment 8 seen from above at t¼ 2.56 (top frame a),
4.92 (middle frame b) and 6.96 s (bottom frame c) after the opening of the lock gate.
The white lines show the boundaries of the box model.
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entirely within the valley, as shown in Fig. 6, the shape of the fronts
appears to be parabolic. As H0 is reduced, the radius of curvature R
of the head decreases. R can be estimated using Newton’s method
which is based on the fact that R is the radius of curvature of a circle
which can be fitted with the profile of the current in the neigh-
borhood of that part of the head which is furtherest along the tank.
We define this circle by (x0 � R)2þ y02¼ R2, where (x0, y0) defines
a system of local coordinates whose origin is the point of the
current at the furthest distance from the lock. x0 is measured from
the vertex towards the lock, and y0 is measured from the centerline
to the edge of the current. For x0 � R, the equation of the circle can
be approximated to give R¼ (y0)2/(2x0). By measuring a set of (x0, y0)
on the edge of the current in the neighborhood of its head R can be
estimated. In practice this procedure is complicated because of the
ripples around the head. For this reason two of us independently
measured the values of x0, y0 and the average was used. The
Fig. 6. The gravity current of experiment 5 seen from above at t¼ 2.24 (top frame a),
3.76 (middle frame b) and 5.60 s (bottom frame c) after the opening of the lock gate.
The white lines show the boundaries of the box model.
measurements were repeated for different flow times for each
gravity current.

Consistent with dimensional analysis, R was found to have the
following linear variation with initial fluid height above the bottom
of the valley

R ¼ bðH0 þ aÞ; (1)

where b¼ 0.23� 0.03. This estimate is only approximate because
the surface of the head is rippled. Remarkably, for all the currents
we studied, the radius of curvature remains nearly constant as
shown by Figs. 5 and 6.

3. Analytic solutions for gravity currents flowing entirely
within a valley

In this section we consider a similarity model for a flow within
a V-shaped valley. When this solution is compared with the one of
a box model based on the geometry, we show that the two
approaches estimate a speed of the front of the current which differ
by at most a few percent.

3.1. Similarity solution

Here we present a similarity solution for the case of a gravity
current flowing along a tank with width w defined by

w ¼ Wðz=DÞa; (2)

where a� 0 is a constant, the height z is measured from the bottom
of the valley and D is the length scale for the depth of the valley. It is
assumed that there is no mixing between the gravity current and
the ambient fluid.

The derivation of the similarity solution follows a standard
procedure [29] for which we give the main steps.

We define the similarity variable h¼ x/X, where X(t) is the
length of the current. The height and velocity of the current are
defined by

hðx; tÞ ¼ hf ðtÞHðhÞwith Hð1Þ ¼ 1;

uðx; tÞ ¼ uf ðtÞUðhÞwith Uð1Þ ¼ 1:

The cross-sectional area can be written

A ¼
Zh

0

wdz ¼ Bhaþ1; (3)

where B¼W/(Da(aþ 1)), and the volume of the current V is
given by

V ¼
ZX

0

Adx ¼ Bhaþ1
f X

Z1

0

HðhÞaþ1dh: (4)

Assuming that the volume of the current is constant, we deduce
that Xhaþ1

f is constant. Substituting these expressions into the
continuity equation

vA
vt
þ v

vx
ðuAÞ ¼ 0; (5)

gives a non trivial solution U(h)¼ h.
The momentum equation takes the form

vu
vt
þ u

vu
vx
þ g0

vh
vx
¼ 0; (6)
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Fig. 8. The non-dimensional position of the head of the gravity current against non-
dimensional time for the case where H0¼ 0.065 m. The experimental results for the
density ratios of 1.04, 1.08, and 1.13 are shown by the large open circles, the filled
squares, and stars respectively. The box models use Fr¼ 0.9 and Fr*¼ 1.1. The contin-
uous line shows the results from the box model using h with Fr¼ 1.0. The small open
circles show the results using h with Fr*¼ 1.0. The agreement between the experi-
mental results and the box model using h is very good.
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where g0 is the effective gravity defined by g0 ¼ gjrc� raj/ra.
Substituting the previous expressions into the momentum equa-
tion, and using the Froude number condition at the front of the
current

dX
dt
¼ Fr

ffiffiffiffiffiffiffiffiffi
g0hf

q
; (7)

where the Froude number Fr is assumed to be constant, we find

HðhÞ ¼ 1�
Fr2
�
1� h2

�
4ðaþ 1Þ ; (8)

which, when a¼ 0, agrees with equation (14) of [30], if account is
taken of their scaling which introduces a factor 1/Fr2. We note that
the gravity current Froude condition of Eq. (7) has to be distin-
guished from the ratio of the gravity-current front speed to the
linear long-wave speed defined by Fr¼U/c, where c is the long-
wave speed (for further discussion, see [22]).

With H a known function of h, we can substitute into Eq. (4) to
get hf in terms of X and other constant quantities. In general the
integration requires numerical methods, but in the case where
a¼ 1, we find

V ¼ BXh2
f

 
1� Fr2

6
þ Fr4

120

!
; (9)

and B¼W/2D. Hence, by integrating Eq. (7), we get

XðtÞ5=4¼ Xð0Þ5=4þt
�

5Fr
4

� 
2g02VD

W
�
1� Fr2=6þ Fr4=120

�
!1=4

;

(10)

where X(0) is the initial value of X. In our experiments, Fr w 1 as
shown in Figs. 7, 8 and 9. We can thus approximate the term
involving Fr in the denominator by 1. If t is sufficiently small we can
approximate Eq. (10) by

XðtÞzXð0Þ þ tFr

Xð0Þ5=4

�
2g02VD

W

�1
4
; (11)
0 0.5 1
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Fig. 7. The non-dimensional position of the head of the gravity current against non-
dimensional time for the case where H0¼ 0.145 m. The experimental results for the
density ratios of 1.04, 1.08, and 1.13 are shown by the large open circles, the filled
squares, and stars respectively. The experimental results for density ratios 1.04 and
1.08 are close both to each other and a straight line. The continuous line shows the
results from the box model using h with Fr¼ 1.0. The small open circles show the
results using h with Fr*¼ 1.0.
and when t is sufficiently large the X(0) term can be ignored in (10)
giving

XðtÞz
�

5Fr
4

�4=5�2g02VD
W

�1
5
t4=5: (12)

We note that we do not expect the similarity solution Eq. (11) to
hold for short times.

An obvious but significant feature of the flow along the valley is
that the current narrows with time. When a¼ 1, the width of the
current w can be estimated from hf noting that 1/2whfX(t)¼ V
which, combined with the expression for B given after Eq. (9) gives

w ¼
ffiffiffiffiffiffiffiffiffiffiffi
2VW
DX

r  
1� Fr2

6
þ Fr4

120

!1=2

f
1

t2=5
: (13)

This time dependency of the width with time is in close agreement
with the experiments. For example, the width of the boxes calcu-
lated with the box model in the three frames of Fig. 6 are 23.6 cm,
19.4 cm and 16.6 cm at times 2.32, 3.84 and 5.68 s respectively. If
0 2 4 6 8
0

5

10

y

Fig. 9. The non-dimensional position of the head of the gravity current against non-
dimensional time for the case where H0¼ 0 m. The notation is the same as in Figs. 7
and 8. The agreement between the experimental results and those from the box model
using h is very good. The box model using h gives less satisfactory results. The box
models use Fr¼ 0.9 and Fr*¼ 1.4.
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we use the width w¼ 21.6 cm at time 2.32 s and Eq. (13) to
extrapolate the widths at time 3.84 s and 5.68 s, we get the corre-
sponding widths of 19.3 cm and 16.5 cm.

If we compare with a flow within a channel of rectangular cross
section with width W and the same volume V of fluid, the similarity
solution is

XðtÞ3=2¼ Xð0Þ3=2þt
�

3Fr
2

� 
g0V

W
�
1� Fr2=6

�
!1=2

; (14)

and for sufficiently large t, and Fr w 1

XðtÞz
�

3Fr
2

�2=3�g0V
W

�1
3

t2=3: (15)

The difference between the solutions for flow along a tank with
V-shaped or rectangular cross section is that the power of t is 4/5 in
the first case and 2/3 in the second so the current in the V-shaped
valley travels faster than in the rectangular valley of the same width
for sufficiently large t.

3.2. A box model

The above similarity solution for the particulate shape given by
Eq. (2) can be compared with the solution from a box model. Box
models are based on a description of the flow, in which the prop-
erties of the current are assumed to be horizontally uniform. This
implies that (1) the current has a uniform height and width and (2)
the current is well mixed within its interior and there is negligible
mixing between the current and the ambient fluid. The first
assumption is equivalent to using the approximation H(h)¼ 1 for all
h which, as seen from Eq. (8), is in error by w10% when a w 1. The
second assumption is that mixing with the ambient fluid can be
neglected, as in the case of the similarity solution discussed above.
This assumption implies that V is constant. These assumptions will
a posteriori be justified by the agreement with the experiments.

The Froude condition is given by

dX
dt
¼ Fr

ffiffiffiffiffiffiffi
g0h

p
: (16)

For the case a¼ 1, h can be written in terms of X using V¼ BXh2. If
this is substituted into Eq. (16), and the resulting equation integrated,
we recover Eq. (10), with the factor (1� Fr2/6þ Fr4/120) replaced by 1.

Therefore, for a gravity current flowing entirely within a
V-shaped valley, the box model predicts the position of the head in
close agreement to the similarity solution. In our experiments, the
cross section of the valley is not of the form given by Eq. (2). The
current can be initially in contact with the vertical walls then
eventually flows within the V-shaped valley. This transition intro-
duces another length scale which greatly complicates any useful
approximate solution other than the box model.

4. Numerical simulations of the experiments based
on a box model

Having established that the box model is a priori a reasonable
approach in the case of a flow within only a V-shaped valley, we present
in this section the more general box model appropriate to our experi-
ments and compare the results with the results of the experiments. We
show that the box model can be justified a posteriori by its good
agreement with the experimental results except for one experiment for
which we will show that viscous effects became significant.

We consider two choices for the characteristic length scale used
in the equation for dX/dt. The natural choice is to use h(t), the depth
of the fluid, but we also consider a second possibility with the
average height h, defined by V ¼ WXh. We note that we could have
chosen the hydraulic depth hd¼ A/(vA/vh)¼ A(h)/B(h), which is
related to h by hd¼ h� a/2 when h> a and hd¼ h/2 when h< a.
Referring to Fig. 1

V ¼ LW
�

H0 þ
1
2

a
�
: (17)

During the flow the total volume is conserved and, when h> a it
can be written

V ¼ XW
�

h� 1
2

a
�
; (18)

and when h< a it can be written

V ¼ Xh2W
2a

: (19)

We first consider the case where h> a. From Eq. (18)

h ¼ 1
2

aþ V
XW

: (20)

Accordingly, while h� a, the equation of motion for X is

dX
dt
¼ Fr

�
g0
�

1
2

aþ V
XW

��1=2

: (21)

Using non-dimensional variables y¼ X/[ and s¼ t/s where

[ ¼
�

2V
aW

�
; s ¼ [

Fr

ffiffiffiffiffiffiffi
2

g0a

s
; (22)

Eq. (21) becomes

dy
ds
¼
�

1þ 1
y

�1=2

; (23)

which analytic solution is

y1=2ð1þ yÞ1=2�ln
	

y1=2 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p 

¼ sþ c1; (24)

where the constant c1 is determined by the initial value of y.
Equation (23) only applies while h� a. When h¼ a, Eq. (20)

shows that X¼ [ and therefore y¼ 1. After this point the gravity
current is entirely in the valley and the volume of the gravity
current is given by Eq. (15). The equation of motion then becomes

dX
dt
¼ Fr

�
2ag02V

XW

�1=4

; (25)

which, with the previous scaling, becomes

dy
ds
¼

ffiffiffi
2
p

y1=4
: (26)

Equation (26) has the solution

4
5

y5=4 ¼
ffiffiffi
2
p

sþ c2; (27)

where c2 is determined by requiring continuity of y at y¼ 1. At this
point the velocity of the head is also continuous.

Using the scaling in Eq. (22), we rewrite Eq. (16), with h
replacing h, as

dy
ds
¼ Fr*

ffiffiffi
2
p

y1=2
; (28)
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where Fr* is the ratio of the Fr for the case where h is used to that
with h. We expect, other things being equal, that Fr* should be
greater than 1 because h < h.

Rather than using the analytical solutions, it is easier to inte-
grate the equations numerically switching from Eq. (23) to Eq. (26)
when y¼ 1. The values of Fr and Fr* were adjusted to give a best fit
to the experimental results. This was done by trial and error and the
values of Fr are within 0.05 of the optimum values.

To complete our discussion of box models we briefly consider
the general case where the breadth of the tank for any water height
is B(h). The cross-sectional area is then given by

AðhÞ ¼
Zh

0

B
�
h0
�
dh0; (29)

and because the volume V¼ XA(h) is constant we can differentiate V
with respect to time to deduce

dh
dt
¼ � A

BðhÞX
dX
dt
: (30)

Making use of Eq. (16), Eq. (30) can be written

dh
dt
¼ � VFr

BðhÞX2

ffiffiffiffiffiffiffi
g0h

p
: (31)

The system is then described by the two differential equations for
the variation of X and h with time Eqs. (16) and (31).
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Fig. 10. The non-dimensional position of the head of the gravity current against non-
dimensional time for experiments 10 (Fig. 10a) and 11 (Fig. 10b). The experimental data
are shown by the open squares. The results for the box model using h are shown by the
solid line, and the results using h are shown by the dotted line.
5. Quantitative comparison between the experiments
and the box model

5.1. Experiments with negligible viscous effects

In experiments 1–9, the measurements of the position of the
front as a function of time were made from the video. These runs
were typically measured over a length of 1.3 m. Over this length,
the viscous effects were negligible.

The results are shown in Figs. 7 (for the case H0¼ 0.145 m) and 8
(for the case H0¼ 0.065 m) and 9 (for H0¼ 0 m). The experimental
values of X were measured at the same grid points for all densities,
but the values of y vary because the length scale varies with volume
and therefore H0. The experimental data were measured in that
length of the tank (1.3 m) which was in the field of view of the video
camera. The time scale changes with both volume and density ratio.
For all these experiments, clock time commenced when X¼ 0.27 m.
Note that y¼ 1 corresponds to the gravity current changing from
being above to being below the edge of the V-shaped valley. Using
Eq. (22) the value of X at this point is [¼ 2V/(aW) which varies from
1 to w5.5 lock lengths L (see Table 1).

Fig. 7 shows the evolution of y with s for the case where
H0¼ 0.145 m. In this case the initial value of y¼ 0.4. The scaled
experimental results for density ratios of 1.04, and 1.08 are very
close to each other and both fit a straight line which differs only
slightly from the box model results whether calculated using
equations h, or using h. The higher density ratio of 1.13 differs from
the other two. In this case the values of y are less for a given s, and
show a change of slope at s w 0.4. The box models use Fr¼ 1.0 and
Fr*¼ 1.0. It can be seen from Fig. 7 that except for the density ratio
1.13, the values of y from the box model using h are initially above
the experimental values, then drop below them. This trend is also
evident in Figs. 8 and 9. The deviation from the model using h is
greater than that using h.

Fig. 8 shows the evolution of y with s for the case H0¼ 0.065 m.
In this case the experimental results for all three density ratios are
similar, with differences of w7% in the values of s for a given y. The
agreement with the box model results using h is very good. The box
model results using h deviate significantly from the experimental
results for y> 2.6 with good agreement for smaller values of y. The
box models use Fr¼ 0.9 and Fr*¼ 1.1.

Fig. 9 shows the evolution of y with s when H0 is zero. In this
case the current is always in the valley. The experiments, and the
box model results using h (see Section 4), are in good agreement.
However, the experimental results are close to a straight line while
the box model predicts a slope (velocity) which slightly decreases
with time. The box model using h gives poorer results. For this case
Fr¼ 0.9 and Fr*¼ 1.4.

In the above dimensionless graphs, y¼ 1 indicates when the
length of the currents is first entirely within the valley.
5.2. Experiments with viscous effects

In experiments 12 and 13, in which the front of the current was
recorded over a length greater than 1.5 m, viscous effects appear. We
show in Fig. 10 the evolution of y with s for these two experiments.
Both experiments had the same g0 but different values of H0 (see
Table 1). The experimental results are shown by open squares. The
results from the box model are shown by the continuous line (when
h is used as the characteristic depth) and, by dots (when h is instead
used). Experiment 10 with H0¼ 0 m (Fig. 10a) shows a transition
around s¼ 50, and y¼ 35, corresponding to t¼ 40.5 s and
X¼ 4.55 m. The associated estimate of the Reynolds number given in
the Appendix is 0.8. Experiment 11 for which H0¼ 0.035 m (Fig.10b)
does not show a transition. Estimating the Reynolds number as
before we predict a transition to the viscous regime at s� 44 which is
outside the domain of the experimental results.
5.3. Effect of the depth of the valley a

Because the box model gives results in good agreement with the
experiments, it is interesting to use it to examine the effectof the slope
of the valley. Because the scaling used previously involves a, it is more
convenient to work with the variables X and t rather than y and s. We
considered a typical case where the ratio of the density of the current
to that of the ambient fluid is 1.08. We used a fixed volume V of current
(calculated using Eq. (13) with H0¼ 0.06 m and a¼ 0.06 m). We then



Fig. 11. The variation of the distance to the head of the current X with time t for
different values of a but fixed volume of the currents. The results are shown by small
filled circles for the case with a¼ 0.03 m, by crosses for the case with a¼ 0.06 m, and
by small open circles for the case with a¼ 0.12 m.
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chose a equal to 0.03, 0.06 and 0.12 m, with corresponding angle of the
flanks of the valley to the horizontal 12, 23 and 41 degrees, and
determined H0 from V. Equations (19) and (21) were then integrated.
The results in Fig.11 show that, for equal volume currents, the steeper
the flanks of the V-shaped valley the faster the flow.

6. Conclusions

We have conducted a series of 11 experiments in which
a volume of saline solution was instantaneously released into water
in a tank with vertical side walls and a V-shaped bottom. The
presence of the V-shaped bottom profoundly alters the flow of
a gravity current from the lock whether the tank into which it flows
is empty (where the ambient fluid is air), or filled with water.

The gravity current propagates with a parabolic head. The radius
of curvature is proportional to the initial depth of the current, and
remains nearly constant during the propagation, for each current
that we studied. The side profile is irregular, without the distinctive
head of gravity currents in a tank with a flat bottom. The experi-
ments show that the results for the speed of the head against time,
for a given initial depth of fluid but different densities, collapse onto
a single curve when appropriate scaled variables are used.

The position of the head as a function of time is captured with
satisfactory accuracy by a box model with the speed of the front
given by a Froude number condition based on the depth from the
top of the current to the bottom of the valley. Calculations using
a box model with a Froude number calculated using an averaged
depth give less accurate results. We estimate the onset of signifi-
cant viscous effects by calculating the Reynolds number when
deviations between the box model results and those of the exper-
iments become noticeable. This only occurs for experiment 10. Our
estimate of the Reynolds number when viscous effects occur is
similar to that estimated by Bonnecaze et al. [30]. The width of the
currents is also well predicted by the box model.

The presence of the valley results in three major differences in
the gravity current compared to that flowing along a flat boundary.
First the front of the current is straight in the flat bottom case
whereas it is curved in V-shaped case. Second, for sufficiently large
time t, the velocity of the current in the V-shaped valley varies as
t�1/5 compared to t�1/3 in the flat bottom case. Third the width of
the current is constant in the flat bottom case whereas, in the
V-shaped case, it decreases with time t according to t�2/5.

Because of the good agreement between the results of the box
model and the experiments, we have used the box model to predict
the effect of changing the slope of the valley. The result is that for
equal volume currents, the steeper the valley the faster the flow.

The results presented suggest further work for the future. A
different sized V-shaped container and even a different shaped
container altogether may produce novel phenomena. Finally we
have already begun to consider the effects due to particle-laden
flows driven by a dilute concentration of particles in the fluid.
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A. Critical Reynolds number

Inertial forces do not dominate the dynamics of a gravity current
indefinitely. As a current lengthens, the viscous forces acting at the
bottom of the current over a rigid boundary become more impor-
tant. The conditions for a transition from inertial to viscous domi-
nated propagation was described for flat bottom boundaries by
Huppert [31] and Bonnecaze et al. [30] in terms of a critical Rey-
nolds number. Here we estimate the onset of viscous effects for
gravity currents flowing entirely in a V-shaped valley following the
same argument. We first estimate the Reynolds number by taking
the ratio of the inertial forces Fi to the viscous forces Fv. The tran-
sition occurs when Re is O(1).

The inertial forces can then be estimated as

Fiwrc
_X

2
 

h2W
2a

!
; (A1)

and the viscous forces as

Fvw2smX
� _X

h=2

�
; (A2)

where s is the distance from the bottom of the valley up to the point
leveled with the current surface. The velocity gradient is estimated
as _X=ðh=2Þ since the depth varies between h in the centre of the
tank and zero at the edge. From the ratio of the inertial to the
viscous forces, we find that the Reynolds number is given by

Re ¼ h2 _X
nX

�
W sinq

8a

�
; (A3)

where q is the angle of the slope of the valley to the horizontal.
Using the expressions for X, _X, and h in terms of X appropriate to the
case when the current is entirely in the V-shaped part of the tank
(see Section 4), gives

Re ¼ V sinq

5n

�
4
5z

�4=5

t�9=5: (A4)

where

z ¼ Fr
�

2ag02V
W

�1=4

: (A5)

From the upper frame of Fig. 8, the box model results begin to
deviate strongly from the experiments when s w 50 or t w 40.5 s.
If this value of t is assumed to reflect the time for the transition
from inertial to viscous flow we find Re w 0.8 after substitution
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into Eqs. (A4) and (A5) using the parameters of experiment 10.
This value is slightly smaller than that of Huppert [31] and
Bonnecaze et al. [30] who estimated Re w 2, for experiments in
a flat-bottomed tank.
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