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Shallow granular flows
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Many processes in geophysical and industrial settings involve the flow of granular materials down a slope. In
order to investigate the granular dynamics, we report a series of laboratory experiments conducted by releasing
grains at a steady rate from a localized source on a rough inclined plane. Different types of dense granular flow
are observed by varying the flow rate at the source and the slope of the inclined plane. The two cases of steady
flow confined by levees and the flow of avalanches down the plane are examined. The width of the steady flow
increases linearly with the prescribed flow rate, which does not appreciably affect the characteristic depth or
surface velocity of the bulk flow. When the flow rate is just below that required for sustaining the steady flow,
avalanches are triggered at regular intervals. The avalanches maintain their shape, size, and speed down the
inclined plane. We propose a simple model of steady flow that is consistent with our observations and discuss
the challenges associated with the theoretical treatment of avalanche dynamics.
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I. INTRODUCTION

Numerous natural hazards involve the flow of granular
materials on mountainous terrain. Examples include debris
flows [1], rockfalls, and snow avalanches [2]. These natural
flows have the potential to destroy everything along their path;
and, therefore, they are a serious danger to life and infras-
tructure on mountains. A continuous stream often develops
into a succession of waves of higher speeds and masses,
which can be particularly destructive. In order to conduct
hazard analysis and to protect inhabited areas, for example, by
diverting the descending waves with barriers [3,4], the size and
speed of the waves must be predicted. Related problems arise
in agricultural, manufacturing, and pharmaceutical industries.
Fertilizers, metal parts, and medical pills are examples of
grains that are managed and are transported in large quantities.
A quantitative understanding of dense granular flows [5,6] is
helpful for predicting natural flows and engineering industrial
processes. However, our understanding of granular flows is far
from complete, particularly in shallow layers where flowing
and static regions can simultaneously exist.

Laboratory experiments have shed some light on shallow
granular flows of cohesionless grains. An avalanche triggered
on a horizontal plane [7,8], a curved slope [9–11], or an
erodible granular layer on a rough inclined plane [12] causes
grains in a shallow layer to flow during a short interval
from initiation to termination. A series of avalanches can
be triggered intermittently by releasing grains at a small and
steady rate down a gentle slope [13–15]. On steeper slopes,
longitudinal [16,17] and transverse [18] instabilities develop
on the flowing surface and produce avalanches down the plane.
A steady flow of granular material is sustained by releasing
grains at a sufficiently large rate down a rough plane inclined
at a range of intermediate angles [16,19–22].

An empirical law for the steady flow down the plane has
been derived from a series of experiments and simulations
[5,13,20,21]. The law is given by

U√
gh

= α + β
h

hstop
, (1)

where U is the depth-averaged velocity, h is the flow depth,
hstop is the thickness of the layer that naturally deposits on the
incline when the flow stops, g is gravitational acceleration, and
α and β are dimensionless parameters. However, Eq. (1) and
other theories [23–25] do not accurately describe how shallow
layers with thickness close to hstop can be either static or
flowing. Open problems remain in addressing nonlocal effects
that play a role in shallow layers close to jamming [26–28], a
phenomenon exhibited similarly by yield stress fluids [29,30].
Shallow granular flows must be better understood in order to
conduct hazard analysis by predicting paths of natural flows,
which are often close in thickness to hstop as they spread out
over an open slope [13,31–33].

The dynamics of granular layers with thickness close
to hstop can be examined in the laboratory by releasing
grains from a localized source on a rough inclined plane.
Previous experiments showed that spherical beads of diameter
0.35 ± 0.05 mm, released steadily on a rough incline, develop
a thin flowing layer with nearly static margins [13]. Further
experiments showed that the flow gradually becomes thinner
and wider in time [32]. The authors of this paper claim that
the structure of the flow approaches a steady state. However,
we conducted similar experiments, but for longer periods, by
releasing spherical beads of the same diameter at a rate of
4.6–21.0 g/s on rough slopes of 24◦–26◦ and discovered that
the margins of the flow eventually become unstable, leading to
considerable spatiotemporal variations in the flowing structure
after a typical time of 70–90 min. Steady flow does not become
unstable when the beads are replaced with the more generic
material of nonspherical grains of sand, as reported here,
indicating that the shape of grains plays an important role in
shallow granular flows. The possible reasons for the difference
in behavior of different grains are discussed in Sec. IV. In
Sec. II, we describe how grains are supplied at a steady rate
from a localized source on a rough inclined plane in the
laboratory. In Sec. III, the results are presented in three parts.
The first part provides an overview of the new types of granular
flows of sand that arise by varying the flow rate and the slope of
the inclined plane. The second part examines the steady flow
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confined by levees at different flow rates. Effects of the shape of
the grains and any erodible grains on the plane before initiating
the flow are presented. The third part examines how the steady
release of sand at a rate that is just below that required for
sustaining the steady flow results in the flow of avalanches
triggered at regular intervals. Our preliminary study of steady
flows and regular avalanches, observed on a plane inclined at
intermediate angles, provides a foundation for future studies
of intermittent avalanches [34] and roll waves [16], which
develop on gentler and steeper slopes, respectively.

II. METHOD

We carried out a series of laboratory experiments to
investigate the flow of dry grains from a localized source on
a rough inclined plane. The experimental setup is shown in
Fig. 1. A cylindrical, perspex hopper of diameter 250 mm
and height 700 mm was filled with granular material. Two
different granular materials were used; spherical glass beads
of diameter 0.35 ± 0.05 mm or nonspherical sand grains of
size 0.45 ± 0.15 mm. Experiments were conducted primarily
with sand rather than glass beads because the latter introduced
additional complications, as reported below. The bottom of
the hopper was connected to a cone that fed the grains into
a smooth pipe of diameter 30 mm. A control valve across

FIG. 1. (Color online) Photograph shows the experimental setup.
The cylindrical hopper of sand, the rough inclined plane, and the
instruments used to measure the flow are all supported by an
aluminum framework.

the pipe allowed the mass flow rate Q to be set to 0 or
controlled between 5 and 218 g s−1, with a repeatability better
than ±2 g s−1 for sand. Below the control valve, the grains fell
freely down a tube onto a block of foam, which was highly
inelastic and absorbed the energy of the impacting grains on
the inclined plane. There was a V-shaped groove cut into the
middle of the foam to produce a localized source of dense
granular flow.

The grains flowed down an inclined plane of length 3 m
and width 1 m, wider than any of the flows in the experiments.
The plane was made rough by gluing the same sand on the
surface. Before each experimental run, the plane was covered
in an erodible layer of uniform thickness hstop, unless otherwise
stated. This configuration allowed the system to approach any
long-time state more quickly than an inclined plane initially
free of grains, as reported below. The erodible layer was set up
by releasing a large flux of grains and then abruptly stopping
the flow, a technique adopted previously [20]. A pulley system
allowed the plane to be inclined at any angle in the range
between 0◦ and 45◦ to the horizontal with an accuracy of
0.1◦, as measured by a digital inclinometer. The flows in the
experiments could be maintained indefinitely by transferring
the grains that flowed off the inclined plane back into the
hopper.

The thickness and surface velocity of the flows were
measured at different times and positions down the plane.
Variations across steady flows, as reported in detail below,
were examined as follows. The thickness profile was measured
to an accuracy of ± 0.1 mm at 1000 Hz over a region of
length ≈130 mm using a laser triangulator (Micro-Epsilon
LLT2800–100 2D laser displacement measuring system).
The instrument was mounted on a linear traverse system
to verify that steady flows were uniform down the inclined
plane. For steady flows with widths greater than 130 mm,
the instrument was positioned to observe one edge rather
than the whole flow. Surface velocities were measured to an
accuracy of ± 0.3 mm s−1 with a high-speed camera (Photron
SA1 5400 fps, 1024 × 1024 pixels, 12-bit analog-to-digital
converter) using particle image velocimetry [35]. The cross-
stream thickness and velocity profiles of steady flows were
averaged over 30 s to reduce statistical fluctuations. Effects
due to the flow rate and the presence of any erodible grains on
the plane before the experiment were investigated on a slope
of 32◦ to the horizontal, which allowed steady flows to develop
over approximately the widest range of flow rates.

Variations along avalanches were examined by recording
the thickness along the centerline of the flow at a fixed position
down the slope. The shape, size, and speed of an avalanche are
computed from the thickness profiles at successive times that
are translated steadily along the slope. The translation speed c

and the mean thickness profile f are obtained by minimizing
a measure of deviations of the translated profiles,

∑

i

∑

j

[h(xi,tj ) − f (xi − ctj )]2, (2)

where h represents the thickness recorded at discrete positions
xi and times tj . The speed corresponds to the wave speed
of avalanches, based on the assumption that avalanches retain
their shape and size as they travel steadily, as shown below. The
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computed speeds have been verified using images captured by
the high-speed camera, which offers an alternative method of
computing the speed of avalanches.

III. RESULTS

A. Overview

Different types of granular flows of sand develop depending
on the angle of inclination of the rough plane and the mass flow
rate. The different possible states of sand flow are marked in
the regime diagram in Fig. 2, as studied in a similar fashion
for glass beads [13]. The qualitative boundaries between the
regimes are sketched in Fig. 3.

All the different regimes can be obtained by fixing the mass
flow rate and varying only the slope of the inclined plane. On
gentle slopes with θ less than 31◦, avalanches are triggered
intermittently on a heap of sand of ever-growing size. When
θ lies between the range of 31◦ and 33◦, either a series of
avalanches or a steady stream propagates on a dense layer
of erodible grains, depending on the flow rate. The avalanches
can be triggered at regular intervals, as examined further below.
When θ lies between approximately 33◦ and 38◦, roll waves
develop on the surface of dense granular flow [16], which can
result in avalanches far downstream. Finally, on steeper slopes
with θ greater than 38◦, a dilute suspension of grains saltate
down the plane [36].

Of particular interest in this paper is the intermediate range
of angles between 31◦ and 33◦. Within this range, there exists a
minimum flow rate required for steady flow. When the supply
of grains is turned off, the flow gradually stops and deposits a
layer of thickness hstop on the inclined plane. The thickness of
the final deposited layer depends on the angle of inclination of
the plane as shown in Fig. 4. The thickness for the moderate

FIG. 2. Regime diagram showing the different types of sand flows
as a result of a supply at a steady rate Q down a rough plane inclined
at an angle θ to the horizontal. Avalanches are triggered at regular
or irregular intervals down gentle slopes with θ < 33◦ when the flow
rate is small. At larger flow rates, dense granular flow develops and
remains steady. On steeper slopes, the dense flow becomes unsteady
downstream as roll waves develop.

FIG. 3. A sketch of the salient regimes in Fig. 2. The regime of
regular avalanches, as investigated here, marks the boundary between
irregular avalanches and dense steady flow.

range of inclination angles, bounded by approximately 31◦ and
39◦, is well described by a curve of the form [34]

hstop

d
= a

tan θ − tan θ1
, (3)

where d is the particle diameter and a = 0.48 and θ1 = 30.1◦
are dimensionless parameters. A layer of thickness less than
hstop is unable to flow. We discuss later how hstop, which
characterizes the roughness and the slope of the inclined plane,
appears in the condition for regular avalanches to develop.

In order to better understand the different regimes, we first
examine the steady flow down a plane inclined at 32◦. Effects
on the steady flow due to the flow rate and any presence of
erodible grains on the plane are investigated. We then examine
how the steady release of sand at a rate, which is just below
that required to sustain the steady flow, results in a series of
avalanches triggered at regular intervals. The avalanches are
shown to flow down the plane without changing shape, size,
or speed.

θ (deg)

FIG. 4. The thickness of the deposit on the rough plane, scaled
by the mean size of individual grains (d ≈ 0.45 mm), as measured
on the plane inclined at different angles. The line is given by Eq. (3)
with a = 0.48 and θ1 = 30.1◦.
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FIG. 5. Top left, plan form of
beads and top right, sand flowing
down a rough inclined plane. The
snapshot was taken approximately
2 m down the plane, 90 min after
initiating and sustaining a steady
flow rate of beads at 10 g/s down a
25◦ slope or sand at 104 g/s down
a 32◦ slope. The length of arrows,
which originate at positions 10 mm
apart in the cross-slope direction
and 50 mm apart in the down-slope
direction, represents the displace-
ment of beads per second or that of
sand per a fifth of a second. Five
profiles at different extents down-
stream are plotted bottom left, for
beads and bottom right, sand. The
flow of beads is unsteady and that
of sand is steady, as supported by
the strong variations of the velocity
in both the cross-stream and down-
stream directions for beads and
negligible variations downstream
for sand.

B. Steady flow

All experiments conducted using glass beads resulted in
unsteady flow. A representative snapshot of the plan form
and the instantaneous velocity profile of the flowing surface
is shown in Fig. 5. At the margins, a region of no motion
forms, grows, and propagates downstream. The downstream
velocity along the centerline of the flow generally decreases
with time while fluctuations in the velocity increase with
time. A representative evolution of the mean and ten standard

FIG. 6. Evolution of the mean (u) and ten standard deviations
(10u′) of the surface velocity 2 m down a rough plane inclined at 25◦

to the horizontal where beads are released at a steady rate of 10 g/s.
Fluctuations of the system grow with time.

deviations of the velocity along the centerline of the flow of
beads are shown in Fig. 6. In contrast, a simpler system of
steady flow could be observed using sand. The mean and
fluctuations in surface velocity tend to constant values with
time, as shown in Fig. 7 for a representative experiment
conducted using sand. All experiments reported subsequently
were conducted using sand.

FIG. 7. Evolution of the mean (u) and ten standard deviations
(10u′) of the surface velocity 2 m down a rough plane inclined at 32◦

to the horizontal where sand grains are released at a steady rate of
104 g/s. The system approaches a state with small fluctuations relative
to the mean flow.
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FIG. 8. Sketch of an experimental run producing a steady flow.
Sand in the hopper is released onto the V-shaped foam and flows
down the rough inclined plane. The bulk layer of the resultant flow
has thickness h, width w, and surface velocity u, confined by static
layers of sand of thickness hstop. The angle of inclination of the plane
θ = 32◦ is fixed, and the steady mass flow rate Q is chosen within a
wide range.

Our results show that steady flows of sand develop for mass
flow rates ranging between 31 and 218 g s−1 down a plane
inclined at 32◦ to the horizontal. A sketch of the flow is shown
in Fig. 8. Steady flows are not sustainable at lower flow rates;
instead, avalanches are triggered, as examined later.

Figure 9 shows the thickness and the surface velocity across
the flow, sustained by releasing grains at a rate of Q = 50 g s−1

down a 32◦ slope initially free of grains. There is a gradual
decrease in the height and the maximal velocity once the initial
flow front has passed the measurement point. Note that the
curves at 30 and 40 min in Fig. 9 overlay each other, indicating
that the system has reached an approximately steady state. We
verified, by conducting experiments for over 2 h, that both the
thickness and the width of the flow tend to constant values with
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FIG. 9. Thickness and surface velocity of sand 2 m down a
32◦ slope, which is initially free of sand. Both the characteristic
thickness and the surface velocity decrease slowly with time until a
steady state is reached. The value of hstop is 4.5 mm.

gs−1

gs−1
gs−1

FIG. 10. Maximal thickness of sand is plotted against time for
three representative experiments down a 32◦ slope. The inclined
plane is either covered with an erodible layer of thickness hstop

(h0 = hstop) or free of sand initially (h0 = 0), and the flow rate is
sustained subsequently at either Q = 50 or 104 g s−1. In all cases,
the thickness approaches the same value, h∞.

time. A characterization of the convergence to steady state is
given by Fig. 10, which shows the evolution of the maximal
thickness.

Figure 11 shows the corresponding results of another run
initiated differently by covering the incline to a thickness hstop

and maintaining the same flow rate as before. The flow attains
a steady state more quickly, as indicated by the coinciding
curves at 12 and 20 min. Figure 12 shows that the steady
velocity profiles coincide with the previous case, indicating
that the long-time steady state is independent of the initial
conditions on the incline. Figure 10 shows that the maximal
thickness of the flow approaches a constant value more quickly
when the inclined plane is initially filled with an erodible layer
of thickness hstop. All the steady flows discussed subsequently
in the paper were from experiments with the initial covering
of grains to a thickness of hstop.

Steady flows obtained at different flow rates all feature a
central region of approximately constant thickness and a pair
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FIG. 11. Thickness and surface velocity of sand 2 m down a
32◦ slope initially covered with a static erodible layer of thickness
hstop = 4.5 mm. Minimal variations with time indicate that the flow
quickly reaches a steady state.
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FIG. 12. Steady surface velocity profiles in the long-time limit
on a 32◦ slope, covered initially with no sand (h0 = 0) and with an
erodible layer of sand (h0 = hstop). The mass flow rate is Q = 50 g/s
in both experiments. The width of the region with surface velocity
greater than half the maximal velocity is represented by w.

of margins where the thickness decreases to hstop. The central
region is characterized by its width w, maximal thickness h,
and surface velocity attained at the center of the flow u. The
width of the flow increases linearly with the mass flow rate
as shown in Fig. 13, where w is defined as the width of
the region with surface velocity greater than one half of its
maximum attained at the center (cf. Fig. 12). This definition
is a suitable measure with minimal noise because the ends of
the region have large variations in velocity across the flow. We
have considered other definitions of the width, including the
width of the region of nonzero velocity [32], which changes
the intercept w0 but gives the same slope as shown by the
approximately parallel lines of best fit in Fig. 13. The error
bars are comparable to both the size of the symbols and the
linear norms of residuals of the two fitting lines (12 to 13 mm).
The width of the flow increases linearly with the flow rate at
long times, such as at early times, as previously studied [13].

The thickness of the central flow is independent of the flow
rate and shows no systematic deviation, as shown in Fig. 14.
In contrast to the observations and theory of Ref. [32], the
bulk region of the flowing layer in all our experiments is
approximately flat in the transverse direction of the flow with a
maximal thickness of 8.3 ± 0.4 mm. The thickness is greater
than, but the same order of magnitude as, hstop ≈ 4.5 mm. The
thickness is slightly greater than hstop and independent of the
flow rate, as in the thickness of the deposit formed by stopping
the flow at early times [13].

The surface velocity increases weakly with the flow rate
and appears to approach a finite limit as Q → ∞, as shown

FIG. 13. Squares, characteristic width of the flowing region with
nonzero velocity and circles, surface velocity greater than half the
maximal velocity attained at the center of the flow plotted against the
mass flow rate. Each line of best fit is extrapolated to Q = 0.
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FIG. 14. Maximal thickness and surface velocity of steadily
flowing sand as functions of the mass flow rate Q.

in Fig. 14. There is a relatively large change between Q = 31
and Q = 50 g s−1, but from here to Q = 218 g s−1, a 430%
increase in mass flow rate, the velocity only increases from
158 to 200 mm s−1, a 26% increase. The increase in velocity
with increasing mass flow rate, without any change in the
flow depth, is attributed to the reduced influence of lateral
stresses as h/w decreases. The surface velocity varies strongly
at the margins and weakly in the central region, suggesting that
lateral stresses are most important at the margins but also play
a role in the center of the flow even at a small aspect ratio
of 1/20. Because of the lateral stresses, we cannot infer a
linear relationship between the dimensionless speed and the
dimensionless depth of the layer near one margin, which is
shown in Fig. 15. Lateral variations in the surface velocity
toward one margin of the flow for different flow rates are shown
in Fig. 16. The approximate collapse of the velocity profiles
suggests that the margins of the flowing layer are independent
of the mass flow rate. Note that the length scale of the margins
is comparable in order of magnitude to w0. It is not possible
to sustain a steady flow below a certain flow rate as the flow
width approaches w0.
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FIG. 15. Plot of the dimensionless speed against dimensionless
height at the margins.
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FIG. 16. Surface velocity profiles across the slope near one
margin of the flowing layer for different mass flow rates.

C. Avalanches

When the flow rate is just below that required for steady
flow, pulses of avalanches are triggered at approximately
regular intervals. First, a relatively deep pile of sand grows
near the source. After some time, an avalanche is triggered and
propagates down the incline in a solitary wave. The avalanche
leaves behind a layer of deposit at rest and erodes any static
layer ahead of the front. The avalanche comes to a halt when
there is no more erodible layer of sand ahead of the flow. In
this manner, an erodible layer of static sand is produced and
extends down the incline. Successive avalanches are triggered
and propagate down the incline on the erodible layer, produced
by the deposit of earlier avalanches. The avalanches remain
stable and correspond to those in region II as plotted in Fig. 1(a)
of Ref. [18].

The intervals in time between the arrival of successive
avalanches can be computed readily by measuring the thick-
ness of sand down the inclined plane. A representative set of
results is presented for sand released at Q = 16 g/s down a
32◦ slope, which is initially free of grains. Figure 17 shows
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FIG. 17. (Color online) A plot of the mean thickness of the layer
of sand 2 m down the incline from the source, averaged over half-
second intervals near the beginning of an experiment with Q = 16 g/s
and θ = 32◦. Time begins from the moment when the first avalanche
reaches the 2-m mark. The local maxima are represented by circles
and correspond to the arrival of avalanches.
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FIG. 18. The time interval between the arrival of successive
avalanches plotted against time. Each data point is the mean period of
20 successive avalanches. The error bars show the standard deviation
of the period of the same 20 avalanches. After approximately 50 min,
the period remains close to 11.5 s, as marked by the horizontal
line. This indicates that avalanches arrive at regular intervals in the
long-time limit.

an evolution of the mean thickness of the layer of sand 2 m
down the slope. The local maxima are represented by circles
and correspond to the arrival of avalanches. The local minima
correspond to the static layer that is deposited following the
passage of avalanches. The mean and standard deviation of 20
intervals in time between the arrival of successive avalanches
are shown in Fig. 18. The intervals decrease slowly with time
until approximately 50 min into the experiment. The intervals
remain close to 11.5 s, subsequently, indicating that avalanches
arrive at regular intervals in the long-time limit. We noted that
the approach to the long-time state is quicker when the plane
is initially covered with an erodible layer of thickness hstop.
The subsequent analysis is based on experiments initiated on
an inclined plane covered with erodible sand.

The regular interval between successive avalanches at large
times increases on a gentler slope, which is associated with an

FIG. 19. Period of avalanches triggered at regular intervals
increases with hstop. This means that the interval between successive
avalanches is longer down a more gentle slope.
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FIG. 20. The minimum flow rate required for steady flow is
estimated by Eq. (7), where the constant of proportionality is k ≈ 3.

increase in hstop, as shown in Fig. 19. Moreover, an increase
in hstop increases the minimum flow rate required for steady
flow as shown in Fig. 20. This means that the mass of grains
in each avalanche, which is the product of the interval and the
steady rate of supply at the source, increases sharply with hstop.
Avalanches initiated at regular intervals occur less frequently
and are more massive on more gentle slopes.

The shape and size of avalanches are presented in the
representative case of sand supplied at a rate of Q = 16 g/s
down a 32◦ slope. The thickness profile of a representative
avalanche 2 m down the slope is shown in Fig. 21. The
thickness increases sharply at the front and decreases gently
toward the back of the wave. The flow fluctuations are
represented by one standard deviation above and below the
mean curve. Thickness profiles of five successive avalanches
were found to collapse with variations comparable to the flow
fluctuations. This indicates that avalanches of similar shape
and size travel down the slope. Figure 22 shows the thickness
profile of representative avalanches at different extents down
the slope. The profiles indicate that avalanches do not change

FIG. 21. The mean and standard deviation of the thickness profile
of an avalanche 2 m down a 32◦ slope. Variations in the thickness
profile of an avalanche due to flow fluctuations are small and are
comparable with variations among successive avalanches.

FIG. 22. Dimensional thickness profile of representative
avalanches at 0.5, 1.0, 1.5, and 2.0 m down a 32◦ slope. The horizontal
length is scaled by L ≈ 700 mm, and the vertical length is scaled by
hstop ≈ 4.5 mm. The mean profiles almost overlap, suggesting that
avalanches retain their shape and size as they propagate downstream.

appreciably in shape or size as they travel down the slope.
The speed of wave propagation is approximately constant as
indicated by Fig. 23.

The dimensionless wave speed is plotted against the
maximal thickness attained near the front of avalanches on
different slopes in Fig. 24. The wave speed c is scaled
by

√
ghstop cos θ and the maximal thickness hf by hstop.

Avalanches initiated at regular intervals from a point source
down different slopes with θ ranging between 31◦ and 32.5◦,
as investigated here, have approximately constant wave speed,
c = 0.6 ± 0.1. These avalanches are comparable in size and
speed to those recorded in Fig. 2(b) of Ref. [18] but generally
are slower in speed and are closer in thickness to hstop than
the avalanches triggered from a steady line source on steeper
slopes with θ ranging between 32◦ and 41◦ [37].

FIG. 23. Mean and standard deviation of the wave speed of ten
representative avalanches at different extents down a 32◦ slope. The
speed of each avalanche remains approximately constant during the
course of its propagation. Variations in the wave speed are smaller
closer to the source.
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FIG. 24. Dimensionless wave speed plotted against dimension-
less thickness of the wave front. Symbols with horizontal error bars
represent the mean speed of several avalanches initiated at regular
intervals from a point source down a slope with angles ©, 31.0◦; 	,
31.5◦; �, 32.0◦; and � 32.5◦. Vertical error bars are shorter than the
size of the symbols. Crosses represent avalanches initiated at irregular
intervals from a line source on slopes ranging between 32◦ and 41◦,
reproduced from Fig. 2(b) of Börzsönyi et al. [37].

IV. DISCUSSION

We propose a simple model of steady flow that incorporates
all our observations and focus, in particular, on the relevant
issue of what selects the width of the flow. In the central region
of the bulk flow, any lateral variation in the layer thickness
would be reduced by a cross-stream flow driven by an induced
pressure gradient (ρgh cos θ∇h). Given that the long-time
steady flow must be in lateral force balance, and that the central
region is yielded and behaves like a fluid, the layer thickness
becomes flat over time sufficiently far downstream, as shown
for |y| < 20 mm in Fig. 11. The layer thickness is governed
by the details at the margins, which are independent of the
flow width for sufficiently wide flows (Fig. 16). The central
region of wide flows has the same constant height h, depth-
averaged velocity U , and density ρ, independent of the flow
rate Q, in agreement with Fig. 14. An increase in the flow
rate results predominantly in an increase in the flow width
described by

Q = (w − w0) q, (4)

where q = ρhU is the mass flow rate per unit cross-stream
width and w0 can be interpreted as a correction in the
flow width due to the margins. The flow width increases
linearly with the mass flow rate Q because w0 and q depend
on the properties of the granular material and the inclined
plane but not on Q. The agreement of this model with our
experiments is shown by the linear relationships in Fig. 13.

The model of Deboeuf et al. [32] has a constant aspect
ratio γ = h/w independent of the mass flow rate, which does
not agree with our experimental results. The assumption of a
constant aspect ratio and a scaling analysis of the flow rule
(1) imply that w scales like either Q2/5 or Q2/7 for small

or large Q, respectively. This is inconsistent with the linear
relationship between w and Q (Fig. 13). In addition, the model
of Deboeuf et al. [32] predicts the flow thickness to increase
arbitrarily as the flow rate is increased. This could not be in a
steady state because a lateral flow would be driven by the much
greater hydrostatic pressure under the middle of the flow.

The central region of steady flows has constant thickness
and is bounded by regions of constant width, where the
thickness and the surface velocity decrease considerably
toward the margins (Fig. 16). The height gradient and the
strong shear across the flow at the margins are consistent with
the second normal stress difference σyy − σzz being negative
[38], where σ is the stress tensor. The mechanism responsible
for balancing the pressure gradient across the flow could
be attributed to flow shear as in viscoelastic fluids, although
we have no evidence of this. Note that this mechanism could
explain the height gradient at the margins but would not apply
to the bulk region where there is little shear in the cross-stream
direction. A closer inspection is needed to fully understand
the structure of the margin and its stability. We speculate
that shallow flows of glass beads are unstable because they
are subcritical, meaning that disturbances move faster than
the beads on the surface and, hence, can propagate upstream
[34]. In contrast, sand flows reported here are supercritical,
suggesting that any perturbation of the flow margins decays
by the arrival of fresh sand.

In order to estimate the minimum flow rate required for
steady flow, we present the following scaling analysis. When
the flow rate is far above this minimum, a steady flow develops
with thickness h much smaller than the width w of the flow
down the inclined plane. The flow is sheared predominantly
across its thickness and remains steady down the slope. At
larger flow rates, the thickness h remains comparable by
order of magnitude to hstop, which is written as h ∼ hstop.
The dominant length scale of the system is hstop. The other
physical quantities with dimensional units are gravity g and
the mass flow rate Q, which primarily change the width of the
flow only. It follows by dimensional analysis that a suitable
scale for the downstream velocity is given by

u ∼ √
ghstop, (5)

which is consistent with Eq. (1). By mass conservation, the
mass flow rate,

Q ∼ ρuwhstop, (6)

where ρ ≈ 1.5 kg/m3 is the density of sand. The condition
for steady flow is w � hstop, which is equivalent to Q � Qc,
where

Qc ∼ ρg1/2h
5/2
stop (7)

is obtained by combining Eqs. (5) and (6). Below this critical
flow rate, it is not possible to sustain a steady flow with
comparable width and thickness. Such a flow would be
resisted by lateral stresses and would eventually stop. Instead,
avalanches are triggered when a sufficient mass of grains
accumulates near the source. Figure 20 shows that Eq. (7)
is consistent with experiments.

A feature of the avalanches triggered at regular intervals,
which remains to be understood, is that the dimensionless
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wave speed is constant on different slopes. Unlike avalanches
triggered intermittently from a line source, the avalanches
triggered at regular intervals from a point source vary in
dimensionless thickness but not in dimensional speed as the
slope angle θ changes. The maximal thickness attained near
the front of the wave is hf = γ hstop, where γ ranges from 1.4
to 2.4 and depends on θ as shown in Fig. 24. This provides
further evidence that a relation, such as Eq. (1), which assumes
that the flow speed u and depth h depend on θ only implicitly
through hstop, does not hold for the shallow flow of avalanches.
The function γ (θ ) is not monotonic and is not well understood.
Another feature of the avalanches is that they travel steadily
like three-dimensional solitons, retaining their shape and size.
Dispersive effects due to down-slope variations in thickness
may be countered by nonlinear effects due to wave steepening.
Cross-slope gradients in the pressure induced by cross-slope
variations in thickness of an avalanche flowing down an open
slope may be countered by a similar mechanism at the margins
of steady flow confined by levees, which would prevent the
avalanche from spreading laterally. Some lateral force must
counter the pressure gradient induced by the height gradient
for an avalanche to retain its shape with more depth in the
middle than the edges. The avalanches are not guided by any
lateral levees because the erodible layer between successive
avalanches is completely flat.

Further insight into the experimental observations could
be gained by the development of a mathematical model
of avalanches, but this is far from straightforward. One
possible approach is to move into the reference frame of
an avalanche and to consider the flowing region using a
depth-averaged model of shallow granular flow, conserving
mass and momentum down the slope [39]. This simplified
approach neglects lateral variations and the vertical structure
of the avalanche. These features may play an important role
particularly near the interface between the flowing and static
regions. It is beyond the scope of the present paper to study
the exchange of mass across the interface due to erosion and
deposition of grains. A better understanding of these processes
would be helpful for developing a model, which would predict
and would explain the dynamics of avalanches observed in the
experiments.
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