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We investigate the dynamics of thin films driven by gravity on the outer surface of
a cylinder and sphere. The surface is rigid, stationary and the axis of the cylinder
is horizontal. An instantaneous release of a constant volume of fluid at the top of
the cylinder or sphere results initially in a two-dimensional or axisymmetric current
respectively. The resultant flow of a thin film of fluid is described using lubrication
theory when gravity and viscous forces govern the dynamics. We show that the
thickness of the flow remains uniform in space and decreases in time like t−1/2 near
the top of both the cylinder and the sphere. Analytic solutions for the extent of the
flow agree well with our experiments until the advancing front splits into a series of
rivulets. We discuss scalings of the flow at the onset of the instability as a function of
the Bond number, which characterizes the relative importance of gravity and surface
tension. The experiments, conducted within an intermediate range of Bond numbers,
suggest that the advancing front becomes unstable after it has propagated a critical
distance, which depends primarily and monotonically on the volume of fluid and not
on the viscosity of fluid. Releasing a sufficiently large volume of fluid ensures that
rivulets do not develop on either a cylinder or sphere.

1. Introduction
Many problems in industrial and natural settings involve the flow of thin liquid

films, some of which are driven by gravity on a rigid surface (Oron, Davis & Bankoff
1997). These include the application of coatings on manufactured products and the
spreading of sauce on food. A naturally occurring example is the flow of water on
stalactites that hang from the ceilings of limestone caves (Short et al. 2005). At larger
scales, the ascent of buoyant magma below solid rocks and the spreading of lava on
volcanoes are further examples of geological problems. The recurring feature in all
these examples is that fluid is in contact with, and driven along, a rigid boundary due
to the action of gravity. Effects due to inertia are negligible in the bulk region of the
flow, where gravity and viscous forces dominate.

The flow of driven thin films has received considerable attention within the scientific
community largely because the leading edge of the flow gives rise to the fascinating
phenomenon of a fingering instability. Laboratory experiments have shown that a thin
film of Newtonian fluid flowing down an inclined plane can become unstable at the
front and split into a series of rivulets (Huppert 1982; Silvi & Dussan 1985). Rivulets
develop in a similar manner when a thin film is driven by a centrifugal force (Melo,
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Joanny & Fauve 1989; Fraysse & Homsy 1994; Wang & Chou 2001) or by a spatial
gradient in surface tension (Cazabat et al. 1990). The instability has been studied by
incorporating effects because of surface tension in a small region near the advancing
front of the flow, where a capillary ridge develops before splitting into rivulets
(Troian et al. 1989; Goodwin & Homsy 1991). A crossflow perturbation of the flow
front develops thicker regions that advance more rapidly, a possible mechanism of the
fingering instability (Spaid & Homsy 1996). Macroscopic perturbations can be caused
by microscopic corrugations in the contact line (Bertozzi & Brenner 1997), suggesting
that minor variations in topography, in addition to thermal effects, may influence the
development of candle wax drips and branches of lava flows on volcanoes.

We extend previous studies of thin films to consider driven films featuring a moving
contact line on curved surfaces. Lubrication theory has been applied to describe thin
films flowing in between curved gaps (Stone 2005) and on curved substrates with a
free surface (Roy, Roberts & Simpson 2002). It is fruitful to assess the applicability of
the theory to thin films featuring a moving contact line (Davis 1983), which may not
influence the bulk flow. Thin films on the outer surface of a cylinder and sphere are
considered as two special cases where the slope of the substrate changes slowly in the
direction of flow. Thin films flowing on the inner surface of a cylinder and sphere are
also worth considering and will be addressed in a future publication. The theory is
based on the following three conditions. First, the front of the flow is assumed to have
extended a distance much longer than the characteristic film thickness. Second, the
component of gravity is approximated to increase linearly in the flow direction, which
holds near the top of the cylinder and sphere. Third, surface tension is considered
to be negligible everywhere except possibly near the leading front of the flow. We
examine the effect of a curved substrate on the flow and its possible instability of thin
films in two specific cases.

In the first case, we consider the instantaneous release of a constant volume of
viscous fluid from a line source at the top of a cylinder. We stress that the cylinder does
not rotate about its horizontal axis. The resultant flow is initially two-dimensional;
an analytic solution describing its form and extent is obtained in § 2 using lubrication
theory. Related problems that have been investigated theoretically include thin films
on a rotating cylinder (Moffatt 1977) and steady rivulet flows on a stationary cylinder
(Duffy & Moffatt 1995). We note that once the rotation of the cylinder, or the supply
of fluid, has stopped, the structure of the flow is expected to tend to a long time limit,
which is closely related to what we consider here.

In the second case, we consider the instantaneous release of a constant volume of
viscous fluid from a point source at the top of a sphere. The initial spreading of
fluid near the source is the axisymmetric counterpart of the two-dimensional flow in
our first case. The problem on the sphere falls in the same category of axisymmetric
spreading as flow from the top of a cone, which is presented as mathematical exercise
7.12 in the introductory textbook by Acheson (1990). In § 3, we develop theoretical
results and show that the spreading on a stationary sphere is closely related to
spin coating, where a drop of fluid spreads and develops a fingering instability on
a rotating plane (Melo et al. 1989; Fraysse & Homsy 1994; Wang & Chou 2001).
Consequently, the spreading on a sphere is expected to develop a fingering instability
at the leading edge in a similar manner to a spinning drop.

In § 4, corresponding experiments are reported and shown to agree well with our
theoretical predictions until the advancing front splits into a series of rivulets. The
rivulets continue to extend until they eventually detach, before they have reached
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Figure 1. Sketch of a thin film driven by gravity at the top of a cylinder. Flow is denoted to
have thickness h(θ, t) and extends an arclength RθN (t) from the vertical line of symmetry.

the bottom of the cylinder or sphere. The detachment of fluid from the underside
of the cylinder and sphere is similar to that from the underside of an inclined
plane (Rothrock 1968; Indeikina, Veretennikov & Chang 1997). We note that the
development of rivulets at the flow front and the detachment of fluid before reaching
the bottom prevent the fluid from completely coating the cylinder or sphere.

Finally, in § 5, the fingering instability at the leading front of the flow is discussed.
A scaling analysis of the governing equations suggests that the non-dimensional flow
length at the onset of the instability depends on the Bond number of the flow. The
ideas are partly based on the scalings obtained previously for flow down an inclined
plane at a small Bond number (Troian et al. 1989; Goodwin & Homsy 1991). We
obtain approximate conditions at the onset of a fingering instability on a cylinder
and sphere in the two limits of small and large Bond numbers. The results suggest
that rivulets do not develop on a cylinder or sphere when a sufficiently large volume
of fluid is released.

2. Two-dimensional flow on a cylinder
A theoretical framework for describing flow on the outer surface of a cylinder of

radius R is developed in polar coordinates (r, θ), where r =R represents the surface
and the azimuth angle θ is measured from the vertical as in figure 1. We consider the
instantaneous release of a constant volume of viscous fluid from a line source at the top
of the cylinder such that the resultant flow is initially two-dimensional, independent
of the direction normal to the (r, θ) plane. By the vertical line of symmetry, we restrict
attention to flow on the right half of the cylinder. A constant cross-sectional area A

of fluid is considered to have depth h(θ, t) and extend an arclength RθN (t) along the
surface of the cylinder from the vertical as shown in figure 1.

A long wave approximation is adopted, provided that the fluid depth is much
smaller than its extent:

h � RθN. (2.1)

The approximation is expected to hold soon after the fluid is released on a cylinder
of sufficiently large radius R. Because flow is predominantly tangential to the surface
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of the cylinder, the pressure in the fluid is given by

p = p0 + ρg(R + h − r) cos θ − (γ /r2)∂2h/∂θ2, (2.2)

where ρ is the density of fluid, g is the gravity, p0 is the atmospheric pressure and γ

is the surface tension. The θ component of the momentum equation is given by

ν∂2u/∂r2 = (1/ρr)∂p/∂θ − g sin θ, (2.3)

where ν is the kinematic viscosity of the fluid and u is the θ component of the
flow velocity. The pressure given by (2.2) remains approximately uniform in the bulk
region of the flow given the following two conditions. First, the depth of fluid must
vary slowly along the substrate and satisfy

∂h/∂θ � R tan θ. (2.4)

Condition (2.4) is expected to hold everywhere except possibly near the flow front
and ensures that contribution to (2.3) from the ρg(R + h − r) cos θ term on the
right-hand side of (2.2) is negligible. Second, effects due to surface tension must be
small everywhere except possibly near the flow front, requiring that the final term of
(2.2) does not play a role in the equation of motion given by (2.3). By comparing the
magnitude of the first and second terms on the right-hand side of (2.3), we obtain the
corresponding condition

γ ∂3h/∂θ3 � ρgR3 sin θ. (2.5)

Importantly, we note that the bulk structure of the flow is relatively unaffected by the
specific dynamics of the small region near the flow front (Huppert 1982; Troian et al.
1989). Under these conditions, the bulk region of the flow is governed primarily by
viscous forces and the component of gravity along the flow. The solution satisfying
(2.3) with the first term on the right-hand side neglected, along with the no-slip
condition on the rigid surface and vanishing tangential stress on the free surface, is
given by

u =
1

2
y(2h − y)g sin θ/ν, (2.6)

where y = r − R is the radial coordinate measured from the surface of the cylinder.
The velocity profile is parabolic in y and identical to that arising on an inclined
plane with a constant slope θ to the horizontal (Huppert 1982). The local flow on
a sufficiently large cylinder does not experience the curvature in the substrate. The
depth-integrated velocity of the flow,

Q =

∫ h

0

u dy, (2.7)

does not depend on the curvature of the substrate R.
The governing equations for the unknown free surface h(θ, t) are formulated

by conserving the mass of fluid, both locally and globally. Substituting (2.6) into
(2.7) followed by the local conservation of mass in cylindrical polar coordinates,
∂h/∂t + R−1∂Q/∂θ =0, we obtain

∂h

∂t
+

g

3νR

∂

∂θ
(sin θh3) = 0. (2.8)

The total cross-sectional area of fluid is independent of time and is expressed as

A = R

∫ θN (t)

0

h(θ, t) dθ, (2.9)
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which ensures that mass is conserved globally. This completes the formulation of the
problem.

The length and time scales of the flow initially near the top of the cylinder can be
determined by considering the scaling factors of the governing equations (2.8) and
(2.9). For small θ such that sin θ ≈ θ to leading order, the two terms in (2.8) scale as
h/t and gh3/νR, respectively. Meanwhile, (2.9) indicates that A ∼ hx, where x = Rθ

is a characteristic length of the current. The only dimensional groups appearing in
the governing equations for h in terms of x and t are therefore g/νR and A. The
equations can be non-dimensionalized by scaling all lengths by

L ≡ A1/2 (2.10)

and time by

T ≡ νR/gA. (2.11)

The radius of the cylinder, R, only appears in the time scale and not in the length
scale of the bulk flow.

The system of (2.8) and (2.9) is solved near the top region of the cylinder, where
θ � 1, as follows. Given that the characteristic length and time scales are given by
(2.10) and (2.11), respectively, it is natural to seek solutions to (2.8) with sin θ ≈ θ of
the form

h = A1/2f (t/T ). (2.12)

The function f to be determined is independent of θ because θ does not appear in
the scalings of the two terms in (2.8) when sin θ ≈ θ . By substituting (2.12) into (2.8),
we obtain f ′ + f 3/3 = 0, which can be immediately integrated to give

f (s) = [3(s + c)/2]−1/2 (2.13)

for some constant c. If the fluid has uniform thickness h0 initially when it is released
at time t = 0, then the starting time is offset by c = 2(A1/2/h0)

2/3 for the similarity
form (2.12) to satisfy the initial condition. However, the required offset c is negligible
when the initial thickness is not too small, h0 > A1/2, or equivalently when the flow
front is close to the top of the cylinder at the time of release of fluid, as was the case
in all our experiments. At large times, t � cT , the solution (2.13) in dimensional form
reduces to

h(t) =

(
3Rν

2g

)1/2

t−1/2, (2.14)

which indicates that the thickness is independent of θ and decreases with time like
t−1/2. The subsequent term of order ε in the expansion about the leading-order
solution (2.14), where θ = O(ε), is also independent of the spatial coordinate. The
solution (2.14) is independent of θ to order ε2 because of the symmetry of the problem.

We note that the solution of uniform film thickness is related to the boundary-layer
thickness of a stagnation-point flow towards a flat boundary (Acheson 1990). Both
gravity-driven flow near the top of a cylinder and two-dimensional straining flow along
the flat boundary increase linearly with distance. It follows by mass conservation that
in both cases the thickness of the flow is uniform along the boundary.

The length of the current is obtained by imposing the condition that the total
cross-sectional area of fluid is conserved and given by (2.9). By substituting (2.14)
into (2.9) and rearranging, we determine the length of the current

RθN (t) =
(A2g

6Rν

)1/2

t1/2. (2.15)
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We note that the dependence on the amount of fluid released, A, only appears in
the expression for the length and not in the expression for the depth of the flow.
The flow near the top of the cylinder takes a similarity form and is independent of the
initial conditions. By substituting solutions (2.13) and (2.15) into conditions (2.1) and
θN � 1, we determine that the solution for the flow length given by (2.15) is valid for

1 � t/T � R2/A. (2.16)

The first condition, t � T , ensures that the thickness of the current is small compared
to its length. The second condition, t/T � R2/A, arises because the solution given
by (2.14) is limited to the region near the top of the cylinder.

We now discuss the small region at the flow front, which we have neglected so far.
By eliminating time from solutions (2.14) and (2.15), we determine that the flow has
a sharp leading front of thickness

hN = A/RθN. (2.17)

The unphysically sharp front is expected to be resolved by a thin boundary layer with
length scale l � RθN , which is small under the following conditions. When effects due
to surface tension are neglected, lubrication theory breaks down near the front of the
current (Goodwin & Homsy 1991). The velocity normal to the substrate is no longer
small in the region at the flow front. In that case, the length of the boundary layer at
the front of the current is expected to scale like l ∼ hN , which is always smaller than
the bulk flow by condition (2.1).

When surface tension plays a role, in addition to viscous forces and gravity, the left-
and right-hand sides of (2.5) are of the same order of magnitude in the region near the
flow front. By considering the scaling factors of (2.5), we obtain l ∼ (γ hN/ρg sin θN )1/3,
which is consistent with the corresponding scaling for the length scale of the tip of
the current down an inclined plane (Huppert 1982; Troian et al. 1989). This can be
written as

l ∼ hN (Ca)−1/3, (2.18)

where Ca is a capillary number of the flow in the region near the front given by

Ca ≡ ρgθNh2
N/γ. (2.19)

The capillary number measures the relative importance of viscous forces, which are
exactly balanced by gravity, compared to surface tension near the flow front. By
substituting (2.15) and (2.17) into (2.19), we determine that the capillary number
evolves like t−1/2. Instead of working with the capillary number, it is convenient to
introduce a Bond number defined as

Bo ≡ ρgA3/2/γR, (2.20)

which is expressed in terms of input parameters that do not vary in time. By setting l

in (2.18) to be much smaller than RθN and eliminating hN using (2.17), we determine
that the region of the flow front influenced by surface tension remains small compared
to the bulk flow as long as

θN � Bo−1/5A1/2/R. (2.21)

Equivalently, by substituting (2.15) into (2.21), we obtain

t � Bo−2/5T (2.22)

as the condition when surface tension plays a negligible role in the bulk region of the
flow.



Flow and instability of thin films on a cylinder and sphere 227

r

O
R

h(θ, t)
θ

θN

Figure 2. Sketch of a thin film of fluid spreading axisymmetrically at the top of a sphere.

In summary, the bulk structure of the flow has uniform thickness given by (2.14)
behind an advancing front given by (2.15). The prediction for the flow length is
given by (2.15) provided that conditions (2.16) and (2.22) hold. We now present
corresponding results for the axisymmetric spreading of fluid at the top of a sphere,
before comparing our theoretical predictions with data from laboratory experiments.

3. Axisymmetric flow on a sphere
The methods presented in § 2 for the two-dimensional flow around a cylinder can be

readily applied to the axisymmetric flow on a sphere. Consider the outer surface of a
rigid sphere represented by r =R in spherical polar coordinates, where θ is the usual
zenith angle from the vertical axis. A constant volume V of viscous fluid is released
instantaneously at the top point of the sphere such that the resultant flow is initially
axisymmetric as sketched in figure 2. When the extent of the flow, denoted by RθN (t),
is much greater than the film thickness denoted by h(θ, t), the flow velocity u(r, θ, t)
is predominantly along the surface of the sphere, in the θ direction. Assuming that
conditions (2.1), (2.4) and (2.5) hold in the bulk region of the flow as in § 2, and
using lubrication theory as before, we obtain the same velocity profile as for viscous
spreading on a cylinder. Thus, the depth-integrated velocity is again given by

Q =
1

3
g sin θ h3/ν. (3.1)

Substituting (3.1) into the local mass conservation in spherical polar coordinates given
by ∂h/∂t + (R sin θ)−1 ∂(sin θQ)/∂θ = 0, we obtain

∂h

∂t
+

g

3νR sin θ

∂

∂θ
(sin2 θh3) = 0. (3.2)

The total volume of fluid is independent of time and expressed as

V = 2πR2

∫ θN (t)

0

h sin θ dθ. (3.3)
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The governing equations given by (3.2) with sin θ ≈ θ and (3.3) can be non-
dimensionalized by scaling all lengths by

LV ≡ V 1/3 (3.4)

and time by

TV ≡ νR/gV 2/3. (3.5)

The curvature of the substrate only appears in the time scale and not in the length
scale of the flow, just like the flow on a cylinder in § 2.

The system of (3.2) and (3.3) is solved in the region at the top of the sphere, where
θ � 1, using the same methods as before, to obtain

h(t) =

(
3Rν

4g

)1/2

t−1/2. (3.6)

The solution given by (3.6) indicates that the thickness of the bulk structure remains
uniform near the top of the sphere. Note that the thickness of fluid on a sphere of
radius R given by (3.6) is identical to the thickness of fluid on a cylinder of radius R/2,
as can be verified using (2.14). The expression (3.6) is also identical to the thickness
of a constant volume V of fluid rotated at angular velocity ω about its centre of mass
on a plane, where ω2 = g/R (Melo et al. 1989). The mathematical reason is that the
governing equations for fluid spreading near the top of a sphere, (3.2) and (3.3), where
sin θ ≈ θ and g/R = ω2, reduce to corresponding equations for a spinning volume of
fluid. Physically, fluids spreading both on the top of a stationary sphere and on the
rotating plane experience a body force, which increases linearly with distance away
from the point of release. The body force is gravity on the sphere or centrifugal on
the rotating plane.

By substituting (3.6) into (3.3), we determine that the length of the current is given
by

RθN (t) =
( 4V 2g

3π2Rν

)1/4

t1/4. (3.7)

The radius of the leading edge of the flow increases like t1/4 as long as effects on the
bulk flow due to surface tension are small.

An analysis similar to the previous one indicates that the capillary region, where
capillary forces are important near the flow front, is small compared to the bulk flow
provided that

θN � Bo
−1/6
V V 1/3/R, (3.8)

where BoV is a Bond number defined as

BoV ≡ ρgV/γR. (3.9)

The capillary region becomes relatively small after the flow front has extended
sufficiently far. By substituting (3.7) into (3.8), we determine that surface tension
plays a negligible role in the bulk region of the flow when

t � Bo
−2/3
V TV . (3.10)

The regime of validity of solutions (3.6) and (3.7) is further constrained by

1 � t/TV � R4/V 4/3, (3.11)

which can be investigated experimentally by releasing fluid on a sphere of sufficiently
large radius R. The volume of fluid must be sufficiently large that the Bond number
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is not too small to satisfy (3.10) and sufficiently small that it spreads as a thin film
near the top of the sphere to satisfy (3.11).

4. Experiments
The theoretical predictions derived in §§ 2 and 3 were tested against a suite of

laboratory experiments. In particular, (2.15) and (3.7) were compared with flow lengths
on a cylinder and sphere, respectively. Experimental set-ups and results are presented
first for flows on a cylinder followed by flows on a sphere.

4.1. Flow on a perspex cylinder

A perspex cylinder of radius 15.0 cm and width 11.0 cm was fixed between two parallel
and vertical plates, perpendicular to the axis of the cylinder. The cylinder resembled
the structure of a wheel, fixed and confined laterally by sidewalls. At the top of
the cylinder, a constant volume of either pure glycerine or golden syrup was held
behind a removable lock gate, 2.0 cm away from a rigid and vertical wall. Flow down
the outer surface of the cylinder was initiated by a near-instantaneous lift of the
gate.

A standard digital camera pointed in the direction parallel to the axis of the cylinder
and recorded images of the resultant flow at 15 frames per second. The flow was
observed both directly from its side and in plan form through a mirror as shown in
the images of figure 3. The flow near the sidewalls was observed to shear laterally with
the leading edge of the flow deforming accordingly. This is possibly due to contact
line pinning on the sides and the curvature of the substrate, which allows fluid further
along the flow to be driven by a larger body force. However, the central region of the
flow appeared to be two-dimensional and unaffected by the sidewalls, as indicated
by a flat leading front in figure 3(b). The flow front, after advancing some distance,
split into a pair of rivulets. The rivulets continued to flow as shown in figure 3(c)
until they reached some extent on the underside of the cylinder, where they dropped
as viscous threads (figure 3e). The point of detachment advanced approximately
5 cm further along the underside of the cylinder and appeared to remain stationary
thereafter.

The viscosity and volume of the released fluid were varied in a series of experiments
on the cylinder. Representative values of the kinematic viscosity of golden syrup
and glycerine were taken to be ν =4.5 × 102 cm2 s−1 and ν = 5.1 cm2 s−1, respectively,
based on measurements using U-tube viscometers. Although the viscosity of fluid may
have fluctuated slightly as a result of minor temperature variations in the laboratory,
the flow lengths recorded in every experimental run are relatively insensitive to minor
variations in viscosity. The flow length on a cylinder or sphere scales like ν−1/2 in
(2.15) or ν−1/4 in (3.7), respectively.

Figure 4 shows a plot of non-dimensional flow extents against non-dimensional time
on logarithmic scales for different experiments on the cylinder. The data for the initial
flow extending with a single front collapse onto the theoretical curve given by (2.15).
Minor discrepancies between the theory and experiments conducted by releasing a
cross-sectional area A= 10.5 cm2 of golden syrup and A= 5.2 cm2 of glycerine are
attributed to the shear stress on the sidewalls, which may have retarded the flow.
Experiments conducted by releasing A= 4.2 cm2 and A= 6.3 cm3 of golden syrup are
in excellent agreement with the theoretical predictions until the front of the flow split
into a pair of rivulets. Once the front developed a fingering instability, the subsequent
leading fronts extended further along the cylinder than predicted by (2.15).
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(a) t = 0 (b) t = 0.7 s

(c) t = 1.5 s (d) t = 2.2 s

(e) t = 2.7 s (f) t = 30 s

Figure 3. Sequence of snapshots of an experiment conducted by releasing 57.5 cm3 of pure
glycerine on a cylinder, where the resultant flow is viewed directly from the side and in plan
form through a mirror on the right. The numbers on the cylinder indicate the perimeter in
centimetres from the top of the cylinder. (a) Glycerine is behind the lock gate, before initiation
of the current. (b) 0.7 s after release, the bulk flow is approximately two-dimensional, except
near the sidewalls confining the flow. (c) 1.5 s after release, wave patterns appear at the leading
edge of the flow. (d ) 2.2 s after release, the flow front has split into a pair of rivulets. (e) 2.7 s
after release, the rivulets continue to extend until they drop from the underside of the cylinder.
(f ) 30 s after release, the points of detachment of fluid have extended along the underside
of the cylinder. The experimental parameters are: cross-sectional area of fluid A =5.2 cm2;
kinematic viscosity ν = 5.1 cm2 s−1; surface tension γ = 64 mN m−1; and radius of the cylinder
R = 15 cm.
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4.2 cm2 Golden syrup, single front

4.2 cm2 Golden syrup, multiple fronts

6.3 cm2 Golden syrup, single front

6.3 cm2 Golden syrup, multiple fronts

10.5 cm2 Golden syrup, single front

5.2 cm2 Glycerine, single front

5.2 cm2 Glycerine, multiple fronts

Theory, single front

Figure 4. Plot of non-dimensional flow extents on a cylinder against non-dimensional time
using logarithmic axes. Different symbols correspond to different experiments. The symbols
are either open or closed, with the latter indicating that rivulets have developed at the front
of the flow. The black line is the theoretical relationship given by (2.15).

4.2. Flow on a vinyl beach ball

Experiments were conducted to investigate viscous flow on a sphere. A vinyl beach
ball of radius 23.5 ± 0.5 cm was secured at its base. The surface of the beach ball was
reasonably spherical and rigid. A cylindrical lock was positioned carefully at the top
of the beach ball using a spirit level such that its axis pointed vertically. A constant
volume of golden syrup was poured inside the lock, which could be swiftly raised by
guiding it along a vertical rail to release the syrup. The radius of the gate was either
2 cm or 5 cm and made little difference to the resultant flow.

The near-instantaneous release of golden syrup resulted initially in an axisymmetric
current from the top of the sphere as shown in figure 5(b). The structure of the flow
extended with a circular plan form and then slowly started to deform in shape
(figure 5c). Modulations then developed at the leading edge of the flow, as shown
in figure 5(d ). Soon after, a series of rivulets developed at the front (figure 5e).
The rivulets are similar to those produced at the front of an initially axisymmetric
spreading on a rotating plane (Melo et al. 1989; Fraysse & Homsy 1994). The rivulets
continued to flow down the sphere until they reached some extent on its underside,
where they detached and dropped in the form of threads.

The flow lengths along six representative directions were recorded at different
intervals. Figure 6 shows that the mean flow lengths agree well with the theoretical
curve before the leading edge of the flow developed a fingering instability. We now
discuss scaling laws of the flow at the onset of the instability.

5. Discussion
It is widely accepted that a capillary ridge near the flow front plays an important

role at the onset of the instability. Numerous other possible factors are believed to
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(a) t = 0 (b) t = 30 s

(c) t = 120 s (d) t = 240 s

(e) t = 360 s (f) t = 900 s

Figure 5. Sequence of snapshots taken from above a six-sector beach ball of radius R =23 cm,
on which 123 cm3 of golden syrup was released. (a) Golden syrup is released by rapidly lifting
a cylindrical gate. (b) 30 s later, the structure of the flow continues to take a circular plan form.
(c) 120 s after release, the flow remains approximately axisymmetric. (d ) 240 s after release, wave
patterns begin to develop at the leading edge of the flow. (e) 360 s after release, the amplitude
of the instability at the flow front grows and develops a series of rivulets. (f ) 900 s after release,
the rivulets continue to flow down the beach ball, eventually detaching from the underside
(not shown). The experimental parameters are kinematic viscosity ν = 4.5 × 102 cm2 s−1 and
surface tension γ = 78 mN m−1 (Llewellin, Mader & Wilson 2002).

play a minor role. For example, the viscosity of fluid appears only to set the time scale
and not the length scale of the flow resulting from the release of a constant volume

of fluid (Huppert 1982). Experiments suggest that effects due to the contact angle
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Figure 6. Non-dimensionalized average flow lengths against non-dimensional time on the top
of a sphere before rivulets developed. Different symbols correspond to experiments conducted
by releasing different volumes of golden syrup. The black line is the theoretical relationship
given by (3.7).

at the flow front do not influence the onset of the instability either (Silvi & Dussan
1985). Conjecturing that the onset of the instability is determined by the length scale
l of the small capillary region near the flow front, we develop dimensional arguments
to suggest scalings of the flow at the onset. The two important limits of small and
large Bond numbers will be treated separately, using ideas that have been developed
in the well-studied context of flow down an inclined plane.

In the limit of small Bond numbers, surface tension initially plays a role not
only at the tip of the current but also in the bulk region of the flow. It has been
proposed that the bulk structure of the flow is stable until the flow extends a distance
xc ∼ l (Troian et al. 1989). The current at the onset of the instability must extend
sufficiently to develop a capillary ridge near the flow front ahead of a region where
gravity dominates. Numerical simulations of a thin film flowing down an inclined
plane (Schwartz 1989) support the idea that gravity drives the fingering instability
with a characteristic wavelength set by surface tension. The condition that gravity
dominates in the bulk flow at the onset of the instability suggests that the critical
distance xc, scaled by the length scale of the bulk flow, increases in the limit of small
Bond numbers.

In the limit of large Bond numbers, surface tension is initially negligible everywhere,
including the region near the flow front. The flow front features a recirculating nose,
which has been shown experimentally to extend initially without any development of
a fingering instability (Ancey, Cochard & Andreini 2009). The apparent contact angle
of the advancing front is initially obtuse because gravity pushes the nose farther than
the contact line. It has been suggested that the fingering instability develops when the
contact angle and the capillary number of the flow front have decreased sufficiently
(Veretennikov, Indeikina & Chang 1998). Effects due to surface tension begin to
play a role at the tip of the current when its thickness decreases and approaches
the capillary length scale, lc. We therefore conjecture that hN ∼ lc at the onset of the
fingering instability of a current initially unaffected by surface tension everywhere.
The condition that the length scale of the tip of the current must decrease to its
capillary length scale before the front splits into rivulets suggests that the critical
distance xc, scaled by the length scale of the bulk flow, increases again in the limit of
large Bond numbers.
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The ideas developed above can be applied to the flow and instability of thin films
on a cylinder and sphere. By balancing the magnitude of the bulk flow length in
(2.15) with the capillary length scale of the front in (2.18) and coupling the result with
(2.17), we obtain the length of the current on a cylinder for small Bond numbers at
the onset of the instability:

xc ∼ A1/2Bo−1/5. (5.1)

The critical length increases in the limit of small Bond numbers, as expected. By
balancing the magnitude of the flow thickness in (2.17) with the capillary length scale
of the front in (2.18), we obtain the length of the current on a cylinder for large Bond
numbers at onset,

xc ∼ A1/2Bo. (5.2)

This indicates that the critical length increases in the limit of large Bond numbers.
Note that xc is a monotonically increasing function of A for all Bond numbers.
Corresponding results are obtained for the length of the current at the onset of
instability on a sphere,

xc/V 1/3 ∼
{

Bo
−1/6
V , small BoV ,

Bo
1/3
V , large BoV .

(5.3)

The critical length at the onset is a monotonically increasing function of the volume
of fluid, V . For fixed V , the critical length increases in the limits of both small and
large Bond numbers.

Given that the dimensionless length of the current at the onset of the instability
increases in the limits of both small and large Bond numbers, there must be an
intermediate range of Bond numbers where the dimensionless length is minimal. This
is consistent with the dimensionless radius of a spinning drop at the onset of the
fingering instability, which is minimal for Bond numbers ρω2V/γ ∼ 50 (Wang &
Chou 2001). Figure 5 of Wang & Chou (2001) shows that the dimensionless radius of
spinning drops at the onset depends weakly on the Bond number, when it is neither
too small or large.

Our experiments on both the cylinder and the sphere were conducted over an
intermediate range of Bond numbers. Consequently, the length of the current at the
onset of the instability is expected to depend weakly on the Bond number. This is
consistent with figure 4, which shows that rivulets on a cylinder developed when
the flow front advanced 	8A1/2 in experiments, independent of the Bond number.
Figure 7 plots the mean radius of flows spreading on a sphere at the onset of the
fingering instability, as a function of the Bond number given by (3.9). The critical
length of the flow increases slowly and depends weakly on the Bond number. A
least-square fit to the data yields xc/V 	 1.4Bo0.13

V within an intermediate range of
Bond numbers, consistent with scalings for small and large Bond numbers given in
(5.3).

The wavelength of the fingering instability was estimated by dividing the
circumference of the plan form at the onset of the instability by the number of
rivulets observed subsequently. The dimensionless wavelength is plotted against the
Bond number BoV on logarithmic scales in figure 8. The line of best fit shown in
figure 8 scales like Bo−0.52

V and indicates that the dimensionless wavelength decreases
with Bond number. Conjecturing that the wavelength is set by the length scale of the
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Figure 7. Log–log plot of the lengths of golden syrup spreading on a sphere at the onset of
the fingering instability against the Bond number given by (3.9), where representative values
of ρ = 1.4 kg m−3, g = 9.8m s−2, γ = 78 mN m−1 and R = 0.24 m were fixed. The Bond number
was varied in different runs by releasing different volumes of fluid. The average flow lengths
at the onset of instability are represented by crosses with associated error bars indicating the
maximum and minimum flow lengths for each experiment. The line of best fit through the
experimental data has a slope of 0.13, which lies between the two limits of −1/6 and 1/3 as
predicted by (5.3) for small and large Bond numbers.

10–1

10–2

100 101 102 103 104

100

101

–1/6

–2/3

BoV

λ
/V

1
/3

Figure 8. Wavelengths of the fingering instability of golden syrup spreading on a sphere as a
function of the Bond number given by (3.9), where ρ = 1.4 kg m−3, g =9.8m s−2, γ = 78 mN m−1

and R = 0.24 m. Wavelengths were estimated by dividing the circumference of the leading edge
of the flow at the onset of instability by the number of rivulets observed subsequently. Error
bars are associated with the maximum and minimum flow lengths recorded at the onset of
the instability for each experiment. The line fitting the average wavelengths has a gradient of
−0.52, which lies between the two limits of −2/3 and −1/6 as predicted in (5.4) for large and
small Bond numbers.

tip of the current l in (2.18) (Huppert 1982), the wavelength scales like

λ/V 1/3 ∼
{

Bo
−1/6
V , small BoV ,

Bo
−2/3
V , large BoV .

(5.4)
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The exponent of −0.52 obtained from the experiments for an intermediate range of
Bond numbers lies between the limiting exponents of −1/6 and −2/3 for small and
large Bond numbers, respectively.

The number of rivulets produced at the top of a sphere is given by

N = 2πxc/λ, (5.5)

when a sufficiently small volume of fluid is released such that xc � R. By substituting
(5.3) and (5.4) into (5.5), we estimate the number of rivulets to remain constant, or
increase linearly with Bond number, in the limits of small and large Bond numbers,
respectively. This is consistent with the trend of the number of fingers produced
on a rotating plane shown in figure 12 of Wang & Chou (2001). Rivulets are not
expected to develop on a cylinder or sphere when a sufficiently large volume of fluid is
released.

6. Concluding remarks
We conclude that thin films spreading at the top of a cylinder and sphere result

in a succession of events. Initially, flows on both the cylinder and sphere evolve with
uniform thickness. The leading edge of the flows, after extending a critical distance,
splits into a series of rivulets. The critical distance was shown experimentally to
depend primarily on the volume of fluid released, for Bond numbers that are not too
small or large. The relevant length scale is set by either the square root of the cross-
sectional area of fluid or the cube root of the volume released for two-dimensional
or axisymmetric spreading, respectively. Experiments further showed that the rivulets
extend along the cylinder and sphere until they eventually detach and develop pendent
threads.

The detachment of fluid before it has reached the bottom of the cylinder or sphere
gives rise to an interesting problem. Experiments reported in § 4 showed that releasing
a relatively small volume of fluid at the top of the cylinder and sphere does not result
in complete coating of the cylinder or sphere. We conducted further experiments and
observed that releasing a relatively large volume of fluid at the top of a cylinder does
not result in complete coating either. Approximately 300 cm3 of golden syrup, poured
from a beaker immediately above a cylindrical rod of steel of diameter 1.2 cm with
its axis pointing horizontally, left a small uncoated region along the bottom of the
rod. This qualitative observation indicates that it is difficult to completely coat the
outer surface of a cylinder or sphere by releasing fluid from above.

A complete coating of the outer surfaces of a cylinder and sphere could be
obtained instead by dipping them into and withdrawing from a bath of viscous fluid,
a familiar method in coating industries. Thin films are expected to develop and drain
as investigated in §§ 2 and 3 near the top of the cylinder and sphere. In contrast
to a film of fluid draining from a vertical plate, which is always thicker towards the
bottom of the plate (Jeffreys 1931), the thickness of fluid draining from the top of
the cylinder and sphere should remain uniform.

We are pleased to submit this work on thin films, one of the many research interests
of Steve Davis, in honour of his seventieth birthday. One of us (H. E. H.) has known,
admired and learnt from Steve since we first met at a seminar at Woods Hole during
the summer of 1973. The speaker stated a fluid mechanical concept; a member of the
audience enquired why it was correct; and the speaker replied: it appeared recently
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in JFM—so it must be correct. Steve and H. E. H., both assistant editors of JFM at
the time, smiled.

We thank Mark Hallworth and David Page-Croft for their assistance with the
experimental set-ups. We also thank John Hinch, Richard Katz, John Lister, Jerome
Neufeld and Howard Stone for helpful and insightful ideas. Mark Hallworth and
Jerome Neufeld provided useful comments on an earlier draft. D. T. is funded by a
Gates Cambridge Scholarship. The research of H. E. H. is partially supported by a
Royal Society Wolfson Research Merit Award. Draft versions of the manuscript were
completed while one of us (H. E. H.) worked at the desk of the Chancellor of the
University of New South Wales, David Gonski. H. E. H. is grateful for the generous
hospitality shown by the Chancellor and all the staff during his visit.
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