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We consider theoretically the long-time evolution of axisymmetric, high Reynolds
number, Boussinesq gravity currents supplied by a constant, small-area source of
mass and radial momentum in a deep, quiescent ambient. We describe the gravity
currents using a shallow-water model with a Froude number closure condition to
incorporate ambient form drag at the front and present numerical and asymptotic
solutions. The predicted profile consists of an expanding, radially decaying, steady
interior that connects via a shock to a deeper, self-similar frontal boundary layer.
Controlled by the balance of interior momentum flux and frontal buoyancy across
the shock, the front advances as (g′

sQ/r1/4
s )4/15 t̂4/5, where g′

s is the reduced gravity
of the source fluid, Q is the total volume flux, rs is the source radius and t̂ is
time. A radial momentum source has no effect on this solution below a non-zero
threshold value. Above this value, the (virtual) radius over which the flow becomes
critical can be used to collapse the solution onto the subthreshold one. We also use
a simple parameterization to incorporate the effect of interfacial entrainment, and
show that the profile can be substantially modified, although the buoyancy profile
and radial extent are less significantly impacted. Our predicted profiles and extents
are in reasonable agreement with existing experiments.

Key words: gravity currents

1. Introduction
Gravity currents occur whenever fluid of one density flows predominantly

horizontally into fluid of a different density (Simpson 1997). Motivated by flows such
as fresh river water spreading above the salty ocean or smoke plumes propagating
beneath a ceiling, we consider the evolution and spreading rates of an axisymmetric,
inertia-dominated, Boussinesq gravity current generated by a constant, circular source
of fluid and momentum. We assume a deep, quiescent ambient.

Shallow-water models are a popular approach for theoretical studies of gravity
currents (see Ungarish 2009 for an extensive review). In the gravity current’s body
the dynamics are described by a vertically averaged balance between inertia and
buoyancy, and at the front a Froude number closure condition is imposed to
capture form drag from the ambient fluid. Such models can give remarkably accurate
predictions of gravity current evolution. For the planar analogue of our constantly
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supplied gravity current problem and the planar and axisymmetric constant volume
release problems, the shallow-water model admits a long-time similarity solution in
which the only important parameter is the buoyancy supply rate or total buoyancy,
respectively (Grundy & Rottman 1985; Gratton & Vigo 1994). In the planar cases,
the predicted expansion rates have been verified experimentally (e.g. Marino, Thomas
& Linden 2005 for constant volume and Slim & Huppert 2008 for constant flux)
and for the planar constant volume release, predicted self-similar profiles agree
well with observations (Marino et al. 2005), albeit with a frontal Froude number
based on the head rather than the back of the head where the condition is usually
imposed.

For axisymmetric constantly supplied gravity currents, it would naturally be
anticipated that the only important parameter at long times is again the supply
rate of buoyancy, which would indicate expansion in time t̂ as t̂3/4. Based on this
argument, some studies have tried to construct a similarity solution of the shallow-
water model with this scaling. However, in an overlooked result, Grundy & Rottman
(1985) proved that such solutions do not exist, and further analysis of presented
profiles shows that they would become multivalued if extended closer to the origin
(in a way that cannot be overcome by introducing a shock). Possible explanations for
this discrepancy are that dimensional analysis with a single important parameter is
incorrect, or that the shallow-water model is missing important physical processes, or
possibly both.

A number of experimental investigations have examined this geometry (Britter
1979; Chen 1980; Linden & Simpson 1994; Kaye & Hunt 2007). They have largely
appeared consistent with a t̂3/4 expansion. However, the time between decay of initial
transients and transition to a viscous-buoyancy regime is relatively short, and it has
been suggested (Ivey & Blake 1985) that this regime is never truly established for
example in the data of Britter (1979). A hint that the rate of supply of buoyancy is
not the only important parameter, and thus that the dimensional analysis prediction
may be incomplete, is provided by Kaye & Hunt (2007). Their gravity currents
were generated by negatively buoyant plumes impinging on a lower boundary and
expanding radially. They found that the height of the plume source above the
boundary H (alternatively, the radius of the gravity current’s source, rs ≈ 0.15H , the
plume’s impact region) and the associated time scale provide an excellent collapse of
the radial extent in time across different experiments.

Our aim is to give the numerical and true asymptotic solution of the standard
shallow-water model at long times. We show that the source radius remains important
and the profile consists of a steady interior and a self-similar frontal boundary
layer with the front expanding as t̂4/5. In our solution the Froude number in the
interior is large, suggesting interfacial entrainment could be significant. We therefore
also present solutions incorporating a simple parameterization of entrainment. In
§ 2, we describe the model, focusing particularly on the source and entrainment.
In § 3, we present numerical height and velocity profiles for the non-entraining
shallow-water model and construct the long-time asymptotic solution. We also
briefly show how the familiar planar similarity solutions can be recovered using
the same construction approach. In § 4, we show how the profiles and spreading
rates are modified on incorporation of entrainment. In § 5, we quantitatively compare
the expansion rates obtained theoretically with those observed experimentally and
qualitatively compare profiles. Finally in § 6 we summarize our new findings and briefly
describe other possible sources of error in the shallow-water model besides interfacial
entrainment.
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Figure 1. Radial cross-section of a gravity current in a deep, quiescent ambient
supplied by a constant source of mass and radial momentum.

2. Formulation
Consider an inertia-dominated, axisymmetric, Boussinesq, incompressible,

homogeneous gravity current propagating into a deep ambient along a horizontal
boundary. The geometry is described by a radial coordinate r̂ , as shown in figure 1.
A constant, circular source of radius rs supplies the gravity current with fluid of
reduced gravity g′

s at volume flux Q and radial specific momentum flux Mr . A
radial momentum source can be important if the gravity current is derived from a
jet impinging on the boundary. For illustration we assume the source is uniformly
distributed over the source disk. However, in § 3 we shall show that a threshold radial
momentum flux exists below which details of the source distribution do not affect the
evolution of the gravity current, and above which a length scale exists that collapses
the solution onto the subthreshold ones. This fortunate observation means we do not
need to quantify the precise details of the source distribution and radial momentum
source.

2.1. Governing equations

We model the interior of the gravity current, away from the leading edge, using
modified shallow-water equations (e.g. O’Donnell 1990) describing conservation of
mass, momentum and buoyancy:

∂ĥ

∂t̂
+

1

r̂

∂

∂r̂
(r̂ ûĥ) =

Q

πr2
s

Θ(rs − r̂) + E(F)|û|, (2.1)
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∂

∂r̂
(r̂ ĝ′ûĥ) = g′

s

Q

πr2
s

Θ(rs − r̂), (2.3)

where Θ(·) is the Heaviside function, ĥ is the thickness of the gravity current, û is the
vertically averaged radial velocity and ĝ′ = (ρc − ρa)g/ρa is the reduced gravity, with
ρc the density of the gravity current, ρa that of the ambient and g the acceleration
due to gravity. The term E(F)|û| is a simple empirical description of interfacial
entrainment due to Turner (1986):

E(F) = max[(0.08F2 − 0.1)/(F2 + 5), 0], (2.4)

where F = û/

√
ĝ′ĥ is the local Froude number. Note that more accurate, but more

complex, parameterizations are available (e.g. Cenedese & Adduce 2010). For a non-
entraining gravity current, this term is absent and ĝ′ = g′

s everywhere.
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2.2. Frontal closure conditions

At the front of the gravity current r̂ = r̂f (t̂), motion is no longer hydrostatic and
the governing equations no longer apply. The dynamics are unsteady and complex.
However, they are dominated by form drag as the ambient is deflected over the
advancing gravity current. To capture this, we impose a bulk form-drag condition
(e.g. O’Donnell 1990)

ûf = β

√
ĝ′

f ĥf , (2.5)

where the subscript f denotes values just behind the head of the gravity current and
β is an imposed frontal Froude number. Inviscid theory suggests β =

√
2 (Benjamin

1968); however, experiments for planar constantly supplied dense gravity currents
along a solid boundary suggest the viscous and turbulent drag corrected value of
β = 0.91 (Simpson & Britter 1980), which we assume henceforth.

The front evolves as a material surface and we complete the system with the
kinematic condition (e.g. O’Donnell 1990)

dr̂f

dt̂
= ûf . (2.6)

This formulation ignores entrainment into the head, which occurs when gravity
currents hugging a solid boundary overrun and engulf ambient fluid and by shear at
the back of the head. Experimental studies of its importance appear contradictory:
Hallworth et al. (1996) argue that this form of entrainment dominates that along the
interface, while Hacker, Linden & Dalziel (1996) suggest it is less significant. It is not
well understood, and at present no theoretical description of it exists for constantly
supplied gravity currents.

2.3. Non-dimensionalization

We non-dimensionalize using the radius of the source rs as a length scale L, the
buoyancy flux per unit circumference (g′

sQ/πL)1/3 as a velocity scale V and rescale

the reduced gravity by the source value g′
s . Thus, we set r̂ = r L, t̂ = t L/V , ĥ = h V 2/g′

s ,
û = u V and ĝ′ = g′ g′

s to obtain

∂h

∂t
+

1

r

∂

∂r
(ruh) = Θ(1 − r) + E(F)|u|, (2.7)
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)
= MrΘ(1 − r), (2.8)

∂

∂t
(g′h) +

1

r

∂

∂r
(rg′uh) = Θ(1 − r), (2.9)

with
drf

dt
= uf = β

√
g′

f hf . (2.10)

The remaining parameters are the non-dimensional radial momentum source and
entrainment coefficient,

Mr = Mr (πL/g′
sQ

4)1/3 and E(F) = Ec max[(0.08F2 − 0.1)/(F2 + 5), 0], (2.11)

where Ec =(π2L5g′
s/Q

2)1/3. The latter is small when the density difference between
the fluid and ambient is small, or when the source is intense (deep flows result for
which the entrained volume is a small fraction of the total).
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Figure 2. Non-entraining gravity current with zero radial momentum source, Mr = 0.
(a) Height and (b) velocity profiles at times t = 10 to 100 in intervals of 10. Grey curves in
(a) indicate regions where entrainment might be expected (F2 > 1.25). (c) Normalized height
close to the front. The bold, dashed curve is the similarity solution. (d ) Extent of the gravity
current against time and (inset) the approximate power-law exponent log rf / log t . The bold,
dashed curves are using the similarity solution. Initial condition: h = 1, u = 0 for r � rf (0) = 1.

Shocks may develop in these flows, and we give the Rankine–Hugoniot shock
conditions (Kevorkian 1991) for future reference:

�uh� = S�h� and �u2h + h2/2� = S�uh�, (2.12)

where S is the shock velocity and �·� indicates a jump in the bracketed quantity.
We present both asymptotic and numerical solutions of (2.7)–(2.10). The numerical

solutions were found using a second-order weighted average flux finite volume method
in the interior and a first-order front-tracking method to evolve the front; details are
provided by Slim (2006).

3. Non-entraining gravity currents
We begin by considering numerical solutions for non-entraining gravity currents.

Figure 2(a,b) shows height and velocity profiles, respectively, at several times. The
interior of the gravity current is steady with a radially decaying height profile and a
velocity profile that approaches a constant. Ahead of this, and connected to it by a
shock, is a deeper, slower moving frontal boundary layer. The steady interior results
from geometric spreading balancing source supply. However, the thin, fast, jet-like
flow developed far from the source is unable to force the ambient ahead of it out of
the way; the front is retarded, deepening and slowing to form the frontal boundary
layer. This layer appears self-similar: the solution for several times collapses onto
a master curve upon scaling the radial coordinate by the front position and the
height by the frontal height (figure 2c). The front scales approximately as t4/5 at long
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Figure 3. Construction of the steady interior solution: integral curves of local Froude number
F against r given by (3.1) for radial momentum sources (a) Mr = 0.5, (b) Mr = 1, (c)
Mr = 1.094 and (d ) Mr = 2. Solution curves are bold.

times (figure 2d ). We proceed to analyse the interior and the frontal boundary layer
separately.

3.1. Steady interior

Integrating the steady form of (2.7) and (2.8), we obtain

2uh = r,
dF
dr

=
3 × 24/3Mr − r1/3(7F2/3 + 2F−4/3)

2r4/3(F−1/3 − F−7/3)
(3.1a)

in terms of the Froude number F = u/
√

h within the source region, r < 1, and

2ruh = 1, u2/2 + h = A (3.1b)

outside the source region, r > 1, where A is a constant of integration to be found. No
boundary conditions are specified directly for these equations; we identify the unique
solution from consideration of behaviour in the limit r → 0 and at large r where the
solution must join to the frontal boundary layer.

Figure 3 shows integral curves of (3.1) in the (r, F) plane for different radial
momentum-source strengths. A number of observations are useful for determining
the solution curves. First, all integral curves have either F → 0 or F → ∞ as r → 0 or
r → ∞. Second, local maxima and minima in r(F) occur at F = 1. Finally, to satisfy
the entropy condition (Kevorkian 1991), steady shocks can only connect points having
F > 1 on the inner side of the shock to points having F < 1 on the outer side.

At large r , the steady solution joins to the frontal boundary layer via a shock.
For this to be possible, the entropy condition dictates that F > 1 and so we need an
integral curve with F → ∞ as r → ∞ and hence F(1) � 1.

As r → 0, two behaviours are possible, one with F → 0 and another with F → ∞.
For the former, the only solution satisfying F(1) � 1 must have F(1) = 1 (see
figure 3a). Such a curve exists only for Mr � 0.78. For the latter, there is a distinguished
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curve having

F ∼
(
3 × 24/3Mr/7

)3/2
r−1/2 as r → 0, (3.2)

on which u =O(1) and h =O(r). Curves above this do not reach r = 0, while those
below have u =O(r−2) as r → 0, which is unphysical. For Mr � 1.09, this distinguished
curve does not reach r = 1. However, provided 0.78 � Mr � 1.09, we can join it via a
steady shock to a point having F < 1 on the integral curve passing through F(1) = 1
(see figure 3b). The shock location is the unique position where (2.12) with S = 0
applies.

In summary, we find the unique, steady interior solution by imposing F(1) = 1 and
F(0) = 0 for Mr � 0.78 (figure 3a), F(1) = 1 and equation (3.2) for 0.78 � Mr � 1.09
(figure 3b) and only (3.2) for Mr � 1.09 (figure 3c, d ).

Enforcing F(1) = 1 implies A= 2 × 3−5/3 and the unique solution exterior to the
source is (see also Garvine 1984)

u = 22/3 cos

[
1

3
cos−1

(
−1

r

)]
, h =

1

2ru
, (3.3)

which is indistinguishable from the numerical steady solution in figure 2. For
Mr � 1.09 this is no longer correct. However, we can collapse the solution onto
(3.3) by setting the length scale of non-dimensionalization in § 2.3 to be the (virtual)
distance over which the flow becomes critical, L = Fsrs[3/(F2

s + 2)]3/2, where Fs is
the measured Froude number at the edge of the source.

For our particular choice of source distribution, Mr = 1.09 thus separates pure
gravity currents from forced or jet-like gravity currents. A similar analysis for other
reasonable source distributions suggests the precise details are always immaterial to
the exterior solution below a threshold radial momentum source. For this reason, we
ignore the source of radial momentum henceforth.

3.2. Frontal boundary layer

In the steady interior solution (3.3), F = O(r1/2) as r becomes large. This cannot
satisfy the frontal boundary condition (2.10) and we connect the steady solution
via a shock to a frontal similarity solution. To find its form, we briefly return to
dimensional variables. We choose a similarity variable η = r̂/[Pt̂ δ] = r/tδ for unknown
δ, where P =L(V/L)δ for L and V as given in § 2.3. Then by dimensional arguments
û= P1/δ r̂1−1/δṽ(η) and ĝ′ĥ = P2(1−1/δ)r̂2(1−1/δ)z̃(η). In non-dimensional variables this
becomes

u = r1−1/δṽ(η) and h = r2(1−1/δ)z̃(η). (3.4)

On the inner, steady-solution side of the shock, all three bracketed quantities in the
shock conditions (2.12) scale as 1/r for large r . On the outer, similarity-solution
side of the shock, the bracketed quantities scale as r3(1−1/δ), r2(1−1/δ) and r4(1−1/δ),
respectively (assuming the shock location changes slowly in the similarity variable).
To connect the two solutions via (2.12), at least one bracket must be dominated at
large r by the steady solution and one by the shock. From this we conclude that the
similarity exponent must satisfy 2/3 � δ � 4/5. However, if 2/3 � δ < 4/5, then the
two shock conditions predict contradictory directions of shock propagation. Thus,
δ =4/5, which implies that the spreading rate of the gravity current is governed by
the balance between the interior jet momentum flux u2h and the frontal buoyancy
h2/2.

This analysis is only strictly valid in the limit r → ∞, in which case the shock
and front coincide and the omission of higher order terms and assumption of
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self-similar shock propagation are exactly valid. The solution is given by
u ∼ βα1/4r−1/4, h ∼ α1/2r−1/2 and ηf ∼ (5β/4)4/5α1/5, where α = 2−1/3

√
3. Nevertheless,

we find that the similarity solution for δ = 4/5 provides an excellent description of
the numerical data for finite r . For convenience and consistency with previous work,
we set

ṽ(η) = δη1/δv(η) and z̃(η) = δ2η2/δz(η). (3.5)

Substituting this form into (2.7)–(2.10), we obtain the autonomous system of ordinary
differential equations (Gratton & Vigo 1994)

dv

d log |η| =
v(1 − v)(1 − δv) + 2z(1 − δ − δv)

δ[z − (v − 1)2]
,

dz

d log |η| =
z(3δv2 − 4δv − v + 2 − 2δz)

δ[z − (v − 1)2]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)

subject to v(ηf ) = 1 and z(ηf ) = 1/β2. Solving this system numerically, we find the
bold, dashed curves in figure 2(c) in excellent agreement with the full numerical
solution. To complete the frontal boundary layer solution, we still need to specify ηf

and the shock location rsh. These are obtained from the full shock conditions (2.12)
together with the evolution equation drsh/dt = S and are included in figure 2(d ). Note
that the slow evolution of ηf in time captures the small deviation from 4/5 in the
observed power-law exponent.

Heuristically, the reason a similarity solution is reasonable for finite r is that the
subdominant terms in the shock conditions are both small and evolve slowly (the
corrections scale as r−1/4). Thus, the shock propagates almost self-similarly and so
the dominant balance remains as described above with δ ≈ 4/5. The non-self-similar
portion of shock propagation can be compensated for adiabatically ahead of the
shock.

3.3. Planar solutions

The solution structure described above superficially appears to be substantially
different from the corresponding planar problem, whose solutions are completely
self-similar. These solutions have exponent δ =1 and consist of constant near-source
and frontal regions joined by a steadily propagating shock or a propagating and
expanding rarefaction (Gratton & Vigo 1994). However, these solutions may be
derived following the same procedure and we summarize the steps here.

The planar equivalent of the governing equations is

∂h

∂t
+

∂

∂x
(uh) = Θ(1 − x),

∂

∂t
(uh) +

∂

∂x
(u2h) +

∂

∂x

(
1

2
g′h2

)
= MrΘ(1 − x), (3.7)

where x is the horizontal coordinate; the front and shock conditions are unchanged
after identifying x with r . Assuming a steady interior, we find uh = 1/2 and u2h +
h/2 = A′, where A′ is a constant that can be determined by analysis of the solution
within the supply region (Slim & Huppert 2008). If we now attempt to connect this
solution via a shock to a self-similar frontal boundary layer of corresponding form to
(3.4), then all terms on the steady side of the shock are of order unity, while those on
the similarity solution side scale as x3(1−1/δ), x2(1−1/δ) and x4(1−1/δ), respectively. Thus,
δ = 1 and the balance across the shock is perfectly self-similar.

The postulated solution structure corresponds directly to similarity solutions with
a propagating shock. However, solutions with a rarefaction can be thought of as
having a ‘shock’ with zero jump in height and with the rarefaction being part of the
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Figure 4. Entraining gravity currents: (a–d ) height (solid) and buoyancy (dashed) profiles at
times t = 10, 50 and 100. The difference between buoyancy and height is the entrained volume.
Plots are for (a) Ec = 0, (b) 0.01, (c) 0.1 and (d ) 1. Grey curves indicate entraining regions
(F2 > 1.25). (e) Radial extent against time for the same entrainment coefficient values Ec ,
with the value increasing in the direction of the arrow. (f ) Approximate power-law exponents
log rf / log t against time. (Initial condition: h = 1, u =0 for r � rf (0) = 1.)

frontal boundary layer. The algebraic details of the construction are now identical to
the process of obtaining the similarity solutions (see Gratton & Vigo 1994).

4. Entraining gravity currents
The large Froude numbers in the far-field interior indicate that significant

entrainment can occur in the lighter curved regions of figure 2(a). Figure 4 shows
height profiles for several values of Ec at different times. For larger values, the solution
has a substantially different structure from the pure inertia case: a minimum height
is achieved at some distance from the source (decreasing with increasing Ec), beyond
which the gravity current thickens to a constant value. Entrainment occurs along the
length of the gravity current (except for a small region at the front); and it dominates
the dynamics in the immediate vicinity of the source. The buoyancy profile is closer
to the non-entraining case, decaying radially before increasing once more in a frontal
boundary layer.

Entrainment reduces the extent of the gravity current because engulfment of
ambient fluid decelerates the flow. Figure 4(c, d ) shows the radial extent of the
gravity current in time for various values of Ec. Entrainment only marginally affects
spreading at early times (t < 100) and the t4/5 power law still appears to be a good
description. However, at late times the exponent is reduced.

5. Comparison with experiments
Detailed comparison with experiments is difficult because most studies only report

the best-fit coefficient C to the spreading law rf = Cπ1/4t3/4. Figure 5(a) shows
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Figure 5. Experimental comparison. (a) Coefficient C = rf /(π1/4t3/4) against time. Solid curves
are numerical solutions for Ec = 0, 0.01, 0.1 and 1. Dashed lines are reported experimental
values. (b) Radial extent against time: solid curves are numerical solutions (without fitted
parameters) with Ec = 0 (upper) and Ec = 1 (lower), symbols are from Kaye & Hunt (2007),
and the dashed curve is rf = Cπ1/4t3/4, with the coefficient taken to fit the data. (Initial
condition: h = 1, u = 0 for r � rf (0) = 1; reducing the initial h translates the curve to the right
by at most 1, but does not alter its shape beyond t ≈ 1.)

consistent behaviour between our numerical solution for C as a function of time and
experimental values. Furthermore, Linden & Simpson (1994) observed that C was
independent of the momentum source below a non-zero threshold value, qualitatively
consistent with our theoretical prediction. A more careful comparison is made with
the data of Kaye & Hunt (2007) (figure 5b), who already observed good collapse
with a choice of non-dimensionalization similar to ours. Our predictions give a first
description of existing experimental data without requiring fitted parameters; they are
reasonably consistent, although it is not clear that the t4/5 law is a better functional
fit than the t3/4 law.

Structurally, two qualitatively different behaviours have been reported. The
experiments of Britter (1979) were designed to minimize entrainment, which was
only observed at the leading edge. The described height profiles consist of an
expanding, steady, radially decaying, near-source region and a pronounced advancing
head, qualitatively consistent with our low-entrainment predictions. In contrast, the
experiments of Linden & Simpson (1994) and Kaye & Hunt (2007) had substantial
entrainment in the zone immediately neighbouring the impinging plume used to
generate the gravity currents. They observed a steady profile that decreased in
height radially for a short distance, before deepening again, either monotonically
(Kaye & Hunt 2007) or through a zone of rings (Linden & Simpson 1994) to a
local maximum, before finally levelling off at a constant height near the front. This
behaviour is consistent with our higher entrainment predictions, although we do not
find agreement for the location of the local maximum.

6. Discussion
In many contexts, the shallow-water model has provided a good description of the

observed dynamics of gravity currents. In our problem, the comparison between the
shallow-water predictions and experiments is also reasonable; however, the extent of
comparison possible is limited. We therefore suggest that new experiments would be
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worthwhile, on a sufficiently large scale that interfacial entrainment is minimized and a
long inertial regime can be established. If the observed behaviour were to be consistent
with a t4/5 expansion law, then the applicability of the shallow-water description would
be cemented. Otherwise detailed study of the behaviour could help elucidate which
fundamental physical effects have been overlooked in the model. This geometry
provides a particularly revealing test because the predicted behaviour is crucially
controlled by the balance across the shock between the interior momentum and frontal
buoyancy. It thus relies on arguably the two weakest shallow-water components:
the frontal closure conditions and the shock conditions. These have already been
questioned in other contexts, for example the frontal boundary conditions cannot
account for effects such as entrainment and vorticity generation which have been
observed to play a fundamental dynamical role in certain circumstances (Hallworth
et al. 1996; Patterson et al. 2006), and it is unclear whether shocks truly form
or whether they are completely smoothed through entrainment in a density step
(Wilkinson & Wood 1971).

From a theoretical perspective, this problem is of significance as an example where
anticipated self-similarity of the first kind fails. Far from the source, it would be
expected that the only important parameter is the total supplied buoyancy, as is
the case, for example, for axisymmetric viscous gravity currents (Huppert 1982).
However, we have shown that the radius of the source (or more precisely, the radius
over which the flow becomes critical) also remains important and the actual behaviour
of the frontal boundary layer is more akin to self-similarity of the second kind, with
a combination of the supplied buoyancy and critical radius being the important
parameter.
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