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The initial development of long lava flows is investigated using simple theory and field evidence. Order-of-
magnitude estimates of the evolving thickness and the extending length of lava are obtained by scaling
arguments based on the simplification that the bulk structure can be modelled initially as a Newtonian fluid.
A scaling analysis suggests that the rate of advance of the leading front evolves primarily due to temporal
variations in the effusion rate and minimally due to topography. The apparent viscosity of the bulk flow
increases with time at subsequent stages when effects due to cooling become important. Theoretical results
are applied to the study of long lava flows that descended on Etna, Kilauea and Lonquimay volcanoes. We
determine that lava flows at Kilauea extended initially like a Newtonian fluid with constant viscosity,
implying that thermal effects did not significantly influence the dynamic properties of the bulk flow. In
contrast, effects due to cooling played a major role throughout the advance of lava flows at Etna and
Lonquimay. We show that the increasing length and volume of an active emplacement field can be
monitored to estimate its evolving viscosity, which in turn allows the further advance of the lava to be
predicted.
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1. Introduction

Lava flows occurwhenmolten rock is extruded from a volcanic vent.
A long channel of lava may develop down a slope, where the flow is
driven by gravity and confined laterally by elevations in topography. The
lava quickly cools and solidifies at themargins of the flow, where levees
formand further confine theflow(Hulme, 1974; Sparks et al., 1976). The
upper surface of the lava may also solidify to form a lava tube system
whereby the lava continues to flow inside a completely enclosed
passage (Greeley and Hyde, 1972; Hallworth et al., 1987; Calvari and
Pinkerton, 1999). The confinement may insulate the interior of the
channel, allowing the lava to flow efficiently, withoutmuch loss of heat,
towards its leading front (Keszthelyi, 1995). The front of the flow may
propagate, branch into different lobes and stagnate in a complex series
of processes (e.g., Lipman and Banks, 1987), before the entire structure
of the emplaced lava solidifies.

One of the motivations for understanding the morphology of lava
flows is to predict and evaluate the consequences of an effusive
eruption. The resultant flow of hot and destructive lava can reach
distant areas, threatening lives and damaging properties (Blong,
1984). An accurate prediction of the evolution of active lava flows is
helpful for identifying danger zones and assessing risks posed to areas
on volcanoes. For the purposes of effective forecasting, it is useful to
be able to predict the extent of lava based on conditions that can be
measured prior to or during the early stages of lava emplacement.

Previous studies obtained empirical relationships showing that the
final lava length is correlated to a number of factors, including the
mean effusion rate at the vent (Walker, 1973), the total erupted
volume (Malin, 1980) and the rheology of the lava (Pinkerton and
Wilson, 1994). An idea has been put forward that the flow is either
cooling-limited when it reaches a maximum length attainable for a
given supply of lava from the vent or volume-limited when a
considerable decline in the effusion rate prevents the flow front
from reaching themaximum length (Guest et al., 1987). In either case,
the final length of the lava is controlled by dynamic processes
involving heat loss and depends importantly on the effusion rate
(Harris and Rowland, 2009). We complement previous studies by
examining dynamically how the various input factors, including
variations in the effusion rate and effects due to cooling, influence the
lava flow before it ultimately stops.

The dynamic processes leading to the final solidified state require
understanding of the fluid dynamics of the lava (Griffiths, 2000). Of
particular importance is the development of lava flows during their
early stages, when the flow front advances rapidly and reaches a large
proportion of its final extent. A quantitative formulation of the initial
advance of long lava flows forms an important foundation for
studying subsequent stages of the evolving morphology of lava. The
use of scaling arguments, which are applied to the early stages, could
be developed further to study other problems including the prediction
of the final lava extent, which is beyond the scope of the current
investigation.
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Fig. 1. A sketch of lava of typical length L, widthW and heightH flowing inside a channel
of cylindrical shape.
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During the early stages, an open channel develops down a slope and
directs the flow towards its advancing front (Hulme, 1974; Kerr et al.,
2006). The resultant flowduring the early stages is commonlymodelled
as Newtonian and laminar (Tallarico and Dragoni, 1999; Sakimoto and
Gregg, 2001). There is a rich class of mathematical problems relevant to
the prediction of lava flows (Baloga and Pieri, 1986; Bruno et al., 1996).
The apparent viscosity of the bulk structure of the lava is expected to
remain constant until the flow is influenced by thermal effects, which
change the dynamical properties of the lava in two important ways.
First, crystals may nucleate due to degassing and grow in the flow,
effectively increasing the viscosity of the lava (Sparks et al., 2000).
Second, a crustal layer may develop on the surface due to cooling
(Griffiths and Fink, 1993), effectively introducing an additional
resistance toflow. Bothmechanisms reduce theflowspeed considerably
until the flow stagnates altogether.

Here, we consider the initial advance of lava flows supplied down
open channels of different shapes. The aim is to provide theoretical
insight into natural lava flows by simplifying the analysis as much as
possible while including the most fundamental mechanisms. For
simplicity, the lava is modelled as Newtonian andwe study the effects
on the bulk flow due to given variations in the topography, the
effusion rate and the apparent viscosity. Theoretical results obtained
are applied to describing lava flows that descended the volcanic
slopes of Etna, Kilauea and Lonquimay. The theoretical treatment is
presented first in Section 2, followed by applications to field data in
Section 3. We demonstrate how increases in the viscosity of the lava
and further advance of the flow front can be predicted solely based on
prior measurements of the cumulative volume and the length of an
evolving emplacement field.

2. Theory

Consider an open channel of lava flowing down a slope. The
channel may represent topography confining the entire length of lava
that has been extruded from a volcanic vent, as long as the flow does
not split into different branches. The following analysis applies
equally well to lava that has branched off from another channel and
extends thereafter as a single lobe. We are concerned with the
temporal evolution of the dimensions of a single channel of lava. Of
interest are the characteristic height H(t), width W(t) and length L(t)
of the flow at time t. The flow is primarily along the channel, provided
that the dimensions of the flow satisfy H≪W≪L.

The exact shape of the channel confining the flow of lava will
depend on a number of factors, which include the pre-existing
topography and the development of levees at the margins of the flow.
However, as we discuss later, the details of the channel do not
significantly influence the flow. Consider a general relationship
between the width and thickness of the flow of the form

H =w�∼ðW =w�Þn; ð1Þ

where ∼ denotes a relationship of proportionality, w is a measure of
the size of the channel and n is a prescribed constant that describes
the shape of the channel. For example, the limit as n→∞ is equivalent
to W∼w and corresponds to a shallow layer of lava flowing down a
flat channel of constant width w . Channels confining lava are
approximately described by n taking some finite value greater than
1. For instance, n=2 corresponds to a thin layer of lava flowing inside
a channel of cylindrical shape whose radius of curvature, w , is much
larger than the characteristic flow thickness, as shown in Fig. 1. The
case of n=1 describes flow along a wedge. Deep and narrow flows,
described by nb1, are not considered here because they are sheared
predominantly across fractures of width W≪H and do not apply to
natural lava flows.

The exact velocity varies within the lava but has a common
characteristic magnitude denoted by U(t)∼L / t because L is the only
characteristic length scale associated with the direction of flow along
the channel. In particular, U is the characteristic rate of advance of the
flow front, which is estimated by considering the governing equation
of Newtonian and laminar flow. The driving force of gravity must
balance the resistive forces due to the viscosity of the lava, provided
that inertial effects are negligible. The component of gravity in the
direction of the flow is given by ρgsinθ, where ρ is the density of the
lava, g the acceleration due to gravity and θ the angle of inclination of
the channel to the horizontal. The lava is sheared predominantly
across its thickness because the resistive forces exerted at the sides of
the flow are negligible, since H≪W. The flow is sheared at the base,
where we impose the condition of no slip. Shear stresses exerted by
the ambient or any development of a crustal layer on the free surface
are considered to be small initially. Given that the flow is sheared
across its thickness, the viscous forces scale like μU /H2, where μ is the
dynamic viscosity of the lava. By balancing gravity with viscous forces
and rearranging, we obtain the characteristic speed of the flow

U∼ρg sinθH2
= μ : ð2Þ

Note that Eq. (2) is consistent with an equation quantifying the
surface velocity of flow down a channel with rectangular cross-
section, often referred to as the Jeffreys equation (Jeffreys, 1925). The
flow speed depends importantly onH, the thickness of the flow,which
is set by the supply of lava into the channel.

The supply of the lava into the channel from upstream depends on
the effusion rate at the vent and generally varies with time. The
effusion rate corresponds to the rate of change of the cumulative
volume of extruded lava. Typically, the effusion rate increases initially
during a waxing phase and then decreases slowly during a waning
phase (Wadge, 1981). To illustrate the effects of the lava supply on the
resultant flows down open channels, we consider a simple power-law
dependence of the effusion rate with time, which is expected to fit
field data during the initial stages of an effusive eruption. Let the
effusive activity at the vent begin at time t=0 such that the
cumulative volume of extruded lava is given by

V = V�ðt=T�Þα; ð3Þ

where T is some fixed time scale at which the volume erupted is
V=V . The exponent α≥0 is a prescribed constant and describes the
temporal evolution of the effusion rate at the vent. For example, α=0
corresponds to a fixed volume V of lava extruded rapidly at time t=0
and no further extrusion subsequently. Another example of impor-
tance is α=1, which corresponds to a continuous supply of lava with
a steady effusion rate at the vent. A more general situation, where the
effusion rate at the vent declines continuously with time, is described
by α taking some value between 0 and 1. Note that the volume of
extruded lava for general αN0 in Eq. (3) grows indefinitely, which
does not model the effusion rate at large times. Nevertheless, Eq. (3)
provides useful insight into the development of long lava flows during
the early stages of the propagation, as we investigate below.

image of Fig.�1
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The cumulative volume of lava in the channel given by Eq. (3)
must scale like

V∼HWL: ð4Þ

By eliminating W, H and V from the coupled relationships in Eqs.
(1)–(4) and the relationship U∼L / t, the scaling for the extent of the
flow at time t is given by

L∼tð2αn + n + 1Þ= ð3n + 1Þ
: ð5Þ

The exponent c=(2αn+n+1)/(3n+1) depends only on the
evolving nature of the effusion rate at the vent described by α in Eq.
(3) and the shape of the channel described by n in Eq. (1). The
exponent c does not depend on the viscosity of lava or the slope angle
of the channel, as long as they remain approximately constant.

The scaling of the flow length given by Eq. (5) is consistent with a
more detailed theoretical analysis and agrees well with data from a
series of laboratory experiments (Takagi and Huppert, 2007; Takagi and
Huppert, 2008). The experimentswere conducted by supplying glycerin
inside a wedge or a semi-circular channel either instantaneously or
continuously with a steady flux, verifying the validity of Eq. (5) when
n=1,2 andα=0,1. The special case ofα=0not only describes theflow
of an idealized situation of an instantaneous release of fluid into an
inclined channel, it also describes the flow of a more general situation
where thefluid is supplied from theupstreamendof an inclined channel
over a duration that is much shorter than the time scale of the resultant
flow. In the context of a brief effusive eruption, where a considerable
volume of lava is extruded during a relatively short period, the resultant
flow does not depend on the details of the effusive activity and extends
like Eq. (5), with α=0.

The numerical value of the exponent c, previously introduced so
that the flow extends with time like tc, provides an important insight
into the evolving nature of lava flows in open channels. Depending on
whether cb1, c=1 or cN1, the position of the front decelerates,
progresses steadily or accelerates, respectively, with time. A close
inspection of the dependence of the exponent c on n in Eq. (1) and α in
Eq. (3) reveals that the shape of the topography is not as important as
the nature of the temporal variations in the effusion rate. This is
illustrated by a stronger dependence of c on α than n, as shown in
Fig. 2 for α=0, 1 and 2. In fact, in the special case of a steady effusion
rate at the vent (α=1), the flow front advances steadily in open
channels of any shape.
Fig. 2. Plot of c against n for three different values of α, where a cumulative volume ∼ tα

results in a lava flow of length ∼ tc. The number n describes the cross sectional shape of
the channel, as sketched beneath corresponding integer values of n.
Given that the shape of the channel does not significantly influence
the exponent c, a representative shape of a channel with rectangular
cross-section will be considered in all the analysis to follow. The flow
is effectively two-dimensional, independent of the cross-stream
direction. By taking the limit as n→∞ in Eq. (5), we determine the
extent of the flow down a flat channel of characteristic width a to be
given by

L ∼ ρg sinθA2
�T� =μ

� �1=3
t=T�ð Þð2α+1Þ=3

; ð6Þ

where A =V /w is the characteristic area of lava extruded in time T
per unit cross-stream width w . The extent of the flow advances at
least like t1/3, provided that the lava descends down the channel like a
Newtonian fluid of constant viscosity. Note that L in Eq. (6) does not
change much as a result of minor variations in θ and w , reinforcing
the idea that topographic variations play aminor role in governing the
length scale of the flow. By coupling relationships in Eqs. (3) and (6),
we determine the characteristic thickness of the flow to be given by

H∼ μA� =ðρg sin θT�Þ½ �1=3 t=T�ð Þðα−1Þ=3
: ð7Þ

A declining supply of lava into the channel with αb1 in Eq. (3)
leads to a decreasing thickness of the lava with time, as expected. The
scalings in Eqs. (6) and (7) are consistent with the mathematical
solutions obtained by a more detailed analysis (Lister, 1992).

When the length and thickness of lava flowing down an inclined
channel scale like Eqs. (6) and (7) respectively for some common
value α, the implication is that the lava is flowing like a Newtonian
fluid of constant viscosity. If the temporal variations of either Eq. (6)
or Eq. (7) disagree with α in Eq. (3), which can be measured
independently by monitoring the cumulative volume of lava, then the
theoretical assumptions made so far need to be revised. The obvious
source of the problem lies in the simplifying assumption so far that the
viscosity remains constant. As the lava cools, its viscositymay increase
by orders of magnitude.

It is helpful to consider the effects on the flow due to a time-
dependent viscosity of the form μ∼ tβ for some β. Although this
power-law is not the end result of an explicit theoretical develop-
ment, a similar analysis has provided insight into the growth of lava
domes (Sakimoto and Zuber, 1995). The specific viscosity of lava may
vary in position but the bulk structure is simplified to flow with an
apparent viscosity, whose order of magnitude depends only on time.
By setting μ∼ tβ in Eq. (6), the characteristic thickness of the flow
evolves in the form

H∼tðβ+α−1Þ=3 ð8Þ

behind an advancing front of the flow, extending a distance

L∼tð2α+1−βÞ=3
: ð9Þ

Relationships Eqs. (8) and (9) indicate that an increase in the
viscositywith time, represented by βN0, results in a channel of thicker
lava, which advances at a slower rate compared to the corresponding
flow without any increase in viscosity. For example, a significant rise
with time in the level of lava inside a channel, which is being supplied
at a steady rate, can be explained by setting α=1 in Eq. (8) and
deducing that the viscosity of the lava is increasing considerably with
time. When the characteristic viscosity μ∼ tβ increases with time such
that β≥1+2α, the scaling given by Eq. (9) indicates that the flow
front does not advance, but that the flow extends a finite distance and
stops. Given that natural lava flows do not continue to propagate
indefinitely, the implication is that the viscosity of the lava must
increase sharply with time before the flow stops.

image of Fig.�2


Table 1
Table of selected lava flows investigated in this article.

Location Start date Reference

Etna 18 Jul 2001 LFS1, Coltelli et al. (2007)
Kilauea 13 Jun 1983 Episode 4, Wolfe et al. (1988)
Kilauea 22 Jul 1983 Episode 6, Wolfe et al. (1988)
Kilauea 30 Mar 1984 Episode 17, Wolfe et al. (1988)
Lonquimay 27 Dec 1988 Naranjo et al. (1992)

Fig. 3. Extent of the advancing front of lava plotted against time during three
representative episodes of the Pu'u O'o eruption in Kilauea, 1983–1984. Data points are
reproduced from figures presented on the plates of (Wolfe et al., 1988).
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Another possibility that gives rise to a considerable decline in the
speed of the flow is the additional force resisting the motion due to
the formation of a crustal layer on the upper surface of the flowing
lava. Effects on the lava flow due to the development of a surface crust
are presented below for the propagation down a slope, which is
different from a growing lava dome on a horizontal surface (Griffiths
and Fink, 1993). The idea is that cooling is assumed to be confined to a
thin thermal boundary layer of characteristic thickness δ near the
crust, below which the interior flow of lava remains isothermal. The
approximation holds for a sufficiently large Peclet number UH /κ≫1,
where κ is the thermal diffusivity of the lava flowing under the crust.
Thermal conduction is assumed to be most significant across the
depth so that the crustal thickness grows diffusively like

δ∼ðκtÞ1=2: ð10Þ

The crust is approximated to have a thickness proportional to the
thermal boundary layer and exert a shear stress σcδ on the flowing
lava per unit surface area, where σc is the effective shearing strength.
Under these assumptions, the driving force due to gravity is no longer
balanced by viscous forces at the base of the channel and within the
flowing lava but instead by σcδ /H, the retarding force per unit volume
due to the surface crust. By setting ρgsinθ∼σcδ /H and coupling with
Eqs. (3) and (4), we determine the characteristic thickness of the bulk
flow to grow like t1/2 behind an advancing front, which extends a
distance

L∼tα−1=2
: ð11Þ

Note that Eq. (11) is equivalent to Eq. (9) with β=5/2−α,
suggesting that the bulk flow with a surface crust extends like a fluid
with apparent viscosity that grows in time like t5/2−α. Note also that
an advancing flow front requires a continuous supply of lava with
αN1/2. The scaling given by Eq. (11) does not hold for a cumulative
volume of lava described by α≤1/2, suggesting that the entire
structure of the flow cools and comes to rest when there is insufficient
supply of lava driving the flow in the insulated interior under the
crust.

The applicability of the scaling laws introduced in this section is
best assessed by testing against data of natural lava flows. The theory
predicts the characteristic thickness of lava to scale like Eq. (8) and the
extending length like tc as in Eq. (9), provided that the cumulative
volume scales like tα and the apparent viscosity of the lava like tβ. The
scaling relationships are useful for estimating any variation with time
in the viscosity of the lava, which is difficult to measure directly in the
field. When the cumulative volume of lava is plotted against time on
logarithmic scales, the slope of the line of best fit is α. Similarly, c can
be obtained by finding the slope of the line of best fit through data of
the flow extent plotted against time on logarithmic scales. The theory
predicts the apparent viscosity to have scaled like tβ, where β=1+
2α−3c. In the following section, we demonstrate how the evolving
viscosity and the morphology of natural lava flows can be explained
using simple ideas that have been developed. It is not possible at this
stage to conduct a complete test of the model partly due to the lack of
data showing changes in the bulk viscosity of the flowing lava.
Variations in the viscosity are inferred and remain to be tested against
further data in future studies.

3. Natural lava flows

Many natural lava flows have been observed and studied
extensively. Well-documented sets of field data are available in the
literature describing the evolving morphology of long lava flows. We
select representative sets of data to examine how a single channel of
lava advances down a slope. The width of the flow and the slope do
not change considerably with time or distance downstream, as
assumed in the model. Lengths of the flow recorded at different
times were compiled to investigate several different lava flows, as
presented in Table 1. The selected data provide us with an excellent
opportunity to test the theoretical ideas developed in Section 2.

A series of eruptive events occurred on the Kilauea Volcano of
Hawaii starting in 1983. Episodes of vigorous fountaining at central
vents resulted in basaltic lava flows, some of which extended several
kilometers. Detailed narratives and graphical representations of lava
flows during the first 20 episodes in 1983–1984 are available in
(Wolfe et al., 1988). We take a representative sample of episodes in
which one major flow of lava extended from the central vent of Pu'u
O'o.

A cone of Pu'u O'o marked the locus of major fountaining and lava
discharge soon after the start of episode 4 during the late morning of
13 June 1983. The cone enclosed a crater partly filled with lava, which
overflowed and fed a well-developed channel. The lava flow advanced
in the southeastern direction and extended a distance of 5.7 km by
16:00 on 15 June 1983. During this time, a time-lapse camera at the
vent recorded low bursts of fragmented spatter rather than sustained
fountains, which caused large fluctuations in velocity and thickness of
themajor flow. However, variations in fountain height in episode 4, as
plotted in figure 1.24 ofWolfe et al. (1988), are not significant over the
time scale of tens of hours during which the flow front advanced.
Based on the assumption that fountain height is proportional to
discharge rate of lava at the vent, the major channel was fed with lava
at an approximately steady rate. The advancing position of the flow
front is plotted against time in Fig. 3. Although the flow is reported to
have experienced fluctuations in speed, the general trend is an
approximately steady advance of the flow front until the afternoon of
16 June 1983. Both the discharge rate at the vent and the rate of
advance of the major flow were approximately steady during the
course of about three days so α=1 and c=1. We deduce β=1+
2α−3c=0, meaning that the major channel of lava flowed initially
like a Newtonian fluid of constant viscosity.

Some subsequent episodes also featured a steady discharge rate of
lava at the Pu'u O'o vent which resulted in a steady advance of a major
flow. In episode 6, after a series of minor lava flows, onemajor channel
of lava developed and extended to the north east. Fig. 3 shows how

image of Fig.�3
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the length of the flow initially extended. The rate of advance of the
major flow remained steady from the early afternoon of 23 July 1983,
when the channel began to extend, until the night of 24–25 July 1983,
when the flow front divided into two parallel lobes. During this
period, a steady and sustained discharge of lava supplied the major
channel, while the flow front advanced at an average rate of 80 m/h,
suggesting that the viscosity remained constant.

In episode 17, a major channel of lava extended eastwards at an
approximately steady rate of 490 m/h from a distance 2 km away
from the base of Pu'u O'o, from the late morning until the evening of
30 March 1984. During the day, the fountain height remained at
approximately 100 m, suggesting that the discharge rate of lava was
steady. The discharged lava was supplied primarily to the main
eastern flow and minimally to its minor subordinate flow, as shown
graphically on the map of episode 17 on plate 2 of Wolfe et al. (1988).
The considerably faster flow in episode 17 compared to other episodes
on Kilauea has been attributed partly to confinement of the flow
(Wolfe et al., 1988). However, the average width of the flow was
220 m in episode 17, not much less than the widths of 230 m and
260 m in episodes 4 and 6 respectively. An increase of the effusion rate
by a factor of almost four and a minor decrease in the flow width,
which would increase A2/3 in Eq. (6) by approximately 2.5, do not
account for the increase in the flow speed by a factor of approximately
six. The fast flow in episode 17 is primarily due to an order-of-
magnitude decrease in the viscosity of the lava. This is consistent with
Wolfe et al. (1988) who argue that increasing lava temperature,
decreasing phenocryst content and changing lava composition may
have been related to this apparent change in viscosity compared to
earlier episodes.

On 27 December 1988, a major flow of andesite lava developed on
Lonquimay Volcano in Chile which can be studied as follows. Themain
flow moved north-northeast down the Rio Lolco valley and extended
to 10.2 km after 330 days. It has been observed that the lava of
thickness ∼20m and width ∼500m extended in length ∼104m within
months by order of magnitude. Using these values in the scaling
relationship in Eq. (4), we obtain an order-of-magnitude estimate of
the cumulative volume of extruded lava ∼108m3, which is consistent
with the measurement of the final volume of extruded lava,
2.3×108m3 (Naranjo et al., 1992). The position and thickness of the
continuously advancing flow front at different stages are presented in
table 3 of Naranjo et al. (1992). A plot of the flow length against time
on logarithmic scales is shown in Fig. 4. By calculating the slopes of the
lines of best fit, we determine that the flow extended like t0.45 for
Fig. 4. Extent of the advancing front (+) and the cumulative volume (o) plotted against
time on logarithmic scales for the main flow on Lonquimay, 1988–1989. Numbers
represent the slope of the corresponding line of best fit. The cumulative volume scaled
like t initially and t0.34 subsequently, resulting in flow extending a distance proportional
to t0.45 initially and t0.18 subsequently. Data points are from Fig. 3 and table 3 of
(Naranjo et al., 1992).
approximately the first 8 days and like t0.18 thereafter, before the flow
stopped. The cumulative volume of the flow increased approximately
linearly with time at a rate of 6.9×106m3 per day for the first 8 days
according to Fig. 3 of Naranjo et al. (1992). Given that the cumulative
volume scaled like t and the flow extent like t0.45, the theory
developed previously predicts that the apparent viscosity increased
with time like t1.65 initially. Eq. (11) with α=1 predicts c=0.5, which
is in reasonable agreement with the field data indicating c=0.45,
suggesting that the initial lava flow on Lonquimay was resisted by the
development of a surface crust. At subsequent stages, the cumulative
volume increased like t0.34, where the exponent corresponds to the
slope of the line of best fit through the corresponding data in Fig. 4.
Setting α=0.34 and c=0.18, we obtain β=1.14 and deduce that the
apparent viscosity increased with time like t1.14. The theory shows
that the viscosity of the lava increased with time throughout the
course of the flow, which is consistent with the increase in the
viscosity of the flow front as it advanced downstream (Naranjo et al.,
1992).

Detailed measurements of a long lava flow on Mount Etna in 2001
can be analysed in a similar fashion. A fissure close to Monte
Calcarazzi between 2100 m and 2150 m above sea level, referred to as
LFS1 in Coltelli et al. (2007), opened at 2:20 on 18 July 2001. The main
lava flow continuously descended from the LFS1 vent and attained its
lowest elevation of 1040 m on 25 July 2001, when the lava flow
extended a distance of 6.4 km with a maximum width of 545 m. The
major channel of lava was supplied predominantly from the LFS1 vent
and minimally from a minor flow extending from another vent, LFS2.
The cumulative volume of lava in the main LFS1 flow is presented in
table 8 of Coltelli et al. (2007), which is approximated by Eq. (3) with
α=1.27. Likewise, the extending length of the flow is found to scale
like t0.50. Given that α=1.27 and c=0.50, the theory developed
previously predicts β=2.04. The apparent viscosity of the lava
increased like t2.04, suggesting that the flow decelerated considerably
due to thermal effects (Fig. 5).

4. Summary

The initial advance of long lava flows was investigated quantita-
tively using scaling arguments. The extending length of the lava was
shown theoretically to depend importantly on the supply from
upstream and minimally on the shape of the channel. Thermal effects
on the bulk flow were examined to play a major role at subsequent
stages when the flow front decelerates considerably. The use of
scaling arguments, as drawn out in this paper, can be extended to
incorporate additional effects or even investigate new problems,
including ones for which it is very difficult to write down the
governing equations completely.
Fig. 5. Extent of the advancing front (x) and the cumulative volume (o) of lava both
plotted against time on logarithmic scales during the early stages of the LFS1 flow on
Etna in 2001 (Coltelli et al., 2007). Numbers indicate the slope of the corresponding line
of best fit.

image of Fig.�4
image of Fig.�5
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The theoretical predictions were applied to explain the initial
development of natural lava flows on the volcanoes of Etna, Kilauea
and Lonquimay. We determined that selected lava flows on Kilauea
extended initially like a Newtonian fluid of constant viscosity, while
lava flows on Etna and Lonquimay increased considerably in viscosity
throughout the course of their propagation. This suggests that thermal
effects due to cooling played a major role at all times as the flows
advanced on Etna and Lonquimay but only after the flows nearly
attained their maximal extent on Kilauea.

Our analysis of field observations demonstrates how the mor-
phology of long lava flows can be studied readily using quick and
simple techniques. The relationship β=1+2α−3c allows one of the
three parameters (α,β,c) to be calculated given the other two, where
the cumulative volume ∼ tα and viscosity ∼ tβ of the lava extends a
distance ∼ tc. This relationship enables any variation in the apparent
viscosity of the lava, a useful indicator of the role of heat loss, to be
estimated solely by monitoring the growth rates of the cumulative
volume and the flow extent. Values of α and β characterising active
lava flows in the early stages provide an estimate of c, helpful for
predicting any further advance of the lava.
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