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Transitions in double-diffusive convection
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The transitions of solutions of differential equations from
one stability regime to another are of great current interest,
both mathematical and physical, and there are conflicting
hypotheses as to how such transitions occur. Here we present
the results of an investigation of double-diffusive convection,
which is important in oceanography, astrophysics and
chemical engineering. The calculated transitions are found
to be very different from those previously suggested.

Most fluid motion is turbulent. One approach that has been
used in investigating this form of motion is to examine the
transitions undergone by an initially laminar flow in its evo-
lution to a turbulent state. Landau' hypothesised that as some
appropriate non-dimensional parameter, R, increases, a critical
value is reached at which the particular time-independent
laminar flow under investigation becomes unstable and equilib-
rates to a new time-dependent flow. At a larger critical value
this flow itself becomes unstable and this process of transitions
is envisaged to continue until the flow has become so compli-
cated that it would be referred to as turbulent. An alternative
hypothesis has been recently suggested by Ruelle and Takens?,
whereby after a relatively small number of transitions, a well
defined value of R is reached at which the flow exhibits an abrupt
transition to a far more complicated, random, and hence
turbulent, motion. Since these are both abstract hypotheses,
only a direct investigation of the governing equations of motion
can decide if either of these descriptions is correct, or if a
different set of transitions takes place. In an investigation of
this sort, but motivated by biological considerations, May?®
recently determined the transitions that occur in a number of
first-order nonlinear difference equations. He found that as
the appropriate R increases through a sequence of critical values,
the solution changes from consisting of one stable equilibrium
point, through stable cycles of period 2” (n=1,2, . ..), and then,
at a finite value of R, there is chaos, with slightly different
initial conditions leading to solutions which diverge with time.
We present here the results of explicit calculations of the transi-
tions that occur in two-dimensional double-diffusive convection.
The motion is governed by a set of coupled nonlinear partial
differential equations and the transitions that occur are different
in form from the three discussed above.

Double-diffusive convection

Double-diffusive convection is a generic term for the type of
convection that occurs in fluids in which there are two com-
ponents of different molecular diffusivities which contribute
in an opposing sense to the vertical density gradient. For differ-
ent sets of components, this form of convection has an important
role in oceanography, astrophysics and chemical engineering?®.
Here we use the terminology of heat and salt, the components
appropriate to oceanography. We restrict attention to the

Rayleigh-Bénard problem?, where the fluid is considered to
occupy the space between two infinite planes separated by a
distance D, with the upper plane maintained at temperature
T, and salinity S, and the lower plane maintained at temperature
T,+AT and salinity S,+AS (AT, AS > 0). We assume both
planes to be stress free and perfect conductors of heat and salt,
and restrict attention to two-dimensional motion, dependent
only on one horizontal coordinate and the vertical coordinate.
Expressing all lengths in units of D, time in units of D% «r
(where xr is the thermal diffusivity) and representing the
temperature 7* and salinity $* by

T* = T+ AT(1—z4T); S* = S,+AS(1—2z4-5)

we can write the governing Boussinesq equations of motion
in terms of a stream function y as

o7 V2O —c L J(y, VoY) = — R9, T+ Rs0.5+ Viy
3, T+3y—J(y,T) = V2T
3,5+8.y—J(y,S) = 1V2S

Y=0y=T=S=0(z=(01)

where

J(f,g) = 0.f0.6—0.f%g

Fig. 1 The results of linear stability analysis for = 1 and

1 = 10}, Overstability first occurs along R = R, and monotonic

stability first occurs along R = R,. Only the hatched region is
stable to linear disturbances.
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The four non-dimensional parameters appearing in these
equations are: the Prandtl number o = V/ky, where V is the
kinematic viscosity; the ratio of the diffusivities T = xs/Kr,
where x5, the saline diffusivity, is less than kr; the thermal Ray-
leigh number R = agATD?3/kyv, where is a the coefficient of
thermal expansion, and g is the gravitational acceleration; and
the saline Rayleigh number Rs = BgASD?*/xrv where B is the
saline analogue of .

Stability

The criteria for the linear instability of these equations are
obtained by neglecting the nonlinear Jacobian terms and
representing the solutions in terms of the lowest normal modes
with an exponential time dependence of the form exp(®f).
The onset of overstability, defined by Z(w) = 0, first occurs
for a value of R which we denote by R, and exchange of
stabilities, defined by w = 0, first occurs for a value of R
which we denote for convenience by Rg. In both cases the
horizontal wavelength of the instability is 2%2. In the R-Rs
plane the linear stability boundary is a combination of R =
R;and R = R, as depicted in Fig. 1, which presents a summary
of the linearised results for 6 = 1 and © = 10~Y2, For Rs>
Rine, Where Ryng is the value of Rs at which R, == R4, as R
exceeds R, the conduction state (W = 7 = S = 0) becomes
unstable to an oscillatory mode. For 0 < R < Ryn as R
exceeds R, the conductionstate becomesunstable to a monotonic
mode,

We present here the form of the solutions of horizontal
wavelength 2%2 which emanate from the above linear transi-
tions, or bifurcation points, as the degree of nonlinearity
increases. An appropriate way to describe the resulting solu-
tions is as a function of their amplitude. This is conveniently
represented by either the thermal or saline Nusselt numbers
evaluated by the lower boundary

Nr=1-—20."Tl,, and Ng=1—209.8],_

where the overbar denotes a horizontal average, or by their
respective temporal maxima, Mr and M. Since for most
physical systems Rg> Rine and this is conceptually the most
interesting case, we concentrate on the latter regime and,
principally by numerical integration of equations (1), map out
the forms of equilibrium solutions in an R—M plane in the man-
per depicted in Fig. 2. The discussion is in general terms;
specific details and physical interpretations of the solutions
will be published elsewhere (H. E. Huppert and D. R. Moore, in
preparation).

The bifurcation point at R, can be either supercritical (R
increases as Mr or My increases) or subcritical (R decreases
as M or M increases). By the straightforward use of modified
perturbation theory®, a very lengthy relationship can be de-
termined (H. E. Huppert and D. R. Moore, in preparation)
which indicates, for fixed &, 1 and Ry, which of the two possi-
bilities occurs. It is known from general theory® that solutions
on branches emanating from subcritical bifurcations are
unstable until the branch reaches a minimum value of R.
Thereafter the branch continues with the amplitude of the
associated time-dependent solutions increasing with increasing
R. Supercritical branches are known to support stable solutions.
A typical plot of Ny and N against time for a solution on a
stable portion of the branch sufficiently close to R, is shown
in Fig. 3a.

Increasing R

As R increases, this form of motion continues until R reaches a
specific value, R, say. At R = R, the solution changes in form
and develops a further structure as is indicated in the form of
Nr or Ns as a function of time, as plotted in Fig. 3b. In both
Nrand N there are four extrema, two maxima and two minima,
per period, where the period is defined in the usual sense as the
time between two identical states. In modern mathematical
jargon, the solution for R < R, is on a sphere, while the solution
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Fig. 2 The stable oscillatory branch and the stable monotonic
branch fors = 1, T = 10~+ and Ry = 10% For R, < R < R,
the branch is drawn so as to show both local maxima. For R,
< R < R, the wavy line indicates that the solution is non-
periodic and no definite maximum can be assigned. The dots at
R = R, and R = Ry indicate the jumps in My which occur as
the solution changes from the oscilll.elltory branch to the monotonic
branch.

for R > R, is on a torus, and the transition at R = R, is
called a bifurcating torus®. This form of motion continues untit
R = R, say, at which wvalue a transition to a disordered
solution occurs. A typical plot of Ny and N against time for
such a disordered solution is shown in Fig. 3¢. Long com-
putation runs have not revealed any discernable periodic
structure in the solution. Such non-periodic solutions continue
to exist for increasing R until, for R = R, say, the only equi-
librium solutions are time independent. For some values of
o, T and Ry the transition at R, occurs before the one at
either R, or R;.

For all R > R, all equilibrium solutions are independent of
time. Time-independent motions are more efficient at transport-
ing heat and salt than time-dependent motions and thus the
Nusselt numbers undergo a discontinuous increase as the
solution changes from being on the oscillatory branch to the
monotonic branch, as indicated in Fig. 2. As R increases

Fig. 3 The thermal and saline Nusselt numbers as a function of

time for o =1, 1= 10"% and Ry = 10% a, R, < R = 8,600

< R;; b, R, < R=9800 < R,; and ¢, R, < R = 11,000.

The horizontal line in the bottom right-hand portion of ¢,
represents non-dimensional time.
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beyond R, the effects of the salt field decrease, and for R > R,
the equilibrium solutions approach those for Rs = 0, a situation
which has been intensively investigated by Moore and Weiss”.

Decreasing R

If Ris gradually decreased from some value greater than R ,, the
equilibrium monotonic solutions retrace the states that would
have been obtained on increasing R from R,; for each R > R,
there is a unique stable equilibrium solution. If R is decreased
below R,, an equilibrium time-independent solution continues
to exist, with decrcasing amplitude, until R == R; say. Further
decrease of R leads to a solution on the oscillatory branch
already described, or if R; < R, to the null solution. Thus,
as indicated in Fig. 2 there is hysteresis between the two
different forms of solution.

The time-independent branch of solutions emanates from the
bifurcation point at R = R, which modified perturbation
theory shows to be subcritical if Rs > Rine. As mentioned
previously, solutions on such a subcritical branch are unstable
until the minimum value of R is attained. Thereafter the branch
continues and solutions on it are stable, with the amplitude of
the solution increasing with increasing R.

If Rs < Ryng only time-independent equilibrium solutions
are possible. For sufficiently small Rg the bifurcation at R is
supercritical, otherwise it is subcritical (H. E. Huppert and D. R.
Moore, in preparation).
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Conclusion

To summarise, in the most general case, as R increases there is
a transition from the conduction state to an oscillatory motion
(Fig. 3a), followed by a transition to a more complicated form
of oscillatory motion (Fig. 3b), followed by a transition to a
non-periodic, random state (Fig. 3¢), followed by a transition
to steady motion. Hence by increasing R it is possible in this
situation to suppress disordered motions. For some values of &,
T and Ry a sufficiently large disturbance can cause a transition
directly from the conduction state to the steady state, while
for other values of o, T and Rs only some of the intermediate
transitions are omitted.
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Stratified waters as a key to the past
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Density stratification in lakes and oceans generate anoxic
conditions below the pycnocline, and sediment facies mirror
this development. A comparison of modern sediments
deposited in stratified and non-stratified waters with
sediments formed since the Cambrian reveals that the
ancient sea has been stratified a number of times.

Tue world ocean is fully oxygenated except for some local areas
in regions of upwelling or stagnation. Oxygenation is related
to modern climates, that is thermo- and haloclines, which can
inhibit the mixing of water masses between stratified layers but
which are only temporarily stable. Furthermore, cold polar
surface water sinks and moves towards the equatorial abyssal
plains. These and other climate-controlled physical factors turn
over the ocean’s water in a matter of a few hundred to a few
thousand years. At this rate, molecular oxygen is recharged
much faster in the deep sea than it is consumed by the oxidation
of organic matter at greater water depths.

During prolonged warmer climatic stages or when land-
locked seas develop, thermo- or haloclines may become so
stabilised that they only move up and down in response to
seasonal changes, tectonic activities, or some other major
perturbations in the environment; but they rarely break up
entirely. In such conditions molecular oxygen will remain
abundant in the euphotic zone but will gradually drop to zero
below the density boundary. This will cause the development
of a euxinic environment in which no higher forms of life can
exist and molecular oxygen is replaced by hydrogen sulphide.

It is important to know what happens to the sirata when this

situation arises because such information is crucial to the task
of explaining the origin of euxinic sediments, which are so
plentiful in the stratigraphic record. Unfortunately, compara-
tive studies between shallow and deep-water habitats are
hindered because most of the marine sediments exposed on
continents are of shallow-water origin and suites of abyssal
sediments have only recently become available through the
Deep Sea Drilling Project.

A significant aspect of this problem which has received little
attention in the past concerns a possible feedback mechanism
between oxidising and reducing environments which may
result in the formation of specific sediment types.

We will focus attention here on the feedback question by
examining sediments of the same ages and geological settings
which differ only in that one group has formed below and the
other above a well defined thermo-halocline. The sediments
are from cores from the Black Sea and some deep East African
rift lakes and they represent continuous sections through parts
of the Holocene and Pleistocene. A detailed examination of a
thermo-halocline, oscillating through time, will allow us fo
follow in slow motion the impact of the reducing on the oxidis-
ing environment and vice versa.

Phase boundaries

An heuristic theorem implies that physicochemical phenomena
established at the boundary between two different states
characterise these two states. In the present context the theorem
implies that the physicochemical properties of the reducing and
oxidising environments are ‘written’ on the boundary layer,
that is, the thermo-halocline. We will now examine this interface.

Mechanism and rate of molecular exchange across a well
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