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We consider the propagation of a buoyancy-driven gravity current in a porous medium
bounded by a horizontal, impermeable boundary. The current is fed by a constant
flux injected at a point and leaks through a line sink at a distance from the injection
point. This is an idealized model of how a fault in a cap rock might compromise the
geological sequestration of carbon dioxide. The temporal evolution of the efficiency of
storage, defined as the instantaneous ratio of the rate at which fluid is stored without
leaking to the rate at which it is injected, is of particular interest. We show that the
‘efficiency of storage’ decays like t−2/5 for times t that are long compared with the
time taken for the current to reach the fault. This algebraic decay is in contrast to
the case of leakage through a circular sink (Neufeld et al., J. Fluid Mech., vol. 2010)
where the efficiency of storage decays more slowly like 1/ ln t . The implications of the
predicted decay in the efficiency of storage are discussed in the context of geological
sequestration of carbon dioxide. Using parameter values typical of the demonstration
project at Sleipner, Norway, we show that the efficiency of storage should remain
greater than 90 % on a time scale of millennia, provided that there are no significant
faults in the cap rock within about 12 km of the injection site.
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1. Introduction
Recently, the study of flow in porous media has received renewed impetus because

of field trials in which carbon dioxide (CO2) is pumped into aquifers (Bickle et al.
2007) – the so-called geological sequestration of CO2. It is hoped that if these trials are
extended, it may be possible to sequester large quantities of CO2, thereby mitigating
the effects of climate change. Indeed, Pacala & Socolow (2004) suggested that this
method alone might feasibly supply one ‘wedge’ out of the seven required to reduce
CO2 levels sufficiently to stabilize global temperatures.

A review of the fluid mechanics of propagation and leakage of gravity currents in
porous media, with particular reference to carbon sequestration, is given in Part 1 of
this paper (Neufeld et al. 2010). In brief, carbon sequestration consists of pumping CO2

into a brine-saturated aquifer. At the typical temperatures and pressures within these
aquifers, CO2 becomes a supercritical fluid. The injected CO2 remains buoyant with
respect to the ambient brine and thus rises until it encounters a relatively impermeable
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cap rock (e.g. a shale layer), at which point it begins to spread laterally as a gravity-
driven current. Given the large volumes of CO2 that need to be sequestered, it is likely
that during this spreading phase the current may encounter a fault in the overlying
cap rock through which it is able to leak. In this article, we analyse the coupling
between the propagation of the current and leakage through a linear fracture. The
question of primary concern is whether the presence of a leakage pathway seriously
compromises the efficacy of geological storage. One simple measure is the efficiency
of storage, Es , which was defined in Part 1 (Neufeld et al. 2010) as the instantaneous
proportion of injected material that is stored and not leaked, i.e.

Es =
q − ql

q
, (1.1)

where q is the injection flux and ql is the leakage flux.
Previous studies of the effects of localized fractures on the efficiency of storage in

other geometries were reviewed in Part 1. In these studies, it was found that at times,
t , large compared with that taken for a gravity current to reach the sink, a steady
state develops in the neighbourhood of the source and sink. In this steady state, the
input flux is balanced at leading order by the leakage flux. However, far from the
inner source–sink region, the current continues to evolve owing to the (decreasing)
flux that escapes the sink. Matching the outer evolving current onto the inner steady
state allows this flux, and hence the efficiency of storage, to be determined.

For the case of two-dimensional propagation and leakage (Pritchard 2007; Neufeld,
Vella & Huppert 2009), it was found that Es ∝ t−1/2 for t � 1. In Part 1 we considered
injection from a point source near a circular sink and showed that in this case
Es ∝ (ln t)−1 for t � 1. From these two examples it is clear that the geometry of
the leakage pathway affects the quantitative behaviour of Es at late times. In this
article, we are concerned with determining the temporal evolution of Es for the case
of leakage occurring along a line sink some distance away from a point source.

The plan of the article is as follows. We present the theoretical formulation of
the problem in § 2, before considering the long-time behaviour of the system using
asymptotic and numerical techniques in § 3. We then consider the implications of our
results for the geological sequestration of CO2 in § 4, and conclude in § 5.

2. Theoretical development
2.1. Geometry

We consider the flow resulting from a point source that injects a constant flux q

of liquid with density ρ + �ρ and dynamic viscosity µ into a semi-infinite porous
medium of permeability k already saturated with a liquid of density ρ (see figure 1).
The porous medium is bounded below by a horizontal plane at z = 0, which causes
the injected liquid to spread out to form a gravity current. (The behaviour of this
dense current is equivalent to a situation in which relatively buoyant fluid is injected
beneath a cap rock, as is typical in the carbon sequestration projects that motivate
this study.) The bounding plane acts as an impermeable barrier, confining the current
to the region z > 0. To model the effect of a linear fault or fissure, we assume that the
bounding plane is impermeable everywhere except along a line sink of width w � xs ,
situated a distance xs from the point source, which allows material to leak from the
current. We orient our Cartesian coordinate system in such a way that the point
source is situated at x = (−xs, 0) and the centreline of the sink is given by x = 0.
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Figure 1. Sketch of the spreading of a dense gravity current within a porous medium in which
a line sink at x = 0 allows fluid to leak from the current. The inset shows a planview of the
spreading current along with the position of the point source and sink (grey line). The profile
in the main figure shows a cross-section through a typical current taken along the x-axis. The
vertical scale in this cross-section has been exaggerated for clarity.

For simplicity, we shall assume that the flow of the ambient fluid plays no role
in the motion of the injected fluid because the porous medium is semi-infinite. In
addition, we assume that the interface between the injected liquid and the ambient
liquid is sharp and given by z = h(x, y, t). For the case of CO2 injected into brine, this
latter assumption is unlikely to be satisfied because the effects of a viscosity contrast
between the two fluids and surface tension are likely to lead to complicated interfacial
shapes and multiphase flow. Nevertheless, we expect to gain physical insights from this
simplified system that may be applied to more realistic models of CO2 sequestration.
Moreover, the effects of fingering are reduced in buoyancy-driven flow (see Lake 1989,
for example).

2.2. Leakage and propagation

Following the approach of previous authors (Pritchard 2007; Neufeld et al. 2009,
2010), we assume that the leakage flow is driven by the hydrostatic overpressure,
�ρgh(x, y, t), through a passage of permeability ks in a barrier of thickness b. Using
the equations for flow in a porous medium (see Bear 1988; Phillips 2009, for example),
the Darcy velocity within the sink is

vs(x, y, t) = −ks

µ

�ρg

b
h(x, y, t) (|x| < w/2). (2.1)

Elsewhere in the current, the flow is predominantly horizontal so that the driving
pressure is approximately hydrostatic. It is thus the overpressure caused by the
density difference, �ρgh, that drives the propagation of the current. The Darcy
velocity within the medium is therefore k�ρg∇h/µ and we may use the conservation
of mass to confirm that the thickness of the current h(x, y, t) evolves according to

∂h

∂t
− γ ∇ · (h∇h) = −γ

ks

k

h

b
F(x; w), (2.2)

where γ = k�ρg/φµ is the characteristic buoyancy velocity within the porous medium.
The right-hand side of (2.2) represents localized leakage through the sink and

F(x; w) =

{
0, |x| > w/2

1, |x| < w/2
(2.3)

is the box-car function of width w centred on the line x =0.
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The evolution of the current according to (2.2) is subject to the boundary conditions

lim
r→0

[
2πrγ h

∂h

∂r

]
= −q and [n· (γ h∇h)]rn

= 0, (2.5)

with r2 = (x + xs)
2 + y2. These conditions impose a constant flux at the source and

zero flux through the perimeter of the current (given by x = rn), respectively.
The natural horizontal length scale is the distance xs from the source to the sink,

as shown in Part 1. We therefore use xs to scale all horizontal distances. With this
rescaling, it is natural to scale the height of the current with h∗ and time with t∗,
where

h∗ = (q/γ )1/2 and t∗ =
x2

s

(qγ )1/2
. (2.6)

Using these scalings, we find that the strength of the sink is characterized by the
parameter

λ =
ks

k

x2
s

b(q/γ )1/2
. (2.7)

The propagation of the current is then governed by the dimensionless evolution
equation

∂h

∂t
− ∇ · (h∇h) = −λhF(x; ε), (2.8)

where ε = w/xs is the dimensionless width of the sink. The dimensionless boundary
conditions are

lim
r→0

[
2πrh

∂h

∂r

]
= −1 and [n· (h∇h)]rn

= 0, (2.9a,b)

where r2 = (x + 1)2 + y2 in (2.9a).
When the width of the sink is small, ε � 1, its effect is more naturally viewed by

integrating both sides of (2.8) over −ε/2 � x � ε/2. Taking the limit ε → 0, we find
that

0 =

∫ ε/2

−ε/2

∂h

∂t
dx =

1

2

∫ ε/2

−ε/2

(
∂2h2

∂x2
+

∂2h2

∂y2

)
dx − λ

∫ ε/2

−ε/2

h dx, (2.10)

and thus obtain a flux jump condition across the sink

1

2

∂h2

∂x

∣∣∣∣0+

0−
= λ̄h̄(0, y), (2.11)

where λ̄= ελ and εh̄(0, y) =
∫ ε/2

−ε/2
h dx. Equation (2.11) shows that the flux per unit

length leaking through the line sink at position y is λ̄h̄(0, y). By integrating (2.11)
along the length of the sink, we find that the efficiency of storage

Es = 1 − λ̄

∫ ∞

−∞
h̄(0, y) dy. (2.12)

2.3. Numerical solutions

The numerical code described in Appendix A of Part 1 (based on an alternating-
direction implicit scheme) was modified to solve (2.8)–(2.9a,b) with leakage occurring
from the line x =0 (rather than from a circular sink); the width of the sink is equal
to the grid spacing, ε = �x. The numerical results presented here were obtained
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Figure 2. (a–c) Contour plots showing the shapes of currents with different values of λ̄ at
time t =10. The value of λ̄ is given in each panel. In each case, the source is positioned at
(−1, 0) and the sink lies along the line x = 0.
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Figure 3. Numerical results showing the efficiency of storage, Es , as a function of time
on logarithmic scales. The non-solid lines are fits of the numerical data to the relationship
Es = cst

−2/5 using the last tenth of the data (i.e. largest times).

with a spatial resolution �x = 1/201 for −3 <x < 1 and −2 < y < 2, and a stretched
resolution elsewhere, as described in Appendix A of Part 1.

Our numerical results show that the current initially spreads axisymmetrically until
it encounters the sink. Figure 2 shows contour plots of the current some time after
it has reached the sink for three different values of λ̄. These contour plots show that
for small sink strengths, λ̄� 1, the current spreads past the sink with a relatively
small perturbation to its axisymmetric shape, whereas for large sink strengths, λ̄� 1,
the current only spreads a limited distance past the sink. This qualitative picture
persists at later times. Furthermore, we find that the height of the current reaches a
steady value close to the source–sink pair. However, the current continues to spread
away from the source and the maximum radial extent of the current appears to be
asymptotically proportional to t2/5.

A quantity of considerable practical interest is the efficiency of storage, Es , defined
in (1.1). Figure 3 shows the dependence of Es on time from simulations with three
different values of λ̄. We see that, for t � 1, Es ∝ t−2/5 in each case with a prefactor
that depends on the value of λ̄.
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3. Asymptotic efficiency of storage
In this section we use asymptotic methods to explain the algebraic decay of Es

at large times that is observed in figure 3. These asymptotic methods are based on
the following physical picture (cf Pritchard 2007; Neufeld et al. 2009, 2010): as the
evolution of the current proceeds, we expect that the height of fluid above the sink
will increase. Thus the leakage flux will also increase until, in the limit of large times
t � 1, it approximately balances the input flux. The solution will then consist of an
approximately steady inner region x2 +y2 = O(1) and an outer region x2 +y2 � 1 (fed
by the small difference between the input and leakage fluxes) in which the current
continues to evolve. We therefore consider these two regions separately and then
match them to obtain an asymptotic description of the evolution of Es . We begin
with the inner steady-state problem.

3.1. Inner steady state

Neglecting the time dependence in (2.8), we find that the profile of the inner steady-
state region is given by the solution of

∇2h2 = 0, (3.1)

that accounts for a point source at (x, y) = (−1, 0) as described by (2.9a) and leakage
of an equal flux along the line sink located at x =0, as described by (2.11).

Since h2 satisfies Laplace’s equation in two dimensions, the steady-state problem
is analogous to the three-dimensional electrostatic problem of a line charge near a
plane (see Bleaney & Bleaney 1976, for example), albeit with an unusual nonlinear,
mixed boundary condition at this plane. Motivated by the electrostatic analogue, we
make an ansatz for the profile of the steady-state current of the form

2πh(x, y)2 =

⎧⎪⎨⎪⎩ ln

[
(x − 1)2 + y2

(x + 1)2 + y2

]
+ φ−(x, y), x < 0,

φ+(x, y), x > 0.

(3.2)

Here the form for x < 0 has been written as a superposition of a point source at
(−1, 0), an image point sink at (1, 0) and a non-singular correction φ−. Clearly, the
functions φ±(x, y) must be harmonic by (3.1). We define φ0(y) = 2πh(0, y)2, and note
that

φ0(y) = φ+(0, y) = φ−(0, y). (3.3)

We obtain an equation for φ0(y) by substituting the ansatz (3.2) into the jump
condition (2.11) to find that

∂φ+

∂x

∣∣∣∣
x=0

− ∂φ−

∂x

∣∣∣∣
x=0

+
4

1 + y2
=

(
23π

)1/2
λ̄φ

1/2
0 . (3.4)

By introducing the Fourier transform of φ0(y) the boundary conditions (3.3) and
(3.4) may be used to give information throughout the domain . We define the transform
by

φ̃0(k) =
1

2π

∫ ∞

−∞
e−ikyφ0(y) dy. (3.5)

To satisfy Laplace’s equation away from x = 0, we must have

φ±(x, y) =

∫ ∞

−∞
φ̃0(k) exp

(
iky ∓ |k|x

)
dk, (3.6)
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which transforms (3.4) into the integral equation(
2π

)1/2
λ̄φ̃

1/2
0 = exp

(
−|k|

)
− |k|φ̃0. (3.7)

Solution of this equation is important in determining the dependence of the long-term
efficiency of storage on the strength of the sink λ̄.

Anticipating that the temporal dependence of the efficiency of storage can be found
by matching the inner steady state to a spreading outer current, we now consider
the outer limit of this inner solution. We first note that when |x| � 1 the exponential
decay in (3.6) means that the integral will be dominated by small k. We can therefore
perform a Taylor series of the integrand about k = 0. For large, positive x this
expansion gives

2πh2 = φ+ ∼ φ̃0(0; λ̄)

∫ ∞

−∞
exp(iky − |k|x) dk = 2φ̃0(0; λ̄)

x

x2 + y2
. (3.8)

For large, negative x we find that

2πh2 ∼ φ̃0(0; λ̄)

∫ ∞

−∞
exp(iky + |k|x) dk − 4x

x2 + y2
= − x

x2 + y2
[4 + 2φ̃0(0; λ̄)]. (3.9)

Hence, the far-field of the inner steady state is characterized by

h ∼
{

(A+| cos θ |/r)1/2, x > 0,

(A−| cos θ |/r)1/2, x < 0,
(3.10)

as r → ∞, where

A+(λ̄) =
φ̃0(0; λ̄)

π
, A−(λ̄) =

2 + φ̃0(0; λ̄)

π
. (3.11)

From the behaviour of (3.10), we see that the outer problems for x > 0 and x < 0
can only differ through the coefficients A±. It is thus possible to rescale the problems,
yielding a single outer problem on a half-space.

3.2. The outer current and the asymptotic efficiency of storage

Far from the source–sink region, flow proceeds as a gravity current fed by a dipolar
source. The evolution of the current is governed by the partial-differential equation

∂h

∂t
=

1

2
∇2h2, (3.12)

which can be written in scaling terms as

h/t ∼ h2/r2. (3.13)

For the solution of (3.12) to match onto the inner steady state, which is given
asymptotically by (3.10), we must have that

h ∼ (A/r)1/2 (3.14)

as r → 0, where

A =

{
A+, −π/2 � θ � π/2,

A−, π/2 � θ � 3π/2.
(3.15)
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Figure 4. Contour plot of the outer similarity solution H (η, θ ) to (3.17)–(3.19). The outer
edge of the current ηN (θ ) is shown by the white curve. Contours are plotted at equal intervals
of 0.0666. The total volume of the similarity solution is Ṽ = 2.38. The solution for the physical
outer gravity current is obtained by rescaling this solution using (3.16) with A+ for x > 0 and
its reflection with A− for x < 0 (cf. figure 2).

These scaling relations imply that h ∼ (A2/t)1/5 and r ∼ (At2)1/5 and so it is natural
to seek a similarity solution of the form

h(r, t) =
A2/5

t1/5
H (η, θ), (3.16)

where η = r(At2)−1/5. Substituting the similarity ansatz (3.16) into the governing
equation (3.12), we find that

−1

5
H − 2

5
η
∂H

∂η
=

1

2η2

∂2H 2

∂θ2
+

1

2η

∂

∂η

(
η
∂H 2

∂η

)
, (3.17)

which must be solved subject to the boundary conditions that

H (η, θ) →
(

| cos θ |
η

)1/2

as η → 0, (3.18)

and

H = 0 (θ = ±π/2). (3.19)

The boundary condition (3.18) arises from matching to the far-field behaviour of
the inner steady state, which is given by (3.10). The boundary condition (3.19) arises
from the leakage boundary condition (2.11) as follows: in scaling terms (2.11) reads
h2/r ∼ λ̄h̄. However, because h2 � h and r � 1 in the outer region, it follows that
h̄ � h and hence we find that H =0 along the sink, and hence (3.19).

The similarity solution is shown in figure 4 for −π/2 � θ � π/2. This was obtained
by numerically evolving a time-dependent form of (3.17) with the boundary condition
(3.19) imposed and an input flux at the origin. The input flux was rescaled to satisfy
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(3.18). The numerical solution of this problem rapidly approaches a steady-state
solution demonstrating also that this steady state is stable. Note that the solution for
the physical outer gravity current is obtained by rescaling this solution using (3.16)
with A+ for x > 0 and its reflection in the y-axis with A− for x < 0. The difference in
the values of A+ and A− is responsible for the asymmetry in the shape of the currents
observed in figure 2.

We may now calculate the efficiency of storage, Es . Recalling that Es , defined by
(1.1), is the difference between the source and leakage fluxes, we write

Es =
q − ql

q
=

∂

∂t

{∫ 2π

0

∫ rN

0

h(r, t)r dr dθ

}
. (3.20)

Substituting the similarity solution for h from (3.16) and (3.15), we find that

Es = cst
−2/5, (3.21)

where

cs(λ̄) = 3
5
Ṽ (A4/5

+ + A4/5
− ) (3.22)

and

Ṽ =

∫ π/2

−π/2

∫ ηN

0

H (η, θ)η dη dθ ≈ 2.38 (3.23)

is the volume in the outer similarity solution of (3.17)–(3.19), see figure 4, which was
determined numerically.

Thus far, we have found that the efficiency of storage decays algebraically like t−2/5

for t � 1. This is in agreement with the numerical results presented in figure 3 for a
wide range of values of λ̄. Figure 3 also shows that the prefactor in this decay, cs ,
varies with the sink strength λ̄.

3.3. Asymptotic leakage as a function of sink strength

In order to determine cs(λ̄) from (3.22), we need to calculate A±(λ̄) from φ̃0(0; λ̄) and
(3.11). We therefore turn our attention to determining the value of φ̃0(0; λ̄) by using
a combination of steady-state numerical calculations and asymptotic analysis of the
limiting cases λ̄� 1 and λ̄� 1. We then compare the results of this analysis with the
coefficient cs found from the long-time limit of the full time-dependent calculations.

An estimate of φ̃0(0; λ̄) was found numerically from the solution of the inner
steady-state problem described by (3.1) subject to the boundary condition (2.11). The
quantity φ̃0(0; λ̄) can be computed from the numerical solution using

φ̃0(0; λ̄) =

∫ ∞

−∞
h(0, y)2 dy. (3.24)

The solid curve in figure 5 shows the result of substituting the value of φ̃0(0; λ̄)
found in this way into (3.11) and (3.22) to obtain cs(λ̄). We see that this result is in
excellent agreement with fits to the long-time behaviour of Es found in numerical
solutions of the full time-dependent problem (shown by solid circles in figure 4).
These two computational approaches can also be compared to asymptotic results in
the limits λ̄� 1 and λ̄� 1.
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Figure 5. The dependence of the coefficient cs on the sink strength λ̄. Results obtained from
simulations (solid circles) are in excellent agreement with the theoretical prediction (solid
curve) obtained by numerical solution of the inner steady state to find φ̃0(0; λ̄) and the outer
similarity solution to find Ṽ . The asymptotic results from (3.39) for λ̄� 1 (dotted) and from
(3.30) for λ̄� 1 (dashed) are shown. We note that, as λ̄ → ∞, cs → (3Ṽ /5)(2/π)4/5 ≈ 0.99.

3.3.1. The limit λ̄� 1

For λ̄� 1 we consider the solution of (3.7) directly. To make analytical progress,
we use the convolution theorem for Fourier transforms,

φ̃0(k; λ̄) =

∫ ∞

−∞
ψ̃(k′; λ̄)ψ̃(k − k′; λ̄) dk′, (3.25)

where ψ(y) =
[
φ0(y)

]1/2
, to eliminate φ̃0(k; λ̄) in favour of ψ̃(k; λ̄) and thus rewrite

(3.7) as

(2π)1/2λ̄ψ̃ = −|k|
∫ ∞

−∞
ψ̃(k − k′)ψ̃(k′) dk′ + exp(−|k|). (3.26)

In the asymptotic limit λ̄� 1, we may seek a solution as a power series in λ̄−1. The
series takes the form

ψ̃(k; λ̄) =
f−1(k)

λ̄
+

f−3(k)

λ̄3
+ O(λ̄−5), and φ̃0(k; λ̄) =

g−2(k)

λ̄2
+

g−4(k)

λ̄4
+ O(λ̄−6).

(3.27)

Substituting these forms into (3.26), we find that

f−1(k) = exp(−|k|)/(2π)1/2, (3.28)

and, from (3.25), that

g−2(k) = f−1 ∗ f−1 =
1 + |k|

2π
exp(−|k|). (3.29)
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These results may in turn be used to determine f−3(k). In principle, this iterative
procedure could be repeated to give successively higher-order terms in the expansion.
However, the quantity of real interest is φ̃0(0; λ̄), which we calculate to leading order
as

φ̃0(0; λ̄) =
1

2πλ̄2
+ O(λ̄−4). (3.30)

This asymptotic result can be used, along with (3.22), to calculate cs in the limit
λ̄� 1. The resulting solution is shown in figure 5 by the dashed curve, and is in
excellent agreement with both numerical calculations for λ̄� 1. The limiting case,
λ̄ → ∞, when the resistance to flow within the sink tends to zero is of special
interest. In this limit, the long-term efficiency of storage still decays as t−2/5 but is
now determined solely by the flow field between the source and sink with coefficient
cs → (3Ṽ /5)(2/π)4/5 ≈ 0.99.

3.3.2. The limit λ̄� 1

In the limit of small sink strength, we expect the steady state to extend to large
distances in order for the source flux to balance the leakage. Hence we define a
rescaled coordinate X = λ̄x. The minimum distance from the source to the sink is
then given by λ̄. In the limit λ̄� 1 we must therefore solve the problem

∇2φ = 0, (3.31)[
∂φ

∂X

]0+

0−
= (23π)1/2φ1/2 (x = 0), (3.32)

φ → − lnR as R → 0, (3.33)

where R2 = X2 + Y 2 and, to leading order, the point source lies on the line sink. This
solution must, however, still recover the correct far-field limit. Thus, for R � 1 we can
write

φ =

∞∑
n=1

BnR
−n

{
cos nθ X > 0

cos n(π − θ) X < 0.
(3.34)

Hence [
∂φ

∂X

]0+

0−
=

2B1

R2
+ O(R−4) (3.35)

and along the sink, where θ = ± π/2, we have

φ1/2 =

(
−B2

R2
+

B4

R4
+ O(R−6)

)1/2

. (3.36)

Using (3.32), we find that B2 = 0 and B4 = B2
1/2π. An estimate for B1 is found

numerically by considering the far-field behaviour of the numerical solution to (3.31)–
(3.33). We find that B1 ≈ 0.803.

In the limit λ̄� 1, R � 1 we find

2πh2 = φ ∼ B1 cos θ

R
=

B1 cos θ

λ̄r
. (3.37)

Thus, from (3.10) we see that

A± =
B1

2π
λ̄−1 + O(1). (3.38)
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The function cs(λ̄) for λ̄� 1 may then be determined by substituting (3.38) into (3.22).
We find that

cs =
3

5
Ṽ

(
B1

2π

)4/5

λ̄−4/5 + O(λ̄1/5) ≈ 0.55λ̄−4/5, (3.39)

which is shown by the dotted line in figure 5.

4. Geophysical relevance
Our analysis of the spread and leakage of a gravity current in a porous medium

with a line sink has shown that, under the assumptions of our model, the efficiency
of storage decays towards zero algebraically with time. This could be a cause for
concern when attempting to store positively buoyant fluids (such as CO2) within
an aquifer since a steady state may be reached in which material leaks from the
fissure at the same rate as it is injected at the source. However, on the time scale of
centuries to millennia, secondary trapping mechanisms exist (e.g. the dissolution of
CO2 in ambient brine and capillary trapping in the pore spaces), which act to store
the liquid in the porous medium permanently and negate the risk of leakage. The
relevant question then becomes: does the primary trapping provided by the almost
impermeable cap rock last sufficiently long for other, secondary, trapping mechanisms
to take over and store CO2 permanently?

A natural measure of the time scale over which the cap rock traps material is the
time taken for the efficiency of storage to decay to 90 %, which we denote by t90.
Figure 6(a) shows t90 as a function of the sink strength λ̄. It is interesting to note that
as λ̄ → ∞, t90 tends to a constant value t90 ≈ 1.1. This gives us a worst-case scenario:
even with unrestricted leakage our model predicts that the storage efficiency is above
90 % for dimensionless times t < 1.1. In dimensional terms, the storage efficiency will
remain above 90 % provided that

t < 1.1
x2

s

(qγ )1/2
= 1.1x2

s

(
φµ

kq�ρg

)1/2

. (4.1)

As an example of how the worst-case scenario given by (4.1) might be used in
practice, we consider the demonstration project in the Sleipner field beneath the North
Sea. Here, Statoil injects supercritical CO2 with dynamic viscosity µ =4.5 × 10−5 Pa s
and density ρ ≈ 505 kg m−3 into an aquifer with permeability k ≈ 10−12 m2 and porosity
φ = 0.3 at an approximately constant flux q = 1 MT yr−1 ≈ 0.062 m3 s−1 (Bickle et al.
2007). Using these values along with (4.1), we find that xs > 12.5 km is sufficient to
guarantee that t90 > 103 years for any size of fault. A more nuanced view can be found
by calculating for a given fracture size, w/b, and distance from the source, xs , whether
t90 is greater or smaller than 103 years. Since these are the two significant unknowns
for a given injection project, a plot of (xs, w/b) parameter space may prove useful in
assessing leakage risks. Such a plot is shown in figure 6(b) for values representative
of the Sleipner project. In physical terms, this shows which fault widths w (measured
relative to the cap rock depth, b) can be tolerated at a distance xs from the injection
point without compromising storage on the time scale of 103 years.

5. Conclusions
The buoyancy-driven propagation of an injected liquid within a saturated porous

medium bounded by an impermeable barrier has been considered for the case in which
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Figure 6. (a) Numerical results showing the time taken for the efficiency of storage Es to
decay to 90 %, t90, as a function of the sink strength λ̄ (solid curve) together with the lower
bound t90 ≈ 1.1 valid for λ̄� 1 (dashed line). (b) The regions of (xs, w/b) parameter space
for which t90 > 103 years (unhatched region) and t90 < 103 years (hatched region) separated by
t90 = 103 years (solid curve), obtained numerically. The dashed vertical line shows the asymptote
of t90 = 103 years, which corresponds to λ̄ → ∞.

the impermeable layer contains a localized fault along a line at a minimum distance
xs from the point of injection. The dimensionless governing equations for buoyancy-
driven flow through the reservoir and leakage through the sink were presented in § 2,
and we then considered the long-time behaviour of this model using asymptotic and
numerical methods in § 3. The behaviour of such currents can be characterized by an
efficiency of storage, Es , which our analysis showed decays algebraically in time like
t−2/5, with a prefactor that depends on the strength of the sink (parametrized by λ̄).
Another important characteristic of storage was introduced: the time taken t90 for Es

to decay to 90 %. Crucially, t90 is bounded below by a constant for all sink strengths
λ̄, allowing a worst-case scenario to be considered. The geophysical significance of
these results was considered in § 4. It was shown that there must be no fault within a
critical distance of the injection point if significant quantities of liquid are to remain
trapped by the cap rock long enough for secondary trapping mechanisms to store
them permanently. Other effects, such as the finite size and heterogeneity of the porous
medium, capillary effects and viscosity contrasts also need to be considered.
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