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Abstract—The interaction between temporally varying currents and the bottom topography of the
ocean is investigated by the numerical and analytic examination of the following simple model. The
flow of an inviscid, stratified fluid is initiated from relative rest in a uniformly rotating system con-
taining an isolated topographic feature. The evolution of the flow redistributes vorticity and tempera-
ture in such a way that relatively cold water with anticyclonic vorticity exists over the topographic
feature, while water shed from above the topographic feature sinks, thereby inducing a warm
anomaly with cyclonic vorticity. For sufficiently strong oncoming flows, the shed fluid continually
drifts downstream in the form of a relatively warm eddy. If the oncoming flow is relatively weak, the
interaction between the anticyclonic and cyclonic vorticity distributions traps the warm eddy and it
remains in the vicinity of the topographic feature.

We suggest that recent observations of an eddy in the vicinity of the Atlantis II Seamount and
the existence of the large amount of high frequency energy near the bottom of the ocean measured by
the MODE experiment may be partly explained in terms of the above mechanism. We conclude by
speculating that vorticity redistribution by topography may be a contributing factor to cyclogenesis

in the atmosphere.

1. INTRODUCTION

AsS POSTULATED by STOMMEL (1955), a fascinating
new view of oceanography arose when a set of
pioneering measurements of deep currents was
conducted in the late fifties and early sixties using
neutrally-buoyant Swallow floats (SwALLow and
HamoN, 1960; CReASE, 1962; SwaLLow, 1971).
These measurements were the first to indicate that
the flow beneath the main thermocline is
significantly variable in both space and time. In
both the eastern and western North Atlantic the
currents were found to vary on a time scale of a
few weeks and a space scale of a few tens of kilo-
meters. Many measurements confirming the
significance of this temporal and spatial varia-
bility have been conducted since, the MODE
experiment in an area 500 km by 400 km south-
west of Bermuda being the latest (and most
ambitious) program.

Explanations and prediction of the details of
the variability are still being sought. Two physical
mechanisms have received attention. One concept
is that baroclinic instability occurs in the abyssal
ocean to produce ‘weather’ in the main thermo-
cline in a manner analogous to the generation of
weather in the atmosphere. Theoretical calcula-
tions investigating this effect have been carried
out by GILL, GReeN and SmMMoONs (1974),
RoBiNsON  and McWiLLiams  (1974) and
BRETHERTON (1975). The last two investigations

imply that with parameters appropriate to the
mid-Atlantic, models incorporating the effects of
bottom topography induce baroclinic instabilities
of sufficiently rapid growth-rate to be potentially
important in mesoscale dynamics. The second
mechanism to have received attention is the
phenomenon of vortex ring formation by the
Gulf Stream. PARkerR (1971) studied approxi-
mately 200,000 bathythermograph records and
identified 62 such rings, each of which drifted
and slowly decayed over a period of at least 2
years. BRETHERTON (1975) argues from the results
of numerical experiments by himself and those of
RHINES (1975) that the most likely source of the
small-scale noise which shows on the tem-
perature and salinity sections all over the sub-
tropical ocean basins is the offshore regions of the
Gulf Stream and associated shedding of closed
vortex rings.

Both of these explanations can be described in
terms of eddies, a loosely defined concept imply-
ing temporal variability and rotational motion.
Thus at any level the perturbation streamlines
and associated isopycnals of an eddy field are
closed curves evolving in time. Such a pattern is
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observed in everyday weather maps and occurred
in the POLYGON and MODE experiments.

The aim of the present work is to investigate
the interaction of variable mean currents with the
bottom topography of the ocean. An outcome of
our work is the generation of an eddy-like tem-
perature and vorticity field by this interaction.
Our work hence suggests an alternative method
for the production of eddies in the deep ocean
beneath the thermocline.

In order to build up an understanding of the
features of the interaction of time-dependent
mean currents with varying bottom topography,
we investigate the following simplified model. A
forced flow is initiated from relative rest in a
rotating, stratified system to flow over an isolated
topographic feature. Section 2 sets up the details
of the model and presents a simplified physical
explanation of the interaction, thereby building
the framework which is added to in the following
sections. Section 3 describes numerical investiga-
tions which yield the details of the interaction and
confirm the validity of the physical framework of
Section 2. The numerical results also yield a
quantitative answer to the question of how much
of the flow goes around and how much goes over
the topographic feature. Section 4 presents a
simplified analytic model which describes many
of the aspects of the numerical results and hence
can be used to predict details of the interaction
for parameters different to those used in the
numerical computations of Section 3. Section 5
summarizes the general results of our investigation
and discusses some oceanographic data, taken in
the New England Sea Mount Chain, which can be
partly explained in terms of these results. The
section continues with a few comments on the
application of our results to the atmosphere and
concludes with the observation that there are a
large number of isolated topographic features in
both the oceans and the atmosphere and these
might be used to examine the applicability of the
ideas contained in this work.

2. THE MODEL
In order to understand the essentials involved
in the interaction of time-dependent flows and

varying bottom topography, we consider the
following situation as the simplest problem in-
corporating the desired effects. Inviscid, stratified
fluid of mean depth H, and uniform buoyancy
frequency N rotates about a vertical axis with
constant angular velocity 3f. The bottom
boundary contains an isolated feature, of charac-
teristic horizontal scale L, which is represented by
z = — H(x,y) = h(x,y) — H, in terms of the
axes shown in Fig. 1. The fluid is at relative rest
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Fig. 1. A sketch depicting an isolated topographic feature
and the co-ordinate system used in this paper.

initially and at = 0 a pressure gradient in the
y-direction is impressed on the system in such a
way that there is a mean flow generated in the
positive x-direction. Far upstream (x = — o0)
the flow approaches U(¢), a barotropic velocity
independent of x, y or z, which monotonically
increases in a time scale ¢, to the constant value
U,. We assume in this paper that ¢, is less than
the advection time scale L/U,, the time scale of
the response to the initiation of the mean flow.
The rotation of the system and the initiation of a
mean current are the essential ingredients of the
model and the aim of the investigation is to deter-
mine the temporal development of the resulting
flow.

The first effect to occur is most easily explained
in terms of the following framework. With
reference to Fig. 2, as the mean flow is initiated,
fluid originally at A is advected in a downstream
direction to A’, vortex lines are compressed by
the topography and anticyclonic vorticity is
induced. This anticyclonic vorticity remains over
the topographic feature to make up part of the
final, large-time solution. Fluid originally at B
is also advected downstream to B’, vortex lines
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Fig. 2. A sketch of the initial, advective motion. The
column of fluid at A is advected to A’ and that at B is
advected to B’.

are stretched and cyclonic vorticity is induced.
By Kelvin’s circulation theorem, there is as much
cyclonic vorticity generated as there is anti-
cyclonic vorticity, and initially there is a fore-aft
symmetry with the line joining the centers of the
two vorticity distributions lying in the upstream—
downstream direction. The time scale for this
process is the advective time, L/U,. As we discuss
at greater length below, not all the fluid originally
at A is advected over the isolated feature; some
is advected around it. While this effect decreases
the amount of anticyclonic vorticity induced, it
does not alter the main qualitative features of the
flow.

Subsequent to the advection phase, the flow is
influenced by two effects. One, the vorticity
distributions interact. This interaction tends to
rotate the center of the cyclonic vorticity distribu-
tion around the trapped anticyclonic vorticity
distribution. Two, the cyclonic vorticity is in-
fluenced by the oncoming flow which tends to
advect it downstream. The combination of these
two effects results in one of two very different
flows. Fither the movement of the cyclonic
vorticity distribution is dominated by the on-
coming flow, in which case the cyclonic vorticity
distribution after some time drifts downstream,
or the movement is dominated by the vorticity—
vorticity interaction, in which case the cyclonic
vorticity distribution is trapped by the anti-
cyclonic vorticity and remains in the vicinity of
the isolated topographic feature.

This discussion has been in terms of vorticity
because of its dynamical prominence. In a strati-
fied fluid the same discussion can be carried out
in terms of density as follows. Relatively heavy

fluid at the base of A is initially advected to the
top of the topographic feature. Relatively lighter
fluid, at the base of B, is advected off the feature.
The relatively heavier fluid at the top of the feature
is constantly replenished by the oncoming flow.
The lighter fluid, initially on top of the feature,
sinks and either drifts downstream as a relatively
lighter patch of fluid or is forced by its interaction
with the fluid above the topographic feature to
remain close to it. We examine these two different
types of flow and evaluate the parametric regions
in which they occur by both numerical and
analytical models below.

The large time, steady-state flow induced by
relatively shallow features has been recently
investigated analytically by HoGgG (1973) for the
special case of a right circular cylinder and by
HupperT (1975) for more general topography.
The latter calculates the flow field using quasi-
geostrophic theory and shows that topographic
features above a critical height induce regions of
closed streamlines or Taylor columns. Below this
critical height no closed streamlines occur. In
this regime, the main feature of the flow is the
comparatively larger velocity in the vicinity of
the topography on the left looking downstream
and an accompanying smaller velocity on the
right. Huppert derives formulae yielding the
critical height for circularly symmetric topographic
features [equations (1) and (2) of his abstract] and
presents numerical results appropriate to three
different topographic shapes (his Fig. 3).

The major thrust of the present work is the
investigation of time-dependent flows induced by
features sufficiently large that Huppert’s steady-
state solutions indicate that there is a region of
closed streamlines in the flow, and his results
represent a useful foundation against which we
can test our present numerical calculations and
make a number of interesting comparisons.

3. THE NUMERICAL CALCULATIONS
Governing equations

The numerical calculations were performed
using the equations of motion for a stratified fluid
moving with respect to a uniformly rotating
system. The Boussinesq approximation was
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invoked and a hydrostatically balanced vertical
pressure gradient was used. A small linear, hori-
zontal diffusivity of heat and horizontal momen-
tum was included for numerical purposes. Under
the influence of only this diffusivity, a generated
disturbance would decay in a time scale of over a
hundred days. Hence the effect on the generation
of the vorticity distribution and its initial move-
ment is negligible.

Denoting the horizontal velocity vector by q,
the vertical component of the velocity by w and
using the representative density p,, we write the
momentum equations as

%9+q.Vq+wd, q+fing

=—p'Vpr+A4gV'q (3.1
and the equation of continuity as
V.q9+0dw=0, 3.3)

where 5/ and /2 are horizontal operators and
Ap is the horizontal diffusivity discussed above.
To these we add a linear equation of state relating
temperature and density

p=1po(l —aT) B4
and the temperature conservation equation

4T+q.VT+wd,T=Az 12T (3.5

The requirement of zero normal flow at the
upper and lower boundaries stipulates that

w=20 (z =.0) 3.6)
and that
w=—q.VH (z=—H). (3.7

Equations (3.1) to (3.7) were solved in a region
of horizontal dimensions 245 by 245 km and
depth H, = 4 km. The topographic feature in
each calculation was a centrally-situated, circu-
larly symmetric gaussian

h (x,p) = hy, exp [— (x* +)))/LF]  (3.8)
with horizontal length scale L = 20 km. The
lateral boundary condition imposed on all
variables at the edges of the region (x,y =
+31D) was that of periodicity in the x- and y-
directions. This meant that flow downstream of
the topographic feature eventually reappeared
upstream. The present work benefitted from this
effect since it artificially increased the length of the
downstream section.

The forcing of the flow was prescribed by
imposing the constraint

0 iD
qdy dz = ULH, (1, 0),

-H —}D

3.9)

which implies that the total downstream transport
is uniform and that there is no net drift in the
cross-stream direction. Each numerical experi-
ment started from a state of rest. At £ = 0 the
forced transport was slowly increased to its final
value over a transition period of 1 day. Explicitly

U =0

<0 (3.10)

U = U, tanh (#/ty) (t = 0), 3.11)
with ¢, equal to 1 day.

The neglect of bottom friction in our model
requires some comment. The effect of including
bottom friction would be to reduce both the
cyclonic and anticyclonic vorticity generated.
Over the feature, regions of closed streamlines
will be spun down by Ekman suction. Away
from the feature, the shed anomaly will be
retarded in its movement and, due to the reduced
anticyclonic vorticity, will be less affected by the
vorticity—vorticity interaction. The influence of
these effects on our results is dependent upon
the magnitude of the bottom friction. Estimates
of this quantity in the ocean vary enormously.
Possibly the most comprehensive study undertaken
is that of WEATHERLY (1972). His study in a typical
region in the Straits of Florida indicates that a
bottom stress of 0.2 dyne cm~2 was produced by
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a mean external velocity of approximately
10 cm s, Use of linear Ekman boundary layer
theory suggests that the inclusion of a bottom
stress 7 in our model will decrease the magnitude
of the generated vorticity by the fraction
[tN/(fU?]*. Even for a bottom stress an order of
magnitude larger than the one indicated by
Weatherly’s study, this fraction is less than 5%,
implying that we can safely neglect the effect of
bottom friction.

Parameters

The calculations were carried out using the
finite difference scheme described by BRYAN
(1969) with some minor modifications. The
numerical scheme used centered differences with
respect to both time and space. The timestep used
in the calculation varied from 86.4 steps day—! for
the slowest flows to 432 steps day~! for the
fastest flows. In the horizontal plane the finite
difference mesh was uniform with a 5-km spacing
between grid points. In the vertical the spacing
varied smoothly but non-uniformly to allow for
a more detailed resolution near the bottom than
the top. A departure from the Bryan (1969)
scheme is that the lowest cells near the bottom
can be of non-uniform thickness and the thickness
of the lowest cell can be (and was) chosen to
match the actual bottom configuration. This
generalization permits the depth to vary smoothly
from one mesh point to another without sacri-
ficing the integral preserving properties of the
model. Dependent on the maximum height of the
topographic feature, one of two different sets of
cell thicknesses were used. The depth of the centre
point of each cell is tabulated in Table 1.

The parameters used in the numerical calcula-
tions can be divided into two categories. The first
category consists of those parameters which
were the same for all experiments. These para-
meters and their values are tabulated in Table 2.
The second category consists of the two para-
meters U, and #4,, which were varied from experi-
ment to experiment. The value of U, was varied
between 0.5 and 25 cm s~ and the value of 7,
between 75 and 800 m. Twelve calculations using
different values of U, and #,, were performed, with

Table 1. Depth (in m) of the center point in each

layer of the numerical model. Arrangement A and

B were used for cases of moderate and large
amplitude bottom topography, respectively.

Arrangement
Level A B
1 400 293
2 1197 878
3 1980 1462
4 2715 2041
5 3325 2603
6 3720 3119
7 3903 3530
8 3967 3791
9 3991 3941

each calculation continued for at least 3000 time-
steps. The values of U, and £, used in each
calculation can be determined from Fig. 13b which
presents a datum point from each experiment.

Table 2. The fixed parameters of the numerical

calculations.
Parameter Value Description
L 20 km Horizontal length scale of the
topographic feature
H, 4 km Maximum depth
F i 10~*s~' Inertial frequency
N 10-2s~*  Buoyancy frequency
NH,/fL 2 Stratification parameter
Ag 40 m® s~* Horizontal mixing coefficient

The time-dependent solutions

It was possible to test the numerical scheme
by maintaining the flow over a low topographic
feature for a long enough time that the flow settles
down and then compare the results with HUPPERT’s
(1975) analytic calculations. As discussed in the
previous section, a cyclonic vortex is formed
during the initial stages of the flow which drifts
downstream, leaving an isolated anticyclonic
vortex over the feature. Due to the cyclic boundary
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Fig. 3. The horizontal velocity vectors after 34.7 days at a depth of 3903 m for U, = 5.1 cms~! and A, = 75 m.

(a) The present numerical calculations. (b) The numerical calculations minus HuppPERT’s (1975) analytic calculations.
On this and subsequent figures the dotted circle represents a circle of radius 20 km, the length scale of the isolated
topographic feature.

conditions employed in the numerical calculations,
the drifting cyclonic vortex reappears upstream
making it difficult to obtain a completely isolated
anticyclonic vortex in the numerical model. This
difficulty is circumvented by terminating the
numerical integration before the drifting vortex
moves into the near vicinity of the feature. Figure
3a presents the horizontal velocity vectors after
3000 timesteps (34.7 days) at level 7 (3903 m)
for a calculation with U, = 5.1 cm s™! and
h,,=75 m. In Fig. 3b the vector difference between
HupperT’s (1975) analytic solution and the
numerical solution is shown. It is clear that there
is good agreement between the two solutions
except in the vicinity of the drifting cyclonic
vorticity. A careful evaluation of the numerical
results indicates that except in the vicinity of this
cyclonic vorticity the difference between the two
solutions is in the range of approximately 5 to
109%. This difference can be attributed to the fact
that the analytic solution is derived for zero
Rossby number and applies the lower boundary
condition at z = — H, rather than z = — H,
while the numerical solution includes a small
truncation error. Considering these differences

between the two models, the solutions are in good
agreement and lend credence to the description
given below.

The description of the details of a time-
dependent, three-dimensional flow is not easy.
The task is somewhat simplified by the fact that
the qualitative features of the flow tend to be very
coherent along a vertical coordinate with the
density perturbation, Ap, attenuating with in-
creasing distance above the bottom according to

Ap (x’ya Z, t) s Ap (x’ Vo H5 t)

sinb, (o Nz, ) (310)
sinh (NH/fL)

as indicated by HUPPERT’s (1975) analytic theory.
The validity of (3.12) is demonstrated for one
particular situation (U, = 5.1cm s ™1, 4,, = 200 m)
in Fig. 4. Thus our description can concentrate on
the level just above the top of the isolated feature
and on the lower levels which intersect the
feature.

Examining our results, we find that the
patterns of the density and the linearly related
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Fig. 4. The density perturbation at x = y = 0 after
34.7 days for U, = 5.1 cm s and A, = 200 m. The
triangles (A) represent the results of the numerical calcula-
tions and the solid curve is given by Ap (x,y, z,t) =
Ap (x, y, t) sinh (— Nz/fL)/sinh (NH/fL).

temperature anomalies correspond very closely
to those of vorticity, as we expect from previous
theoretical calculations. Since oceanographers
measure density or temperature rather than
vorticity, we present most of the pictorial aspects
of our results in terms of these variables. However,
since vorticity is a twice differentiated property
of the flow field, the smoothness of the vorticity
field is a rather stringent test of the accuracy of the
finite difference scheme. Hence we present a few
vorticity figures, both to exhibit the similarity
between the density anomalies and the vorticity
field and to indicate the accuracy of our numerical
calculations.

We present detailed results for two flows with
h,, = 200 m. For the first case U, = 5.1 cm s},
herein case F (fast), and for the second case
U, = 1.0 cm s, herein case S (slow). For case F
the shed vorticity drifts downstream, while for case
S it remains near the topographic feature. We
compare the temperature and vorticity patterns
for these two cases level for level.

The evolution of the temperature pattern for
case F at level 6 (3720 m), the first level above the
top of the feature, is shown in Fig. 5. As the flow
commences the response consists of an upwelling
on the upstream side of the feature leading to a
relatively cold patch of water over the feature and
a downwelling on the lee side leading to a rela-

tively warm patch of water downstream. This
occurs in the advective time scale L/U,. Thereafter
the warm anomaly rotates clockwise around the
feature and, under the influence of the oncoming
stream, gradually elongates and eventually drifts
downstream, leaving a long tail of warm water in
its wake. Due to the periodic boundary conditions
employed in the calculation the drifting warm
anomaly reappears upstream after some 23 days
(2000 timesteps). After 35 days the warm anomaly
has spread out considerably and decreased 50 % in
amplitude. By contrast, the cold anomaly remains
stationary, displaced slightly to the left of the
feature, maintaining an approximately constant
amplitude. Figure 6a shows the velocity vectors
for this case and level at 35 days. These vectors
are drawn at every fifth grid point in the x-
direction and every other grid point in the y-
direction. We see clearly that in the vicinity of
the feature the fluid first moves to the left (looking
downstream) around the feature and then turns
sharply to the right after it has passed over it.
To the right of the top of the feature there is a
circular, nearly stagnant region approximately
25 km in diameter. Figures 7a, b present the
vorticity for the same case and level after 7 days
and 35 days, the same times as Figs. 5b, e. The
similarity between the vorticity and temperature
patterns is clearly evident.

We now consider the flow for case S at level 6.
Initially the response is similar to that for case F
except that a greater proportion of the flow goes
around rather than over the feature, an effect to
be discussed in detail below. The evolution of the
temperature pattern is shown in Fig. 8. The
distinctive feature in contrast to case F is the
tendency of the cold and warm anomalies to be
very tightly wrapped around each other. This
tendency reaches a maximum after approximately
18 days. Thereafter the pattern loosens up some-
what but there is no indication that the warm
anomaly drifts off downstream as for case F.
The numerical calculation was continued for
70 days and confirmed this point. Figure 9 shows
the vorticity pattern after 9 days; the similarity
between this pattern and the temperature pattern
in Fig. 8b is clear.
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(a)

(b)

(c)

Fig. 5. The isopycnals with a contour interval of Ap/p, = 16 X10-¢ at a depth of 3720 m for U, = 5.1cms~and 4, =

200 m. (a) 2.3 days, (b) 6.9 days, (c) 13.9 days, (d) 23.1 days and (e) 34.7 days. In this and subsequent figures C marks

the cold anomaly and W the warm anomaly. Note that much of the 245 X 245 km area contains very little density
variation and to save space is not shown in this and subsequent figures.
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Fig. 6. The horizontal velocity vectors after 34.7 days for U, = 5.1 cm s™* and h, = 200 m. (a) At a depth of
3720 m. (b) At a depth of 3991 m.
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Fig. 7. The relative vorticity with a contour interval of 2:0 x 10-¢s~! for U, = 5.1 cm s~! and A,, = 200 m.

Depth Time

(m) (days)
(a) 3720 6.9
(b) 3720 34.7
(© 3967 6.9
(@ 3967 34.7

We now turn to describing the flow at a level
intersecting the topographic feature. The evolution
of the temperature pattern for case F at level 8
(3967 m) is shown in Fig. 10. The first pattern,
after 2 days, depicts a very small thermal response:
cold water just upstream of the feature has been
replaced by water of the same temperature
originally slightly further upstream and the
relatively warmer water which has been displaced
from the top of the feature has not yet reached the
lower level. As time proceeds the influence of the
warmer water does penetrate to this lower level
and, in accordance with the warm anomalies at
higher levels, the warm anomaly at this level
rotates clockwise around the feature and then,
continuously supplied by water moving down-
slope off the feature, it drifts off downstream, with
a warm water wake. The line joining the centers

of the drifting warm anomalies from level to level
is almost vertical. Upstream of the feature, for the
reason described above, the thermal response is
small for all times. In particular, in the water at
levels below the top of the feature there is not the
trapped, relatively cold anomaly which appears
above the feature. In Fig. 6b the velocity vectors
at level 9 (3991 m) after 35 days are drawn. The
general tendency of relatively rapid flow to the
left of the feature is present, though to a smaller
extent than at higher levels. Figures 7c and d
show the vorticity patterns at level 8 at the same
timesteps as the qualitatively similar temperature
patterns in Figs. 10b and e.

Figure 11 shows the evolution of the tem-
perature patterns for case S at level 8. Throughout
the motion the horizontal temperature gradients
are not as large as they are for case F at this level.
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(a)

(d)

(c)

(e)

Fig. 8.

The isopycnals with a contour interval of Ap/p, = 4x10-%at a depth of 3720 m for U, = 1.0 cm s~ and

h, = 200 m. (a) 4.6 days, (b) 9.3 days, (c) 13.9 days, (d) 23.1 days and (e) 34.7 days.

J

Fig. 9. The relative vorticity with a contour interval of
7.5 x 1077 s7* after 9.3 days at a depth of 3720 m for
Uy, = 1.0cm s~ and 4, = 200 m.

There is no tendency for either the warm or cold
anomaly to move away from the feature.

On comparing the magnitude of the tem-
perature anomalies over the topographic feature
in the F and S cases, it is clear that significantly
less fluid flows over the feature in case S than in
case F. The question of how much fluid flows over
and how much flows around a particular topo-
graphic feature is a central, yet essentially un-
answered question in the study of stratified flows
over obstacles, in both non-rotating and rotating

systems.* Not even a suitable quantitative para-
meter to be used in discussing the problem has
even been suggested. There is some difficulty
about this since while the idea expressed in the
use of the words ‘over’ and ‘around’ is clear,
how to quantify the idea is not clear. Even in
homogeneous, non-rotating flows, where there is
no restriction to oncoming fluid particles being
lifted over an obstacle, most fluid particles
originate off the upstream axis of the obstacle and
to some extent they must go ‘around’ the obstacle.
We suggest that a useful quantitative measure
can be constructed as follows. Consider a hori-
zontal plane touching the top of the obstacle.
We now ask: what is the maximum (upward)
vertical displacement a fluid particle has under-
gone in order to reach this plane? By non-
dimensionalizing this displacement by the maxi-
mum height of the obstacle, we obtain a parameter,

*A noteworthy attempt to investigate this problem was
carried out by DrAzIN (1961), but he considered only non-
rotating systems in the limits of very small or very large
stratification.



Topographically generated eddies

665

()

o
;

o)’

Fig. 10. The isopycnals for the same situation as in Fig. 5 except that the depth is 3967 m.

say &, which ranges between 0 and 1. A zero value
of & means that the flow is completely inhibited
from flowing over the obstacle: the fluid flows in
solely horizontal planes (very strong stratification).
A value of unity for & means that at least some
fluid rises to the height of the obstacle and, by our
definition, there is no inhibition to flow ‘over’ the
obstacle. Intermediate values of § quantify partial
inhibition to flow ‘over’ the obstacle. This concept
could be generalized in a number of ways, in-
cluding the consideration of horizontal planes at
various depths intersecting the obstacle, or by the
determination of the vertical displacement of
either the particle at the top of the obstacle or the
particle with minimum or maximum velocity,
for example.

The vertical displacement undergone by a
particle can be most easily determined by examin-
ing the temperature field and using the fact that to
a very high degree of approximation the tempera-
ture of a particle is a conserved quantity. Thus the
temperature at any point immediately yields the

depth from which the particle originated. In
accord with the description of the preceding
paragraph, we have determined the point of
minimum temperature in the horizontal plane at
the first level above the top of the topographic
feature (level 7 for /,, = 75 m and level 6 for 4,, =
200 m or 800 m) and thus evaluated the maximum
vertical displacement. This procedure leads to the
maximum vertical displacement at a plane in a
height say d above the top of the feature. But
since the disturbance decays with a vertical scale
given by (3.12) as fL/N, which is very much
greater than d, the results will be virtually identical
with those obtained by interpolating the tempera-
ture field to a depth equal to the top of the feature.
The non-dimensionalized displacements are
graphed against the velocity non-dimensionalized
by the critical velocity U, in Fig. 12. The value of
U, is determined from HUPPERT’s (1975) analysis
as the velocity at which a closed streamline first
appears in the flow. The data is well described by
the relationship:
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Fig. 11. The isopycnals for the same situation as in Fig. 8, except that the depth is 3967 m.
0 =l U U= Uy) (3.13a) hold in the limit of small Uy/(fL) and constant
fIN and NH,/fL so we can rewrite (3.14) as
== (Uy=ullg)h (3.18b)

An explanation of this relationship is as
follows. For U > U.,, in the sense of the preceding
paragraph all the flow goes over the feature and
hence 8 = 1. For U, < U, on dimensional grounds

U, NH, f U,

s=_=F1(k, il B
Nh, fL' N fL

), (3.14a,b)
m
where 8* is the dimensional vertical displacement
and F; is a non-dimensional function dependent
on its four non-dimensional arguments and the
shape of the topographic feature. Our results

*
5= E’_ = Fz(ﬁ;%, I) (3.15a, b)
h NH,, "L 10N,

m

in terms of a new non-dimensional function F,,
where we wish to emphasize that only variations
in the first argument are being considered at the
moment. Now, unless U, is close to U,, particles
which are elevated to the horizontal plane at the
top of the topographic feature are unaware of the
total height of the feature. Thus (3.15) must be a
relationship independent of %, and hence of the
form
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Fig. 12. The normalized maximum displacement of a
fluid particle reaching the horizontal plane touching the
top of the topographic feature of height A 75 m, 0 200 m

and O 800 m.
*
5 = 8_: Yo Fa(l_\/ﬂ,l) (3.16a, b)
h,, Nh,, fL N

where Fj is another non-dimensional function.
Thus 3§ is a linear function of U, passing through
the origin (zero flow implies zero displacement).
Using the fact that § = 1 when U = U,, we see
that

NH, f\ _
F,(fL,]_v_) Nh, U, (3.17)

from which (3.13a) follows. We note that (3.17) is
consistent with the fact that U, is linearly propor-
tional to 4, if all other quantities are held fixed
and that the above argument indicates that (3.13)
is correct for all NH,y/fL and f/N; the influence of
these quantities and the shape of the feature is
expressed in the value of U,. The argument also
indicates why (3.13) describes the 4,, = 200 m
results better than the A, = 800 m results.
HuppPERT’s (1975) linearized boundary condition,
zero Rossby number calculation for U, is not
entirely adequate for the higher feature at the
Rossby number U_/fL ~ 0.2. The inclusion of the
influence of these two effects—the non-lineariza-
tion of the lower boundary condition and finite
Rossby number—would lead to an increased
value of U,. A 25 Y increase for 4,, = 800 m leads
to a very close agreement between the data and
relationship (3.13a).

Another measure of the amplitude of the
disturbance is the total perturbation potential
energy over the entire volume. Compared to the
maximum displacement at a single point, it
provides a measure which is less sensitive to
details of the patterns. The expression for
potential energy is

2
PE. = pgszff (p —prdxdydz, (3.18)
0

where the overbar indicates a horizontal average
over the entire area. In Fig. 13a the normalized
potential energy is plotted as a function of time
for all the cases in which the height of the topo-
graphic feature is 200 m. In every case the potential
energy rises abruptly, reaches a maximum value
and then fluctuates on a time scale much longer
than that required for the initiation of the
disturbance. The time required for the disturbance
to form is proportional to the advection time,
L/U,. The maximum values of the potential
energy are plotted in Fig. 13b as a function of the
energy of the incoming flow on a log-log scale.
As might be anticipated from the results in Fig. 12
the potential energy is proportional to the energy
of the incoming flow for U, < U, (Froude number
less than unity). For larger values of the mean
flow the potential energy increases, but only
slightly with increasing energy of the mean flow.
Specifically, a straight line fit to the calculated
points, indicates an increase of potential energy
by a 0.15 power of the energy of the incoming
flow.

4. THE ANALYTIC MODEL

A number of aspects of the numerical results
can be deduced from a rather simple mathematical
model of the transient flow. The model is inviscid
and non-diffusive and assumes the flow to be in
geostrophic and hydrostatic balance. A general
solution of the resulting equations of motion is
obtained in terms of the (unknown) density
distribution on the bottom boundary. Modelling
this density distribution in accord with the ideas
described in Section 2, we obtain a useful,
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Fig. 13(a). The potential energy as a function of time for #,, = 200 m.

quantitative description of the transient flow. In
particular, the parameter regime for which the
shed cyclonic vorticity remains close to the
isolated topographic feature is calculated.

Define o, the perturbation buoyancy per unit
mass, and w, the pressure minus its hydrostatic
portion divided by the reference density p,, so
that

p = poe ™ + po/g 4.1)

and

P = —(pog/Be ™ + pom. 4.2

Then the quasi-geostrophic potential vorticity
equation is

B firagese g ol dgiovpaa
Fiid =g, =10} s
Dt [V N? c] )
and the hydrostatic relationship is
J,m = —¢c 4.9

The substitution of (4.4) into (4.3) yields the
relationship

D r2
E[vzn + 1 P n] —0.  (45)

Since the quantity in square brackets is initially
zero, it remains zero and the equation governing
the motion is

V2n + (f3IN?) &%, m = 0. (4.6)

The boundary conditions on n are determined
by combining the density conservation equation

E—Nzw——:O,

o @.7)

and the requirement of zero normal flow at the
upper and lower boundaries,

w=0 (z =0) (4.8)
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Fig. 13(b). The potential energy as a function of the velocity.
~ DH N The condition (4.10) can be integrated and the
v Dt 7= —Hx @9 initial condition of m incorporated to yield
with (4.4) to yield a1 =0 (z =0). (4.12)
pA om =0 (z=0) (4.10) To these must be added the condition
Dt
and Vr=—fU@O1) (x—> — o0), (4.13)

which expresses the fact that far upstream there is a
D G — N H) =0 [2= = H(x, y). uniform flow in the x-direction of magnitude U.
Dr ° ’ The general solution of (4.6), (4.12) and (4.13)
(4.11) is
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Tf(x»y, z, t) e _ny

+ f f G(x»y,Z;x”y’,—Ho)

-0 =—

x Y(x', y', 1) dx' dy’, 4.14)
where G is the Green’s function (to be determined
below) satisfying

V2G + (f2IN?) &, G =8 —x') (4.15)

,G=0 (z= — H,0) (4.16a,b)

7G>0 (x> — o), @.17)

withr = (x, y,z) andr’ = (x’, y', z') and ¢ is an
unknown function related to m by

3:“(3‘,}’, il HO’ t) = (N2/f2) ‘l’(xa)’, t)' (418)

In principle, the exact solution could now be
obtained by substituting (4.18) and (4.14) into
(4.11) and solving the resulting non-linear integro-
differential equation for ¢. In practice, such a
procedure would be extremely difficult for this
time-dependent flow and lies beyond the aim of
the model which is a simple determination of the
overall properties of the flow. To this end we
adopt an approximate representation for ¢, and
thereby generalize to rotating stratified flows the
idea of describing non-rotating homogeneous
flows in terms of line vortices (BATCHELOR, 1967,
Section 7.3). During the initial advection, relatively
cold water is advected to the top of the isolated
feature replacing warmer water which is advected
downstream by a distance comparable to the
length scale of the topography. Hence, at the end
of this stage let ¢ be everywhere zero except
around the points (0, 0, — H,) and (L, 0, — Hy)
and expressable as

bix, 1) = Q[3(x — L) — 8(x)] 8(y), (4.19)

where Q is a (finite) positive quantity proportional
to the total buoyancy about (0, 0, — H,). By
conservation of mass the total buoyancy about
(0, 0, — H,) equals the negative of the total
buoyancy about (L, 0, — H,) and hence the two
delta functions in (4.19) are equal in magnitude
and opposite in sign. A more accurate solution
would result if { were represented by a greater
number of delta functions, or points sources. We
will pursue here only the approximate solution
given by a two-point representation.

During the subsequent motion the flow field
near the top of the isolated feature is steady and
so about (0, 0, — H,)

b= — 0Q38(x)3(»)

for all time. Away from the feature the flow
changes with time and so the second point at
which ¢ is non-zero changes its position with
time. This point, say (§, n, — H,), remains in a
region where there is virtually no topographic
variation. Combined with (4.4) and (4.11) this
implies that

D
B (&, n,¢) =0. (4.20)

Hence the point (§, 1, — H,) is advected with the
flow and

Yx, 3, 1) = QB(x — &) 8(y —m) — 8(x) 3()].

@.21)
Thus
¢ _ e, — Hy, 1) (4.222)
dr
i i_’ o, mE M, — Hyt)  (422b)

@

1
:U_f f 8,GE,n, — Ho; x',y', — Hy)

—® —

x Y(x', y', t)dx" dy’ (4.22¢)
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=U+(Qf)9,Go(E m), (4.22d)

where

Go(&, M) = G(E,m, — Hy; 0,0, — Hy), (4.23)
and the point (x’, ") = (€, 1) makes no contribu-
tion to (4.22c) because d,G(§,m, —Hy; x'y', —H,)
is an odd function about y' = n, and 8 (' — 1)
is an even function. The physical interpretation of
this fact is that the source point (§, ) moves under
the combined influence of the upstream flow and
the anticyclonic vorticity centred on (0, 0, —H,),
but there is no self-induced motion. Analogously
to (4.22), we write,

d‘—n = U(E.n n, _Ho’ t)

4.24a
o ( )

=f (&M, —H,, 1) (4.24b)

1 ! !
= 7f f 3;. G(&: n, _—HO; X,), —HD)

—00 — 00

x ¢ (x',y', 1) dx'dy’ (4.24¢)

= —(QIf) 9 Go(&, ). (4.24d)

Dividing (4.24d) by (4.22d), we obtain

gﬂ___ _QaaGo(F:,n) )
d§  fU + Q 9, G&, n)

(4.25)

To this equation we add the initial conditions

(4.26)

which state that after the initial advection, the
shed cyclonic vorticity is one length scale directly
downstream of the top of the topographic feature.
The solution of (4.25) and (4.26) is

fUN + Q Go&, ) = O GyL, 0).  (427)

With the introduction of the non-dimensional
horizontal coordinates (X, Y) by
Emn) =L 7Y), (4.28)

(4.27) can be written in terms of the parameter y as

YY + 9(X, Y) = 9(1,0), (4.29)
where
y = 4n H, fUL|Q (4.30)
and
G(X, Y) = 4n Hy Go(E/L, n/L).  (4.31)

We now turn to the evaluation of Q, the total
buoyancy induced over the topographic feature.
This is done by comparing (4.18) and (4.19) with
the boundary condition (4.11) yet to be satisfied
and using the relationship (3.13). For U, > U,,
the buoyancy is due to particles whose vertical
displacement is /(x, y) and hence

@

0=y f W(x, y) dx dy (Uy > UL).

(4.32)

For the circularly symmetric features we are here
considering it is convenient to reflect this in the
expression for A(x, y) by defining a function m(r)
of maximum value unity such that
h(x, y) = hy m(r), (4.33)
which will be assumed to be a monotonically
decreasing function of r. This latter assumption is
not necessary but it somewhat simplifies the
analysis. Using (4.33), we can rewrite (4.32) as

0 = 20> ki, f rm(r)dr (Uy>U,). (4.39)
0

For U, < U, the buoyancy induced is due to
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particles which have undergone a vertical displace-
ment of at most 4,,8. Thus the total buoyancy is
reduced from that given by (4.34) by an amount

ro

onf2 h,, f r[m(r) — 8] dr,

0

(4.35)

where m(r;) = 3. Subtracting (4.35) from (4.34),
we obtain the relationship

0 = 2ufhy [ f rm(r) dr + 3r? 8] (Us < U)).

(4.36)

The physical interpretation of the upper limit r,
in (4.34) is that for r > ry, m(r) < & and so particles
are elevated by the full amount 4,, m(r) for r > r,.
Substituting the cylindrical gaussian (3.8) into
(4.34) and (4.36) and using (3.13), we obtain

Q = nh,, f2L?

U= U) (4.37a)

e nhmszz (UO/UC) [1 —In (UO/ Uc)] (UO < UL')

(4.37b)

Inserting (4.37) into (4.30), we obtain the final
expression

(4.38a)
(UO S Uc);
(4.38b)

_4H, {Uo (Uy > U,)
V=g LU —In (U]

which is graphed in Fig. 14.
Expressions for (X, Y) are determined in the
Appendix, where it is shown that

(X, Y)=In (X2 + Y?)

— 43 K, [nn(X? + YHYB] (4.39)
1

~In (X2 + Y?) (B—0) (4.40a)

~ —2B(X? + Y2} (B—>o0), (4.40b)

hmfLY
4H U,

05t

G jf I | |
0 05 10
Uy/Uc: Ug /Uc

Fig. 14. A graph of the parameter y as a function of U, as

given by (4.38). Marked on the abscissa is the value of U,

below which the analytic model predicts that the shed eddy
remains in the vicinity of the topographic feature.

where

B = NH,/fL. (4.41)
Consider first the limit B — 0, which corres-
ponds to homogeneous flow. Then using (4.40a),
we can write (4.29) as
X2 4 Y2 =¢e" (4.42)
The family of curves (4.42) is presented in Fig. 15a
for various values of y. With some elementary
calculus it can be shown that for y < 2e-! ~ 0.736
the curves are closed and the free, cyclonic
vorticity distribution remains close to the isolated
feature. For y > 2e! the cyclonic vorticity
distribution escapes, moving ever downstream.
For this homogeneous situation the expression
(4.34) can be obtained directly by modelling the
flow by line vortices.
In the limit B — o0, (4.28) becomes
BO/B) Y +11 (X2 4+ YH =1, (4.43)
a relationship which is plotted for various values
of (y/B) in Fig. 15b. For y < 1/2B the curves
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Fig. 15. The paths of the cyclonic point source as given by (4.29). (a) In the limit B =0, equation (4.42), and (b) in the limit
B = o, equation (4.43).
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given by (4.43) are closed; for y>1B the curves
extend downstream, asymptoting (co, — 2B/y).

For any fixed value of B, (4.29) represents a
family of curves in terms of the one parameter y
and there exists a critical value of v, say ¥, (B),
such that for y < v, the curves reconnect, while
for y > v, the curves do not. A graph of 7v,,
determined by numerical investigation of (4.29),
is presented in Fig. 16.

15—

Fig. 16. A graph of the value of y below which the

analytic model predicts that the shed eddy remains in the

vicinity of the topographic feature. Also drawn is the curve
vy = {B.

Also drawn in that figure is the relationship
v = 3B, which is seen to be a good representa-
tion of y, for B > 2. To evaluate the correspond-
ing value of U,, say U,, as a function of B, we
combine the curve of Fig. 16 with that of Fig. 14,
or relationship (4.38). For large B (B > 2) an
approximate expression for U, can be determined
quite simply as follows. For large B, using the
fact that y, ~ 4B, we find that

b LY,
4H,U,

_ Nhwy, 1 Nhy,

LNm 0,28,
4BU, 8 U,

(4.44a, b, ¢)

where (4.44c) is obtained by using the relationship
Nh,,|U, ~ 2.24 (B > 2) given by HUPPERT (1975)
in Table 1. Inserting (4.44) into (4.38), we obtain

U, ~ 0.076 U, (B > 2), (4.45)
or explicitly in terms of 4,,
Nh, /U, ~ 29 (B > 2). (4.46)

We have marked the value of U, given by (4.45)
on Fig. 14.

The quantitative accuracy of our analytic
model can now be ascertained in two ways. First,
by combining the curves derived from (4.29) with
the paths of the ‘density centers’, say (,X—’, T’),
determined from the numerical results by

iD iD
(x, ») (p —p) H(p — p) dx dy,
(X, ¥) =22 D

$D 3D

L f (0 — ) H(p — p)dx dy

—+D —3%D

(4.47)

where p is the mean density and H(x) is the Heavi-

side unit function. The points (X, )_’) evaluated at
the lowest level not intersecting the topographic
feature at various times are plotted in Fig. 17
for: (a) h,, =75 m, Uy = 5.1 cm s (y = 5.4);
(b) h, =200m, Uy,=10cms? (y =1.2);
() h,=200m, U, =30cms? (y=1.7);
and (d) 4, =800m, U, =200cms™?! (y =
2.3). Also plotted in Fig. 17 are the curves (4.29)
for y = 5.4, 3.0, 2.4. Comparing the curves and
the plotted points, we conclude that for relatively
strong flows (large 7y), the model gives very
accurate results, while for relatively weaker flows
(smaller y) the model is only reasonably accurate.
One shortcoming of the model is that it suggests
that a trapped eddy constantly encircles the topo-
graphic feature. In actual fact, as described in the
previous section, prior to the flow settling down
to the double vortex structure of Figs. 8d and e
there is a very tight interaction between the two
vorticity distributions, which we could not hope
to adequately describe with our two source-point
model. Except for this, the agreement between the
analytic and numerical results is encouraging,
especially bearing in mind the simplicity of the
model, and suggests that analytic models of this
form can predict fairly well the path of a shed
eddy.

A second test of the accuracy of the analytic
model is to compare the value of U, determined
by the model and that determined from the
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Fig.
are the density centers of the cyclonic eddy:

17. The paths of the cyclonic point source as given by (4.29) for B = 2 and y = 5.4, 3.0, and 2.4. Also plotted
U, =51 emst, b= 15ms % U= 2000 em $72nh, =800 m;

# Uy =3.0cms ™Y, h, =200m;and + U, =1.0cms™, i, =200 m.

numerical calculations. This would require quite
a large amount of calculation and we have not
carefully carried out such a test. The only such
comparison possible with the computations
we have carried out is for A, = 200 m,
for which the analysis predicts that U, = 0.9
while our numerical calculations indicate that
1.0 < U, < 3.0. By inspection of the flow
patterns for U, = 1.0 and 3.0 it would appear
that U, is much closer to 1.0 than 3.0. Thus, again,
the conclusion is that there is reasonable agree-
ment between the analytical and numerical
results.

A useful, order-of-magnitude conclusion might
be stated as follows. For large values of B, if
NR, /U, is greater than a number of order unity,
a Taylor column is formed above the topographic
feature and if Nh,,/U, is greater than a number of
order ten, the shed eddy, generated by the
initiation process, remains in the vicinity of the
topographic feature.

5. CONCLUSIONS AND OCEANOGRAPHIC
IMPLICATIONS
From our investigation of the interaction of a
temporally varying mean flow with an isolated

topographic feature, we can deduce the following
general statements. Mean flow variations cause
vorticity redistribution with anticyclonic vorticity
regions over the topographic feature and cyclonic
vorticity regions shed from the feature. Associated
with these vorticity regions are anomalous tem-
perature regions. Both the cold anomaly, which
corresponds to the anticyclonic vorticity distribu-
tion, and the warm anomaly, which corresponds
to the cyclonic vorticity distribution, are evidenced
by closed isopycnal contours. The cold anomaly
remains trapped over the topographic feature,
while the shed warm anomaly drifts off down-
stream for sufficiently large mean flow velocities.
For weaker mean flows, the shed warm anomaly
remains in the vicinity of the topographic feature,
leading to a double vortex structure. The shed
temperature anomaly can be described as an eddy
and our investigation hence suggests a mechanism
for the generation of eddies beneath the main
thermocline. Such eddies can be generated
whenever the mean flow changes in such a way
that the vorticity, or density, in the vicinity of
the topographic feature is redistributed, a situa-
tion which we have shown occurs if Nh,/U, is
larger than a number of order unity.
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The amplitude of the resulting disturbance in
the vicinity of the topographic feature is critically
dependent on this parameter, NA,,/U,, an inverse
Froude number. For small values of this ratio
the amplitude of the disturbance is independent
of the far field velocity; this is the linear regime.
For weaker far-field flows (larger Nh,,/U,) there
is not sufficient energy available to lift the fluid
through a vertical displacement comparable to the
height of the feature, and part of the fluid is
forced to move laterally around the feature. Con-
sidering a value of 500 m for #4,, a typical value
for many small-scale features on the bottom of the
ocean, and a value of 102 s~ for N, we find that
velocities greater than 50 cm s are required to
yield a value of Nh,/U, smaller than unity.
Velocities as large as this are uncommon in areas
of rough bottom terrain. Hence bottom currents
are subcritical in this sense and a predominant
part of the flow will be around rather than over
the bottom features.

These ideas can be used to explain some
aspects of a recent study in the New England
Sea Mount Chain (VAsTANO and WARREN, 1976).
On a Woods Hole Oceanographic Institution
cruise during mid-1971, Vastano and Warren
made a series of XBT observations and regularly
spaced (ca. 20 km) STD stations around the
Atlantis IT Seamount, which is roughly circularly
symmetric with a ‘radius’ of approximately
15 km at 4000 m, rising to a summit of 1645 m
from an ocean floor at a depth of 5000 m. The
Seamount is in the vicinity of the Gulf Stream and
Vastano and Warren report that the stream at that
time was varying so rapidly that they obtained a
coherent synoptic picture of the flow for only one
5-day period. During this time the potential
temperature maps at 3500, 3000, 2500 and 2000 m
indicate that the flow was fairly steady and in a
direction which varied from level to level between
eastward and northeastward. The maps at
1500 and 2500m containing the individual stations
and Vastano and Warren’s interpolated tempera-
ture contours are reproduced in Fig. 18; for the
maps at other depthsand a more completedescrip-
tion of the experiment than we give here we refer
the reader to Vastano and Warren’s paper. In the

vicinity of the Seamount the isotherms, and pre-
sumably the flow, branch and a warm eddy is
clearly evident in the upper levels to the northeast
of the Seamount. The unsteadiness and lack of
local current meter data make it difficult to give a
definitive explanation of these observations, which
may be due to the combination of a number of
different influences. However, the existence of a
warm eddy, qualitatively similar to the eddies
discussed above, is a stimulating observation of a
novel feature.

The analysis of the current meter data obtained
during the recent MODE experiment indicates
that the energy of the flow increases with depth
towards the bottom, with a larger amount of
small-scale, high frequency energy over the rough
area than over the smooth area (HupPPERT and
RHINES, 1975). The vorticity and temperature
redistribution mechanism we have discussed
could contribute to this energy increase. An
interesting feature of the IOS (Institute of Oceano-
graphic Sciences) float tracks in MODE is the
existence of a hook-shaped trajectory at one end
of a topographic knoll (Gould, private com-
munication). Such a track is consistent with the
flow field induced by two closely spaced vorticity
distributions of opposite signs, of the nature
described as case S of Section 3.

The concept of vorticity redistribution by the
interaction of varying mean flows with topo-
graphy may also be important in the atmosphere.
Cyclogenesis is well known to occur in the lee of
the large mountain ranges, though the mechanism
of its occurrence is not understood. In a recent
numerical simulation of the global circulation of
the atmosphere, MANABE and TERPSTRA (1974)
specifically studied the initiation of cyclones. They
found that a model including the large mountain
ranges of the Earth predicted the distribution and
frequency of cyclogenesis in much better agree-
ment with that observed in the actual atmosphere
than did a model without mountains. The cyclo-
genesis in both model and atmosphere occurs
predominantly in the South China Sea in the lee
of the Tibetan Plateau and in the southeastern
United States in the lee of the Rocky Mountains.
Manabe and Terpstra speculate (their word) that
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Fig. 18(a). The STD stations of Vastano and Warren in the vicinity of the Atlantis II Seamount at 1500 m.

cyclogenesis may be due to baroclinic instability
in the intensified jet stream over these areas or
it may be due to the influence of the mountains in
modifying the airmass distribution. We suggest
that temporal variations in the jet stream over
mountainous regions lead to continual redistribu-
tion of the vorticity pattern and the shedding of
cyclonic vorticity which organizes in such a way
that the occurrence of cyclones is facilitated. At
present, this explanation is, like all others that
have been applied to this fundamental problem, a
possibility that requires further consideration.
Much further work is suggested by our present
investigation. We plan in the future to consider
the effects of vertical shear, beta and the inter-
action of an eddy with another topographic
feature, to mention only a few possible extensions

of our present efforts. Finally, there are a large
number of different regions in both the oceans
and atmosphere where we would like to see
these ideas applied and compared with observa-
tions.
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APPENDIX

The Green’s function G(x, y, z; x’, y’, z’) is defined
to satisfy (4.15) to (4.17). We seek the function
G(x, y, z; 0, 0, — H,) which exhibits circular symmetry
and can hence be expressed as G,(s, z), where

s o= (x® 4L
G,y (s, z) satisfies

§71 9, (s 9, G + (f*IN?) &, G, = (2ms)™* 8(s) 8(z + H,)

(A1)
2.G, =0 (z = —H,, 0) (A2a, b)
vV G —0 (s = o). (A3)

In view of (A2), we express G,(s, z) and 8 (z+ H,) as a
cosine series in z by

Gy (s, 2) = 3go(s) + gf»(S) cos (nnz/H,)  (A4)
and
8(z+ H,) = Hy! + 2H, ! uZ) (—)" cos (nnz/H,), (AS)
n=1

where
0
& () = 2H, f Gy(s, z) cos (nnz/Hy) dz. (A6)
—H,

Substituting (A4) and (A5) into (A1) and (A3), we obtain

5710, (571 0, gn) — (n* * f*IN? Hy?) g,

= ()8 (s)/ (RHys) (AN

0,8, 0 (s— o0). (A8)
The solution of (A7) and (A8) is
g = (m Hy)™' In (s/L) (A9)

and
& = (=)' (nHo) ™ Ko(nnfs/NH,) (n =1,2,...), (A10)

where the length scale L appearing in (A9) is an arbitrary
constant of integration. Substituting (A9) and (A10) into
(A4), we obtain G,(s, z) and in particular

Gu(s, —Hy) = [In(s/L) — 2 E Ko(nnfs/NHo)|/2nHy).
n=1
(A11)

Introducing the non-dimensional radius r by s = Lr,
we obtain

Gy(Lr, —Hy) =[Inr — 2 )?K,, (nnr/B)]/(2nH,), (A12)
n=1

where B = NH,/fL. (A13)

For small values of B, each term in the sum in (A12) is
exponentially small and thus

1
G,(Lr, —H,) = InH, Inr 4+ O (B1/%n/B) (B— 0).
(A14)

For large values of B, using the Euler-Maclauren
summation formula, we express G, (Lr, —H,) as

Gy, 83 =y — B f Ko(t)dt — K, (nr/B)
nr

nr/B
+ 23 2 Byt K,Gnd (nr/B))2nH,  (A1S)
@
B, 1 0.129
o - In B
wH, mE T,
+ O(B*InB) (B— ). (Al6)
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