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We present experimental results for the collapse of rectangular columns of sand
down rough, inclined, parallel-walled channels. Results for basal inclination θ varying
between 4.2◦ and 25◦ are compared with previous results for horizontal channels.
Shallow-water theory can be usefully combined with scaling relationships obtained by
dimensional analysis to yield analytical functions of the maximum runout distance, the
maximum deposit height and the time to reach the maximum runout. While the theory
excellently predicts the maximum lengths of the deposit it generally overestimates the
runout time. The inertial flows are characterized by a moving internal interface
separating upper flowing and lower static regions of material. In an initial free-fall
phase of collapse the deposited area (= volume per unit width) below the internal
interface varies with the square-root of time, independent of the initial height of
the column and channel inclination. In the subsequent, lateral spreading phase the
deposition rate decreases with increasing basal inclination or with decreasing initial
height. The local deposition rate at any fixed distance is a constant, dependent on
the column aspect ratio, the channel inclination and the longitudinal position, but
invariant with flow velocity and depth. In the lateral spreading phase, vertical velocity
profile in the flowing layer take a universal form and are independent of flow depth
and velocity. They can be characterized by a shear rate as a function of channel
inclination and a length scale describing the fraction of the column involved in
flow.
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1. Introduction
The physical behaviour of the flow of granular media is a relatively young research

discipline under active study at the moment. Its ubiquitous applications in industrial
processes, engineering problems and agriculture, and its prominence in geological
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processes have resulted in interdisciplinary investigations from a wide range of
research fields. Of particular interest for the hazard assessment of geophysical mass
flows is the flow and deposition behaviour in granular free-surface flows driven by
gravity.

Currently, there are two major problems in understanding natural particulate flows,
such as avalanches of debris or snow, or pyroclastic flows formed in explosive
volcanic eruptions. First, measurements on active flows are sparse. Except for some
recent field studies on snow avalanches (Gauer et al. 2006), measurements are
restricted to approximations of the velocity of the flow front. Most of our current
knowledge on flow and deposition mechanisms stems from interpretations of their final
deposits, which remain qualitative since the detailed mechanisms of deposition are
unknown. The second problem is that, although a number of theories and governing
equations for particular aspects of granular flow have been established, these mostly
describe flows of mono-disperse particles in steady, uniform motion. Possibly the
most-investigated situation of gravitational free-surface flows is the motion of thin
frictional sheets of particles at inclinations close to the static angle of repose (AOR)
(e.g. Savage & Hutter 1989; Hutter et al. 1995; Pouliquen 1999; Pouliquen & Forterre
2002). A review of the models for chute and heap flows, as well as flows in rotating
drums, was recently published by Midi (2004). Geophysical mass flows, however, are
characterized by their unsteady form of motion at high mobility as they propagate over
terrain well below the AOR, and time- and space-dependent processes of erosion and
deposition.

Recently, a number of studies initiated the investigation of thick, inertial granular
flows formed by the sudden release of vertical columns of particles. So far,
investigations have focussed on the flow behaviour above a horizontal base and
have considered unhindered axisymmetric collapses from cylinders (Huppert et al.
2003; Lajeunesse, Mangeney-Castelnau & Vilotte 2004; Lube et al. 2004) and wall-
bounded collapses from rectangular columns into channels (Huppert et al. 2003;
Huppert et al. 2004; Balmforth & Kerswell 2005; Kerswell 2005; Lajeunesse, Monnier
& Homsy 2005; Lube et al. 2005; Mangeney-Castelnau et al. 2005; Siavoshi &
Kudrolli 2005; Staron & Hinch 2005; Zenit 2005; Larrieu, Staron & Hinch 2006;
Doyle et al. 2007; Lube et al. 2007; Thompson & Huppert 2007). Granular collapse
flows are characterized by their unsteady form of motion, large time-dependent
changes of the free surface and the creation of final deposits through the continuous
upward propagation of an internal interface separating already deposited material
from that still moving. As a consequence of the internal interface motion, the flow
propagates on a layer of deposited material (for most of its length), and hence the
flow behaviour is independent of the roughness of the rigid base. Furthermore, inertial
forces largely dominate frictional (or inter particle) forces except for the very last
stage of surface avalanching, which alters the overall shape of the deposits relatively
insignificantly. Thus, most aspects of flow are also largely independent of the grain
type. The shape of the deposits, including their maximum vertical and horizontal
extension, and the time to reach the final maximum runout can be described solely in
terms of the initial geometry of the granular column and the gravitational constant.
Such inertial granular collapse flows share a number of characteristics with natural
particulate flows, such as the ability to propagate at slopes below the AOR, deposition
processes which are dependent on both space and time and the relatively immaterial
effect of inter-particle friction.

This study presents experimental results for granular collapse flows into rough,
inclined channels that address the following questions: Which additional processes
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Figure 1. The experimental set-up, with a sketch of the initial column of particles (top), the
final deposit (bottom) and the definition of the coordinate system used.

occur when the angle of the base of the channel is systematically increased? Up to
which inclinations do the mathematical relationships obtained for the horizontal case
describe flow behaviour on inclined planes? How does the behaviour of the internal
interface and the form of velocity profiles in the flowing layer change with the basal
inclination?

The paper is organized as follows. In § 2, we describe the experimental set-up and
the measurement techniques. Section 3 briefly summarizes the observed flow behaviour
followed by an analysis of the shape of the final deposits in § 4. In § 5, we present
an analysis of the temporal aspects of flow as a function of the initial geometry of
the column and the basal inclination, with a special focus on the evolution of the
internal interface and the vertical velocity profiles in § 6. Finally, in § 7 we summarize
and discuss the results obtained.

2. The experiments
2.1. Experimental set-ups

The experiments investigate two-dimensional granular flows formed by the collapse
of rectangular columns of sand into a 2 m long, inclined channel. The channel had
a constant width of 20 cm whose rear panel was constructed of wood and covered
with a thin sheet of paper, whereas its frontal panel was of transparent Plexiglas.
The basal panel was roughened by gluing sheets of sandpaper with a medium grain
size of 0.64 mm to it. The basal inclination of the tank, θ , was varied between 4.2◦

and 25◦. A container accommodated the granular material at one end of the tank
(figure 1). A rectangular box of the same width, 20 cm, as the channel and variable
initial basal length di comprised a frontal gate to release the granular material. A
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Basal Initial basal Range of
inclination length di (cm) a = hi/di

4.2◦ 6.3 0.8–14.1
10◦ 6.3 0.8–7.9
15◦ 6.05 0.5–14.3

9.05 3.0–7.0
20◦ 6.05 3.2–11.7

9.05 0.2–2.4
25◦ 6.05 0.4–9.0

Table 1. Initial basal length and range of initial aspect ratio for each inclination.

release mechanism was constructed to allow for very fast and reproducible lifting
velocities of the gate. The mechanism consisted of releasing a large weight connected
to the gate via a pulley construction at the ceiling. The weight fell freely for the
first 0.75 m to reach a high velocity (approximately 4 m s−1) before it lifted the gate
extremely rapidly. The time for the gate release in any experiment was very much less
than the typical time scale of the resultant motion of the granular material.

We employed a mixture of rounded, industrial light grey and black coloured Quartz
sands of grain size 1.4 ± 0.4 mm with a (static) AOR of 33 ± 1◦. The repose angle of
the sand grains was determined as the embankment angle of a granular pile resulting
from slowly pouring sand grains from a small height onto a horizontal surface. A
seeding mixture of 1 part black particles to 4 parts light particles was found to give
the best contrast results for the digital image analysis described below. The initial
aspect ratio a, defined by the ratio of initial height, hi , to initial basal length, di , was
varied systematically over roughly two orders of magnitude. The initial basal lengths
and range of aspect ratios for the different values of basal inclination are presented
in table 1.

2.2. Measurement methods

After each experiment the maximum runout distance δd , the distance from the gate
to the final front, was measured along the inclined plane (figure 1). Height profiles
h(x) of the final deposits were obtained by measuring the vertical height difference
between the upper free surface and the inclined base at horizontal spacing of 2 cm.

Experiments were recorded by a fast camera at 120 frames s−1 to investigate the
behaviour of the collapses through the vertical Plexiglas plane. From these movies we
measured the instantaneous position of the flow front as a function of time, d(t), and
the time t∞ when the motion of the flow front ceased.

Experiments with a = 5, 7 and 9 at inclinations of 4.2◦, 15◦, 20◦ and 25◦ were
repeated to investigate the time-dependent form of the internal interface and velocity
profiles with depth. With the fast digital camera at 120 frames s−1 (resolution 768 ×
480), the entire flow was filmed through the transparent frontal pane. To obtain
curves of the interface between static and flowing particles, hD(x, t), we first analysed
every fifth and sixth frame using the Pattern Match algorithm of Dalziel (2005).
Finally, we carefully corrected, as was necessary, these curves to match exactly the
interface between the uppermost static and the lowermost flowing particle. Detailed
velocity profiles with depth at a distance δd/3 from the gate were obtained by particle
image velocimetry (PIV) analysis on digital high-speed camera footage using the
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algorithm written by Dalziel (2005). The camera was operated at 1000 frames s−1

and a resolution of 640 × 512 pixels (24 bits). The focal plane with a horizontal
length of 30 cm was illuminated by up to eight halogen spotlights to allow for shutter
speeds of 1/2000 s and below. With these settings the 1.4 mm diameter particles were
resolved at approximately 3 pixels in the mean flow direction. The interrogation area
for the PIV was set to a square of 19 pixel length (∼8.9 mm) and larger to capture
maximum displacements in the flow of up to 2 mm between adjacent frames. The
particle number of the 4:1 mixture of light grey to black particles in the interrogation
area was always larger than 40.

3. Experimental observations
Much of the flow behaviour of granular collapse flows into rough, inclined channels

is similar to that previously reported for collapses into horizontal channels (Huppert
et al. 2003; Balmforth & Kerswell 2005; Lajeunesse et al. 2005; Lube et al. 2005;
Lube et al. 2007). We will thus give a brief description of these collapses and elucidate
the major differences between the two cases.

Upon suddenly lifting the gate, an initial discontinuity develops within the granular
column separating a lower static from an upper moving region. In cross-section it is
observed as a straight line intersecting at a zero height at x = di . This initial line is
inclined at approximately 60◦ to the horizontal, independent of a and θ . Lajeunesse
et al. (2005) have reported that for spherical glass beads (and θ = 0◦), this inclination
is slightly lower but also independent of a. This discontinuity represents the initial
shape of the internal interface, which propagates upwards as the grains run out and
when it reaches the upper free surface the motion terminates.

Flow behaviour differs depending on whether or not the interface between static
and moving grains intersects the surface of the column at the onset of motion. For
aspect ratios a < 1.7 and for all tested basal inclinations, only an outer marginal part
of the column is involved in the motion. As material flows downwards, the interface
eventually reaches the upper free surface along the entire flow length. As for the
horizontal case, there is a final stage of thin avalanching across the upper free surface
before the motion stops entirely. For a < 1, some part of the initial upper surface of
the column remains undisturbed (i.e. final height h∞ = hi), and the final deposit takes
the form of a truncated wedge. For 1 <a < 1.7, the entire upper free surface becomes
mobilized in the late stage of the experiment resulting in a wedge-shaped deposit.

For larger aspect ratios a > 1.7, the entire upper free surface flows from the
beginning. While there is continuous collapse for 1.7 <a < 2.8, we observe two stages
of motion for a > 2.8. Collapse begins with a free-fall phase, during which the upper
part of the column above a critical height of approximately 2.8 di is in purely vertical
motion (figures 2a and 3a). Once the upper free surface of the column has fallen to
the critical height of 2.8 di , particles in the entire flowing region spread outwards
(figures 2b, 2c, 3b, 3c). This second stage of motion is referred to as the lateral
spreading phase.

This flow behaviour occurs up to basal inclinations of 20◦, and the most noticeable
effect of increasing θ is that the flows (at similar values of a and di) become
progressively faster and thinner. For θ � 20◦, the internal interface reaches the free
upper surface at almost the same time over the entire flow length and terminates the
motion (figure 2d). However, at inclinations of 25◦ and for a > 2.8 the flow behaviour
changes. Here the internal interface reaches the upper free surface of the rear region
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Saltating front

Saltating front

Saltating front

Static region

Flowing region

(a) 208 ms

(b) 375 ms

(c) 500 ms

(d) 900 ms

Figure 2. Flow evolution at different times, as marked in the top-left corner, for an experiment
with a = 7, di = 6.05 cm and θ = 20◦. The internal interface between static and flowing regions
(black, dashed curve), the upper free surface (solid, white curve) and the saltating front are
highlighted.

first (and stops), while the frontal region propagates further as a mobile flow that
thins out to a thickness of a few grain diameters (figure 3d).

In all experiments a frontal region of saltating grains precedes the coherent front
(figures 2 and 3). The length of the saltating region increases with time and also with
the basal inclination.

4. Final geometry
4.1. Final height profiles

The contours of the final deposits vary with both the initial aspect ratio and the
basal inclination. To allow a comparison between all the profiles, here we consider
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Flowing region

Figure 3. Flow evolution at different times for an experiment with a = 7, di = 6.05 cm and
θ = 25◦. The internal interface between static and flowing regions (black, dashed curve), the
upper free surface (solid, white curve) and the saltating front are highlighted. The interface
reaches the free surface in the rear region first, while the frontal region is still propagating as
a very shallow flow.

the vertical depth, h(x), between the upper free surface and the inclined bottom
plane sampled at regular horizontal spacing. In contrast to the inclined channel, the
reservoir hosting the initial column of sand has a horizontal base. In experiments it
does not make a difference whether the base of the reservoir is horizontal or similarly
inclined as the channel. This is because the outer inclination of the initial interface
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Figure 4. (a) Shape of final deposits for five experiments with constant initial height hi

(∼ 44 cm) and basal length di (6.05 cm) at inclinations from 4.2◦ to 25◦. (b) Shape of final
deposits for the data in a non-dimensional form.

(ca. 60◦) is always much larger than the channel inclination. Hence, and to allow for
a simpler analysis of the final height profiles, the measured final deposit depths in the
reservoir were reduced by (di–x)tanθ , as if the incline would reach into the reservoir.
The influence of the basal inclination is illustrated in figure 4(a). This graph, which
shows profiles of five experiments for constant a = 7 and θ varied from 4.2◦ to 25◦,
gives an impression how the deposits become progressively thinner and elongated
with increasing inclination. The final profiles for experiments with varying aspect
ratio, while θ is kept constant, are shown in figure 5(a–e). At inclinations of 4.2◦, 10◦

and 25◦, the profiles are relatively smooth curves with a steep rear segment and a flat
outer segment. However, for experiments with a > 7 at θ =15◦ and θ = 20◦, the profiles
comprise a pronounced step-like disturbance in between these two segments whose
amplitude and distance from the origin increase with the aspect ratio. The step-like
disturbance forms when a surge-like wave, propagating from the upper surface of
the collapsing column towards the flow front, separates a high-velocity frontal region
from a lower velocity rear region.

The contours of the final deposits can be written in a non-dimensional form as

h(x)/h̃∞ = η(x/d∞, a, θ), (4.1)
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Figure 5. Non-normalized and normalized forms of the shape of final deposits for experiments
with aspect ratios ranging from 3 to 14.3 for: (a, f) 4.2◦, (b, g) 10◦, (c, h) 15◦, (d, i) 20◦ and (e, j)
25◦. The arrows mark examples of the bump-like disturbance described in the text.
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where h̃∞ = h∞ − di tan θ and d∞ = δd + di/ cos θ . Lube et al. (2005) showed that
for θ =0◦ in the second flow regime (a > 2.8), the height profiles obey a self-similar
form of

h(x)/h̃∞ = η̃(x/d∞, a), (4.2)

where the non-dimensional profiles are independent of the aspect ratio. We will now
test whether the function η can be split into two dimensionless functions η̃ and FP as
h(x)/h̃∞ = η̃(x/d∞, a)FP (θ) to allow a separate analysis of the effect of the aspect ratio
and the basal inclination. For the function η̃ of x/d∞ and a we know by definition
that

η̃(0, a) = 1 and η̃(1, a) = 0. (4.3)

In figure 5(f –j ) the height profiles are presented in a non-dimensional form for
each inclination. It is seen that there is a very good data collapse for θ = 4.2◦

and θ = 10◦ (as there is for θ =0◦, Lube et al. 2005). There is some minor scatter
for the non-dimensional, collapsed profiles at θ = 15◦ and θ =20◦, which, however,
can be attributed to the step-like disturbances mentioned previously. In contrast to
experiments with inclinations smaller or equal to 20◦, non-dimensional height profiles
for experiments at 25◦ do not collapse to one universal profile. Plotting the height
profile data of figure 4(a) for a = 7 in a non-dimensional form (figure 4b) shows that
there is a dependence on the basal inclination. To understand the function FP better,
we now analyse the dependence of d∞ and h∞ on a and θ .

4.2. Scaling arguments for the maximum runout distance

Experimental observations that the form of collapse differs with both the aspect
ratio and the basal inclination immediately suggest using a and θ as the fundamental
parameters for the analysis of the maximum runout distance. For θ =0◦, it was shown
that a is the only parameter and, because inertial effects dominate frictional effects,
the collapses are insensitive to changes of the particle characteristics (Huppert et al.
2003; Lajeunesse et al. 2004, 2005; Lube et al. 2004, 2005). Also, because most of
the flow propagates on a layer of already deposited material, the flow behaviour
is independent of basal friction δB (Lajeunesse et al. 2005; Lube et al. 2005, 2007).
However, the resistance between static and moving particles, which has to be related
to the internal friction angle φ, may be an important parameter to this problem. We
thus assume that the maximum runout distance can be expressed by dimensional
arguments as a function only of two separate non-dimensional terms for a and θ , φ:

δd = diζ (a)FD(θ, φ). (4.4)

For small values of a, where only the outer margin of the column takes part in the
flow, the collapse is independent of di and (4.4) simplifies to

δd = kL(θ, φ)hi, (4.5)

where kL is dependent on the basal inclination and for θ =0◦, kL = 1.58 for different
grain forms and sizes (Lube et al. 2005). At a large aspect ratio, ζ depends on both hi

and di . For the case of θ = 0◦, it was shown experimentally that ζ ∝ a2/3 (Lajeunesse
et al. 2005; Lube et al. 2005).

In figure 6(a) we plot the data of the maximum runout distance normalized by di

for the different values of a and θ . For all values of θ and a < 2.8, δd varies linearly
according to (4.5). At a > 2.8 and for θ � 20◦, the data are well represented by power
laws of the form

δd/di = kH (θ, φ)a2/3 (4.6)
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2/3) for a > 2.8 and kL = δd/(dia) for
a < 2.8 as a function of the basal inclination. Values of the internal friction angle determined
by best fits of (4.13) and (4.14) to the data are almost identical (33.6◦ for the large-aspect-ratio
regime and 33.8◦ for the low-aspect-ratio regime) and in agreement with the experimentally
determined friction angle for the sand (33 ± 1◦).

and kH = 2.17 for θ = 0◦ for different grain forms and sizes (Lube et al. 2005). For
θ =25◦ the runout data are not well described by a two-thirds power law. A best fit
through the data gives δd/di = 4.6a0.84. This deviation demonstrates the different flow
behaviour that occurs when the basal inclination comes close to the AOR.

The above results can be usefully combined with the analytical solutions for
granular dam-break flows by Mangeney, Heinrich & Roche (2000) to specify the
functional form of FD . The analytical solution for the position of the flow front d as
a function of time is given by

d = 2c0t − 1
2
mt2, (4.7)

where, for the inclined flow problem, the terms c0 and m are given by

c0 = (kghi cos θ)1/2 (4.8)
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and

m = g cos θ(tan φ − tan θ), (4.9)

with k being an empirical function of granular friction. Note that the basal friction
angle in (4.8) and (4.9) has been replaced by the internal friction angle because the
flows under consideration propagate on a layer of deposited particles and not over
the rigid base of the chute. Equation (4.7) predicts that the flow stops at a time t∞
given by

t∞ =
2c0

m
=

2 (khi/g cos θ)1/2

tan φ − tan θ
. (4.10a, b)

Substituting (4.8), (4.9) and (4.10) into (4.7), we obtain

d(t∞) ≡ δd =
2khi

tan φ − tan θ
=

2kadi

tan φ − tan θ
. (4.11)

For the case θ = 0◦, (4.11) simplifies to

δd =
2kadi

tan φ
, (4.12)

while independent solutions for the final runout at θ = 0◦ are known through (4.5)
and (4.6). This allows for substitution of the unknown function k to reveal a solution
for the final runout distance for low and high aspect ratios as

δd

di

=
kH (0, φ)a2/3 tan φ

tan φ − tan θ
(for large aspect ratios) (4.13)

δd

di

=
kL(0, φ)a tan φ

tan φ − tan θ
(for small aspect ratios). (4.14)

A test of these relationships is shown in a graph of δd/(dia) (for small aspect ratios)
and δd/(dia

2/3) (for large aspect ratios) against θ (figure 6b). The agreement between
theory and data is extremely good. Furthermore, numerical values of the internal
friction angle determined through best fits of (4.13) and (4.14) to the data are almost
identical for the low-aspect-ratio regime (φ = 33.8◦) and the high-aspect-ratio regime
(φ = 33.6◦), and, importantly, they agree with the friction angle determined separately
for the sand material used.

4.3. Scaling arguments for the maximum height

The maximum deposit height at x = 0 also depends on a and θ , and we assume that
the mathematical description can be expressed as a function of two separate functions
for a and θ , φ as

h∞ = diϕ(a)FH (θ, φ), (4.15)

where ϕ and FH are dimensionless functions. These functions can be determined for
small values of a, where h∞ = hi , and thus ϕ(a) = a and FH = 1, as demonstrated for
the data a � 1 (figure 7a) For a > 1, best fits of the data for h∞/di as a function of
the aspect ratio indicate a power law of the form man, where both m and n vary with
θ . However, when instead of h∞ the modified final height h̃∞ = h∞ − di tan θ is plotted
as h̃∞/di against a (figure 7a), the data for θ � 20◦ are nicely represented in the form

h̃∞/di = cH (θ, φ)a2/5, (4.16)

where, for θ = 0◦, cH = 1 for different grain forms and sizes (Lube et al. 2005). As for
the maximum runout distance, the final height data for θ = 25◦ at a > 1 cannot be
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Figure 7. (a) The normalized maximum deposit height plotted as a function of the aspect
ratio. (b) The modified maximum deposit height plotted as a function of the aspect ratio.
The solid curves represent functions of the form h̃∞/di = cH (θ, φ)a2/5. The dashed curve
shows the best-fit power law through the data for θ = 25◦. (c) Solution (4.18) compared with
the experimentally determined values for cH (θ, φ) = h̃∞/(dia

2/5) as a function of the basal
inclination. The internal friction angle determined by best fit of (4.18) to the data equals 33.6◦.

described by the same function as all the other data due to deviating flow behaviour.
A best-fit power law through the data reveals h̃∞/di = 0.49a0.36.

The good fit of solution (4.13) to the final runout data suggests that collapses on
inclines are governed by three main parameters: the aspect ratio; a friction angle;
which turns out to be the AOR; and the difference between the friction angle and the
slope of the chute. This should be true for the final maximum height as well; only
that runout and height are inversely related by some unknown function and we may
write

h̃∞

di

∝ a2/5F1(tan φ − tan θ)

F2(tan φ)
. (4.17)

The variation of cH with the basal inclination is presented in figure 7(c) showing the
ratio h̃∞/(dia

2/5) plotted against θ . The data are well represented by the relationship

h̃∞

di

=
cH (0, φ)a2/5 (tan φ − tan θ)3/5

(tan φ)3/5
, (4.18)
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where cH (0, φ) = 1, and where F1 and F2 take power law forms with exponents
of 3/5.

5. Flow front kinematics
The time, t∞, at which the motion of the flow front ceases is determined from

the temporal variation of the instantaneous flow front position. For θ =0◦ this time
depends only on the initial height hi and g as t∞ ∝ (hi/g)1/2 (Lajeunesse et al. 2005;
Lube et al. 2005). In analogy to the above arguments for the maximum runout and
maximum height, we express t∞ as

t∞ = (hi/g)1/2FT (θ, φ), (5.1)

and figure 8(a) shows that the functional form of FT is linear.
The variation of FT with the basal inclination is shown in figure 8(b). An empirical

fit of the data is given by the power law function t∞/(hi/g)1/2 = FT (0, φ)f (θ), where
FT (0, φ) = 3.3 for different grain forms and sizes (Lube et al. 2005) and f (θ) = 1/(1 −
2.1 tan2 θ). The scatter of the data for θ = 25◦ is slightly too large for confident
analysis.
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Following the same approach as in § 4.2, we can use the analytical solution for
t∞ (10) from Mangeney, Heinrich & Roche (2000) and the scaling of FT at θ = 0◦

to derive the functional form of FT and an analytical relationship for the final
emplacement time as

t∞

(hi/g)1/2
=

FT (0, φ) tan φ

(cos θ )1/2 (tan φ − tan θ )
. (5.2)

Figure 8(b) reveals that this solution is a poor representation of the experimental
data and it overestimates the runout times by as much as approximately a factor of 2.
This sheds some light on the limitations of depth-averaged continuum models when
applied to real-world granular flow problems.

Figure 9 shows the position of the flow front as a function of time for several
experiments where θ was kept constant and the aspect ratio was varied from 3 to
14.3. There is an initial acceleration phase followed by a phase of approximately
constant velocity before the flow fronts decelerate and stop. The initial acceleration is
uniform at 0.75g and independent of the value of initial column height and the basal
inclination. Transition to the second, constant velocity phase occurs approximately at
a time t = [2 (2.5di) / (0.75g)]1/2 after the initial motion, also independent of hi and
θ . During the constant velocity phase, the flow front propagation is independent of
the value of hi . The magnitude of the constant velocity, however, does increase with
the basal inclination.

6. Static and moving regions
6.1. Motion of the internal interface

The deposition of particles below the moving internal interface between static and
moving particles was analysed in two ways. First, the bulk deposit volume per unit
width, represented by the area AD , integrated under the entire internal interface, was
determined as a function of time for different values of a and basal inclinations of
15◦, 20◦ and 25◦. Second, in order to characterize vertical deposition rates along the
flow, we measured the thickness of the static region, hD(d, t), at fixed distances, d .

The typical form of curves AD against time is shown in figure 10(a) for four
experiments at 15◦ and aspect ratios varying from 5.3 to 14.3. The data are plotted
as AD–AW against time, where AW =0.5d2

i tan60◦ is the area of the initial static
wedge. The two phases of collapse, the initial free-fall phase and the subsequent
lateral spreading phase, are evident in this graph. In the free-fall phase the static
area increases with time independent of the initial height. The collapsed data follow
the relationship AD–AW ∝ t2. At a time depending on a, the data depart from this
universal curve and the static area increases at a lower rate. For the two large-aspect-
ratio experiments with a = 10.6 and a = 14.3, AD varies approximately linearly with
time in this lateral spreading phase such that the deposition rate dAD/dt is effectively
constant. For the two experiments with a = 5.3 and a =7.3, however, the deposition
rate in the lateral spreading phase is not constant but increases with time.

The principal effect of the basal inclination on the deposition behaviour is
demonstrated in figure 10(b). Here the data AD–AW against time are shown for
four experiments at 0◦, 15◦, 20◦ and 25◦, where hi (∼ 44 cm) and di (6.05 cm) were
kept constant. In the free-fall phase, the data overlap and the static area increases with
time independent of the basal inclination. While the data overlap in the free-fall phase,
there is a strong variation with the basal inclination in the lateral spreading phase
such that the deposition rate strongly decreases with increasing θ at any given time.
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Figure 9. The position of the flow front as a function of time for 4.2◦, 10◦, 15◦, 20◦ and 25◦.
Curves of d =0.5 · 0.75 · gt2 nicely describe the initial, uniform acceleration phase which is
independent of hi and θ . The dark grey line highlights the constant gradient during the lateral
spreading phase. For comparison purposes, the gradient obtained for experiments at 4.2◦ is
repeated in the other plots as the light grey line.

Unfortunately, due to poorer resolution of the high-speed footage with increasing
flow length, the data at 20◦ and 25◦ are slightly too scattered to be further analysed
with confidence.

Results for the second approach to analysing the thickness variation of the static
region over time at fixed distances d are shown in figure 11(a), where hD (d = const.)
is plotted against time at regular spacing of 5 cm for an experiment with a = 7.3 and
θ = 15◦. At proximal distances d = 10 cm, 15 cm and 20 cm, hD initially increases with
time in a nonlinear fashion followed by approximately linear segments. The initial part
is observed during the free-fall phase, whereas the final linear segment occurs during
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Figure 12. (a) Example of the velocity profiles perpendicular to the base at different times
for an experiment at θ = 4.2◦ and a = 6.7. (b) Collapse of the same velocity data (for t � 521
ms) plotted as velocity against height above the internal interface.

the lateral spreading phase. At distal positions (d > 20 cm), the temporal increase in
hD is entirely linear and governed by lateral spreading only. The linearity of the data
during the lateral spreading phase allows the calculation of local deposition rates
∂hD/∂t from linear best fits. In figure 11(b) the data ∂hD(d, t)/∂t for inclinations of
15◦, 20◦ and 25◦ at constant hi and di are compared to the corresponding data for
θ = 0◦. The local deposition rate varies along the flow length. A proximal increase
close to the gate is followed by slightly decreasing or approximately constant values.
The local deposition rate strongly decreases with increasing inclinations, although
there is some scatter in the data for high values of θ .

6.2. Velocity profiles

Velocity profiles in the flowing layer have been analysed normal to the inclined plane
at the fixed position δd/3 from the gate. The flow front approaches this distance in
the lateral spreading phase. Two different kinds of profile geometries are observed.
The velocity profile is typically S-shaped with a high slip velocity at the base and
lower shear rate close to the upper free surface (figure 12a at 396 ms) during
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passage of the frontal region with direct contact to the base. With the arrival of
the internal interface front at the observation point, the velocity profiles exhibit a
complex transitional shape in which a central low-shear zone separates the lower and
upper regions in which the shear rate increases with height (figure 12a at 437 and
479 ms). Shortly afterwards, when the interface front has passed, the velocity profiles
change to a thin lower exponential region immediately above the interface followed
by an upper linear region (figure 12a at 521–687 ms). This profile shape is maintained
for the remaining duration of flow.

Subtraction of the thickness of static grains below the interface from the height
values in figure 12(a) to obtain the height in the flowing layer reveals that the velocity
profiles formed after passage of the interface front collapse to a universal profile
(figure 12b) for each aspect ratio and at basal inclinations θ � 20◦. This data collapse,
however, does not work for the experiments at 25◦. At such steep inclination, the
velocity profiles after passage of the interface front still comprise a lower exponential
and an upper linear region, but the slope of the linear section varies with time.

A shear rate can be calculated as the inverse slope of the linear section of the
collapsed universal profile. Lube et al. (2007) have shown that for θ = 0◦ this shear
rate follows the relationship

γ0 = 6.1(g/h̃i)
1/2, (6.1)

where h̃i , defined by

h̃i = hi − di tan(60◦)/2, (6.2)

is a length scale that describes the fraction of the granular column actually involved
in the flowing region. We adopt this relationship for the data for inclined channels
investigated here. In figure 13 we show the experimentally determined shear rates
against the shear rate scale (g/h̃i)

1/2 for the different inclinations. While the data for
0◦ and 15◦ include the full range of aspect ratios, only experiments for a = 5, 7 and
9 were analysed for the other inclinations. Anyhow, the data can be approximated
by linear functions of the form γ (θ, h̃i) = cS(θ)(g/h̃i)

1/2. The general tendency of
increasing cS with the basal inclination is evident.
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7. Summary and conclusions
Experimental results for the collapse of rectangular columns of sand into rough,

inclined channels are presented. Both the shape of final deposits and the kinematic
behaviour were analysed as functions of the initial aspect ratio and the basal
inclination of the channel.

The main results from the analysis of the resulting deposits are as follows.
(i) Two different flow regimes at low and large aspect ratios exist, exactly as for

collapses into horizontal channels.
(ii) In the range of tested basal inclinations, the final deposits for a > 2.8 and θ � 20◦

can be described by a self-similar form with respect to their maximum horizontal and
longitudinal extent.

(iii) For θ � 20◦, analytical solutions for the shallow-water dam-break problem
(Mangeney, Heinrich & Roche 2000) can be usefully combined with scaling
relationships of the final runout distance and the maximum deposit height at zero
inclination. This reveals the functional forms for δd and h∞ as multiplicative functions
of separate terms for the aspect ratio, the internal friction angle and the difference
between this friction angle and the basal inclination.

In addition, the analysis of the kinematic behaviour revealed the following results.
(i) While shallow-water theory proves useful for the prediction of the maximum

horizontal and vertical extents of the deposits, it largely overestimates the overall
time to reach the maximum runout distance. This limitation, probably arising
from neglecting vertical acceleration during the initial stages of collapse and from
integrating over any vertical structures in the depth-averaged scheme, should be
considered carefully when applying shallow-water granular models to real-world
problems such as avalanches of debris and snow or debris flows.

(ii) The change in flow behaviour from the free-fall phase to the lateral spreading
phase also affects the deposition from the base of the internal interface. At constant
θ , the deposition rate in the free-fall phase is independent of the initial height and
a, and scales like dAD/dt ∝ t . The deposition rate during the lateral spreading
phase, however, increases with the initial height and decreases with increasing basal
inclination.

(iii) The shear rate measured in the lateral spreading phase at a fixed longitudinal
distance δd/3 from the gate increases with the basal inclination. The shear rate can be
expressed as γ (θ, h̃i) = cS(θ)(g/h̃i)

1/2, where cS is an increasing function of the basal
inclination.
The above conclusions apply to channel inclinations of θ � 20◦. For a steeper
inclination of θ = 25◦, the flow behaviour differs by the development of a separation
into both vertical (as for θ � 20◦) and longitudinal regions of static below and behind
moving material. This results in a different shape of the final deposit, as indicated
by the values of δd and h∞, such that the final runout distance for a > 2.8 follows
a power law of the form δd/di = 4.6a0.84 instead of δd/di ∝ a2/3 which is the case
for θ � 20◦. Assuming that all potential energy of the initial columns is dissipated by
frictional forces (e.g. µMigδd = Mighi , where Mi is the mass of the initial column),
the maximum runout distance should follow the linear relationship δd/di ∝ a. This
suggests that the increase of the power law exponent to higher basal inclinations,
probably approaching the value of 1, can be interpreted as a transition from inertial
to more frictionally determined flow. At θ = 25◦, the frontal region decouples from
the main flow and travels further as a thin sheet flow only a few particle diameters
thick which is more strongly governed by frictional effects. Further experiments are
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needed to show how this flow region responds to variations of the basal roughness
and granular materials with different static angles of repose.

It will be interesting to explore in the future how the kinematical behaviour changes
when the basal inclination approaches and exceeds the static AOR. An immediate
assumption from our experimental findings is that for flows at the AOR, where a
flow regime of steady, uniform motion develops, the internal interface coincides with
the rigid base. Experiments on granular collapse flows down inclined channels at or
above the AOR over a bed of loose particles might show that the interface propagates
downwards, effectively causing erosion.
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Fellowship awarded by the University of Cambridge and a Feodor-Lynen Postdoctoral
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