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Interface pinning of immiscible gravity-exchange flows in porous media
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We study the gravity-exchange flow of two immiscible fluids in a porous medium and show that, in contrast
with the miscible case, a portion of the initial interface remains pinned at all times. We elucidate, by means
of micromodel experiments, the pore-level mechanism responsible for capillary pinning at the macroscale. We
propose a sharp-interface gravity-current model that incorporates capillarity and quantitatively explains the
experimental observations, including the x ∼ t1/2 spreading behavior at intermediate times and the fact that
capillarity stops a finite-release current. Our theory and experiments suggest that capillary pinning is potentially
an important, yet unexplored, trapping mechanism during CO2 sequestration in deep saline aquifers.
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I. INTRODUCTION

Gravity-exchange flows, in which density differences in-
duce fluid segregation and migration, occur in processes as
diverse as debris flows [1], seawater intrusion into groundwater
[2], and coating of substrates by thin films [3]. More recently
gravity-current flows have emerged as fundamental descriptors
of the fluid mechanics of carbon dioxide (CO2) sequestration
in saline aquifers [e.g., Refs. [4–10]]. While the study of
gravity-exchange flows in porous media has a long history
[11], they have been investigated experimentally only in the
context of completely miscible fluids. Here we investigate the
gravity-exchange flow of two immiscible fluids in a porous
medium using table-top experiments in a quasi-2D transparent
cell packed with glass beads.

In the classical miscible lock-exchange flow, two miscible
fluids of different densities are initially separated by a vertical
“interface.” This fluid interface evolves by tilting smoothly
around a stationary point at a height hs [Fig. 1(a)]. The classical
model for this problem assumes that diffusion is slow so the
fluids may be assumed to be completely segregated, and that
the pressure distribution within both fluids is hydrostatic [11,
12]. A similarity solution of the classical model predicts that
the tip position of the fluid interface (x) propagates with respect
to time (t) as x ∼ t1/2 [11,12], and this prediction is in excellent
agreement with experiments [Fig. 1(a)].

In an immiscible lock-exchange flow, capillary forces
strongly affect the flow behavior: We observe that a portion of
the initial interface remains pinned and does not experience any
macroscopic motion. Above this pinned portion of the interface
the lighter fluid spreads laterally to the right, and below it the
heavier fluid spreads to the left [Fig. 1(b)]. Here we show that
capillary pinning is a distinct porous-medium phenomenon
that requires the presence of microstructure, we explain its

*juanes@mit.edu

pore-level origin, and we develop a sharp-interface model
that is able to predict the macroscopic interface evolution of
immiscible lock-exchange flow.

II. LOCK-EXCHANGE EXPERIMENTS

We conducted lock-exchange experiments in rectangular,
quasi-2D flow cells packed with glass beads. We constructed
four flow cells with different heights (2.5 cm, 5.2 cm, 10.3 cm,
20 cm) and the same length (∼55 cm) and thickness (0.9 cm).
Each flow cell consists of three pieces of laser-cut acrylic:
solid front and rear panels and a middle spacer that frames
the working area. The spacer is clamped between the front
and rear panels via bolts. Once assembled, we orient the cell
“vertically” [Fig. 2(a)] and fill it with glass beads via a port
on the spacer. We shake the cell during filling to generate a
tight, consistent bead pack. The porosity of the packed flow cell
ranges from 0.38 to 0.42. Once the cell is full, we plug this port.
We use non-monodisperse glass beads with nominal bead sizes
ranging from 0.36 mm to 2.1 mm (Fig. 3). The permeability
of the packed flow cell for 1mm beads is 0.88 × 10−5cm2.

In the miscible lock-exchange experiments, we used water
with blue food dye as the buoyant fluid and a mixture of
glycerol and water (77.5% glycerol by mass, ρ = 1.2 g/cm3,
μ = 0.47 g/cm-s) as the ambient fluid.

In the immiscible lock-exchange experiments, we used
air as the buoyant fluid. We used one of silicone oil (ρ =
0.96 g/cm3, μ = 0.48 g/cm-s, γ = 20 dyn/cm), propylene
glycol (ρ = 1.04 g/cm3, μ = 0.46 g/cm-s, γ = 41 dyn/cm),
or the glycerol-water mixture (as above, γ = 63 dyn/cm) as
the ambient fluid.

We measured the advancing and receding contact angles
of each of the fluid pairs used in our experiments (air
and silicon oil; air and propylene glycol; and air and a
glycerol-water mixture) on both glass and acrylic substrates.
The measurements were made using the sessile drop method,
on a ramé-hart Model 590 Advanced Automated Goniometer.
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FIG. 1. (Color online) Lock-exchange flow in a porous medium
with (a) miscible and (b) immiscible fluids. (a) The miscible fluids
are water (blue) spreading over a denser, more viscous mixture of
glycerol and water. A smooth macroscopic interface tilts around a
stationary point with fixed height hs . (b) The immiscible fluids are
air (dark) spreading over the same glycerol-water mixture. Part of
the initial interface remains pinned, which leads to sharp kinks or
“hinges” in the macroscopic interface. We denote the height of the
lower hinge by h′. Both experiments were conducted in a transparent
cell packed with 1 mm glass beads. The red curves correspond to the
predictions of sharp-interface models.

Figure 4 shows snapshots from the contact angle goniometer
for measurements on a glass substrate. The advancing and
receding contact angles of silicon oil on acrylic are both zero.

To add the fluids to the cell, we orient the cell vertically.
We add the ambient fluid via a port near the bottom in the
vertical orientation [Fig. 2(a)]. We inject the ambient fluid with
a syringe pump in order to measure the volume injected. Once
the ambient fluid is filled to the desired level, we inject the
buoyant fluid via a port near the top in the vertical orientation.
We then close all ports. In the immiscible lock exchange
experiments, the buoyant fluid does not need to be injected
because it is air.

To initiate an experiment, we quickly rotate the cell by
90◦ so that it lies horizontally on the table, between an LED
backlight and a digital camera [Fig. 2(b)]. We record the
experiment as a sequence of still images. We disassemble the
cell, discard the beads, and wash the acrylic plates after each
experiment.

injection port
(buoyant fluid)

injection port
(ambient fluid)

hole for 
adding beads

digital camera

(a) (b)

buoyant fluid ambient fluid

56 cm

∼ 2, 5, 10
or 20 cm

x
y z

FIG. 2. Experimental setup of the lock-exchange experiments in
quasi-two-dimensional flow cells packed with glass beads.
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FIG. 3. Bead size distribution for two of the nominal bead sizes
used in our experiments: (a) bead size 300 to 425 μm, (b) bead size
425 to 600 μm. We take the arithmetic mean of the endpoints of each
range as the characteristic grain size d .

III. INTERFACE PINNING: STATICS

A. Scaling of the hinge height

We characterize capillary pinning by the height where the
imbibition front meets the vertically pinned interface, which
we call the hinge height, h′ [Fig. 1(b)]. To determine what
controls h′ we perform a dimensional analysis (e.g., Ref. [13]).
The variables involved in the immiscible lock-exchange flow
are height of the flow cell H ; density difference between
the dense and buoyant fluids, �ρ = ρ2 − ρ1; corresponding
fluid viscosities, μ2 and μ1; interfacial tension γ between
the fluids; receding and advancing contact angles, θr and
θa , respectively [14,15]; bead size d; gravitational constant
g; and time t . In the limit of d � H and negligible kinetic
energy, dimensional analysis indicates a relation of the form
h′/H = F (Bo,M,θr ,θa), where Bo = �ρgH/(γ /d) is the
Bond number, which measures the relative importance of
gravity to capillary forces, and M = μ2/μ1 is the viscosity
ratio between the fluids. To vary the Bond number, we vary the
height of the cell, the size of the glass beads, and the interfacial
tension (by changing the fluid pair). We use air (fluid 1) and a
viscous liquid (fluid 2). Depending on the choice of the liquid
(silicone oil, propylene glycol, or a glycerol-water mixture),

(a) 

θa = 0◦ θr = 0◦

θa = 23◦ θr = 16◦

(c) 

θa = 18◦ θr = 9◦
(b) 

FIG. 4. Measurements of the advancing contact angle (left) and
receding contact angle (right) on a glass surface for the different
fluid pairs used in the experiments: (a) silicone oil, (b) propylene
glycol, (c) glycerol-water mixture. The glycerol-water mixture and
propylene glycol are both partially wetting to glass with respect to air,
and exhibit contact angle hysteresis. Silicone oil is perfectly wetting
to glass with respect to air, having advancing and receding contact
angles of 0◦.
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FIG. 5. (Color online) Scaling of the pinned interface height in
an immiscible lock-exchange flow. We measure the deviation of
the immiscible lock exchange from the miscible lock exchange via
the normalized difference between the lower hinge height h′ and the
height of the miscible tilting point, hs (inset), at the same value
of M. This quantity scales linearly with the strength of capillarity
relative to gravity, as measured by the inverse of the Bond number,
up to a point when the entire interface is pinned (h′ = 0). Here we
show experimental measurements (symbols) and a best-fit straight
line (solid black line).

the viscosity ratio ranges from M ≈ 250 to 2500. The liquids
are all wetting to glass, and the choice of liquid exhibits only a
small difference on the receding and advancing contact angles:
θr ∈ [0◦,16◦], θa ∈ [0◦,23◦] (Fig. 4). Our experiments and
analysis below show that, in this range, the contact angles
are not leading-order parameters in the problem.

We understand the immiscible lock-exchange problem as
a finite perturbation with respect to the miscible problem
at the same value of M. Assuming that the pinning length
increases linearly with the strength of capillary forces relative
to gravity, we suggest that (hs − h′)/H ∼ Bo−1, where hs/H

is exclusively a function of M. This scaling relation is
confirmed experimentally (Fig. 5). The value of hs/H depends
only weakly on the viscosity ratio M [12], taking values
between 0.585 and 0.587 for the viscosity ratios corresponding
to our experiments (Fig. 5, inset). The lower hinge approaches
the tilting point of the miscible problem when capillarity is
negligible relative to gravity (h′ → hs as Bo−1 → 0) and is
equal to zero when the balance between capillary and gravity
forces exceeds a certain threshold (h′ = 0 for Bo−1 � 0.14). In
this latter scenario, the entire interface is pinned by capillarity
and does not tilt, regardless of the precise value of contact
angle.

B. Physics of capillary pinning

The scaling of the hinge height, however, says little about
the underlying reason why the hinge and the pinned interface
exist. We next show that the mechanistic cause of the pinning
behavior is capillary pressure hysteresis. In our immiscible
gravity-exchange flows, air spreads along the top boundary
of the cell (a drainage front) while the viscous liquid spreads
along the bottom (an imbibition front). For the air to invade
each pore throat, its pressure Pnw (assumed atmospheric, Patm)

z

Patm − P imb
c

Patm − P dr
c

26 mm

1 Δhc
Δρg

ΔPc

imbibition

1 2 3

4

drainage

(a)

(c)(b) (d)

FIG. 6. (Color online) (a) Presence of a pinned interface in
lock-exchange flow. Due to hysteresis effects, the capillary pressure
at the drainage front (P dr

c ) is larger than the capillary pressure at
the imbibition front (P imb

c ). Along the pinned vertical interface, the
capillary pressure transitions from P imb

c at the bottom to P dr
c at the top.

(b) Snapshot of the pinned interface of an immiscible lock exchange
experiment (air/silicone oil) in a thin acrylic cell with a regular pattern
of cylindrical posts simulating the pore-scale microstructure of a
porous medium. The increase in capillary pressure (drop in wetting
fluid pressure) from left to right is visible via the decrease in the
radius of curvature along the interface. This increase in capillary
pressure along the pinned interface is offset by the drop in hydrostatic
pressure. (c) The solid red line shows a simple interpretation of the
wetting phase pressure along the interface, as a function of elevation
z. We assume the pressure in the air is atmospheric at all times. The
wetting-phase interface pressure P I

w can be calculated by subtracting
the capillary pressure from the air pressure (P I

w = Patm − Pc). It
is constant along the active drainage and imbibition fronts, and
varies hydrostatically along the pinned interface. (d) Steady state
interface configuration on the drainage side (solid red) and imbibition
side (solid blue) of the pinned interface, along with the interface
progression on the imbibition side (dashed blue), for a perfectly
wetting imbibing fluid. Capillary pressure hysteresis is completely
controlled by the pore geometry, due to the fundamental differences
in the pore-level invasion events between drainage and imbibition,
as a result, it is apparent even in the absence of contact angle
hysteresis.

must, locally, exceed the pressure Pw in the liquid by an amount
larger than or equal to the drainage capillary entry pressure P dr

c

[16]. Similarly, along the imbibition front, the liquid invades
if Pnw − Pw is less than the imbibition capillary pressure
P imb

c , which is always less than the drainage capillary pressure
[2,16]. The pressure difference �Pc = P dr

c − P imb
c is recov-

ered along a pinned portion of the interface between the
drainage and imbibition fronts, which must therefore have
height �hc = �Pc/(�ρg) (Fig. 6).

Although hysteresis in capillary pressure is sometimes
caused by hysteresis in contact angle, such as for a raindrop
pinned on a window, this is not the case here. In fluid flows
through porous media, capillary pressure hysteresis is caused
by the fundamental difference in the details of fluid invasion
between drainage and imbibition: Invasion of nonwetting
fluid produces strongly curved interfaces, whereas invasion
of wetting fluid produces much flatter interfaces [16–20]. As
a result, capillary pressure hysteresis is present even in the
absence of contact angle hysteresis.
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1. Micromodel experiments

The presence of capillary pressure hysteresis in the absence
of contact angle hysteresis is well illustrated by the gravity-
exchange flow of air and silicone oil in a thin acrylic cell,
etched to form a regular pattern of cylindrical posts (Fig. 6).
This system serves as a porous medium analog in the sense of
introducing microstructure, but takes away the complexity of
a random medium and permits visualizing the flow at the pore
level.

At the top of the pinned portion of the interface, the
air-silicone oil interface is just at the threshold of air
invading and displacing the silicone oil. For slow flows, in
which pore-scale dynamic effects due to the intermittent
pressurization of the viscous fluid are small [21,22], the
pressure difference between the fluids is equal to the drainage
capillary entry pressure, P dr

c , which, for zero contact angle
(θr = 0◦), is equal to 2γ /d, where d is the distance between
two neighboring posts (and, in our micromodel system, also
equal to the diameter of the posts).

At the bottom of the pinned portion of the interface, the
air-silicone oil interface adopts a “diagonal” configuration [be-
tween posts 2 and 4 in Fig. 3(d)], which is stable as long as the
pressure difference between air and silicone oil is larger than
some threshold value P imb

c (an imbibition capillary entry pres-
sure), which for our micromodel geometry and for zero contact
angle is equal to 0.37γ /d. Below this threshold capillary
pressure, the interface is no longer pinned and would undergo
imbibition.

2. Dependence of the amount of pinning on contact angle

The height of the pinned vertical interface, �hc = (P dr
c −

P imb
c )/(�ρg), exhibits only a small dependence on contact

angle. In the micromodel system, the height of the pinned
interface takes the form

�ρg�hc = γ

(
1

rdr
− 1

rimb

)
, (1)

where γ is the interfacial tension, and rdr and rimb are
the minimum and maximum radii of curvature achiev-
able in drainage and in imbibition, respectively, which
are functions of the receding and advancing contact an-
gles, respectively, and of the pore geometry. We scale
�hc by the cell height H , and rdr and rimb by the post
diameter d:

�hc

H
= γ /d

�ρgH

(
d

rdr
− d

rimb

)
. (2)

The coefficient outside the parentheses on the right-hand
side of Eq. (2) is the inverse of the Bond number. The
term in parentheses measures the amount of hysteresis in
the system, and is a function of both contact angle and pore
geometry. Here we generalize the expressions of the radii of
curvature that correspond to the drainage and imbibition entry
capillary pressures in the micromodel for nonzero advancing
and receding contact angles.

Consider four posts of diameter d, each a distance d

apart from its nearest neighbors (Fig. 7). The interface must
intercept the posts at an angle equal to the contact angle
θ . Basic geometric considerations lead to expressions of
the radius of curvature of the interfaces (r1 and r2) as a

1 2 3

4

r1

r2

φ1θa

φ2 θar

FIG. 7. (Color online) Interface configuration (solid blue) on the
imbibition side of the exchange flow. We solve for the progression
of the interface arcs as they advance through the pore by enforcing
pressure continuity between posts 1,2 and 3,4 (i.e., r1 = r2). The
interfaces merge and advance to the next set of posts when the two
interface arcs touch (i.e., φ1 + φ2 = 3/4π ). The diameter of the posts
is d , and each post is one diameter away from its closest neighbors,
the same as the design of the micromodel [Fig. 6(b)].

function of the contact angle θ and the subtended angles (φ1

and φ2):

r1 = [2 − cos(φ1)]

cos(φ1 + θ )

d

2
, (3)

r2 = [2
√

2 − cos(φ2)]

cos(φ2 + θ )

d

2
. (4)

In drainage, θ = θr and the drainage capillary entry
pressure corresponds to the minimum radius of curvature r1:
rdr = minφ1 r1(φ1; θr ).

In imbibition, θ = θa , and a sequence of stable con-
figurations can be obtained by equating r1 = r2. This
leads to a one-parameter family of solutions shown
in Fig. 6(d). The imbibition capillary pressure corre-
sponds to the configuration for which the two inter-
faces touch, that is, rimb = {r1(φ1; θa) such that r1(φ1; θa) =
r2(φ2; θa) and φ1 + φ2 = 3π/4}.

In Fig. 8 we show the dependence of the dimensionless
quantity d/rdr − d/rimb as a function of advancing contact

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

d

rdr
− d

rimb

(θr = 0◦)θa

FIG. 8. (Color online) Dependence of the dimensionless quantity
d/rdr − d/rimb controlling the magnitude of the pinned interface in
our micromodel system, as a function of advancing contact angle θa ,
assuming θr = 0◦.
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angle θa , assuming θr = 0◦. This quantity exhibits only a small
dependence on the contact angles.

IV. INTERFACE PINNING: DYNAMICS

A. Macroscopic sharp-interface model

To capture the dynamic macroscopic behavior of immisci-
ble gravity-exchange flows, we propose a simple theoretical
model based on the classical sharp-interface model [11,12].
The mathematical model is a partial differential equation
for the height of the interface, which assumes a hydrostatic
pressure distribution everywhere (known as vertical flow
equilibrium, or VFE [23]) and Darcy flow to link flow velocity
and pressure gradients. In a related context, the classical model
has been modified to replace the sharp interface by a capillary
transition zone [24–26]. Here we extend the model to include
capillary pressure hysteresis while, in agreement with our
experiments, retaining the sharp-interface approximation.

We consider exchange flow between a buoyant nonwetting
fluid with density ρ1 = ρ and a dense wetting fluid with density
ρ2 = ρ + �ρ in a horizontal porous layer of thickness H

(Fig. 9). We assume that the porous medium is homogeneous
and isotropic with permeability k and porosity φ, and that the
boundaries of the flow domain are impermeable. Since we
assume that the two fluids are separated by a sharp interface,
the thickness of the fluid layers must sum to the thickness
of the porous layer everywhere, h1 + h2 = H . By assuming
hydrostatic pressure in both fluids, we can express the pressure
distribution in the layer as

P =
{

PI − ρg(z − h2) for z > h2

PI − Pc + (ρ + �ρ)g(h2 − z) for z � h2
, (5)

where PI is the unknown pressure at the interface and g

is the gravitational acceleration. By definition, the pressure
difference across the interface between the nonwetting fluid
and the wetting fluid is the capillary pressure Pc.

The volumetric flux per unit width of fluid phase i is given
by Darcy’s law qi = −kλi∂P/∂x, where λi = kri/μi is the
mobility of the fluid phase and kri is the relative permeability
to that phase. Since we assume the two fluid phases to be
completely segregated, the relative permeabilities are equal to

h2(x, t)

h1(x, t)

x

z

H

x

Q1(x, t)

Q2(x, t) Q2(x + x, t)

Q1(x + x, t)

ρ1 = ρ ρ2 = ρ + ρ
μ1 μ2

FIG. 9. (Color online) We develop a sharp interface model for
the exchange flow between a buoyant, nonwetting fluid and a dense,
wetting fluid, separated initially by a vertical interface. We assume
Darcy flow within each fluid and hydrostatic pressure distribution
everywhere. We then solve for the model by enforcing conservation
of volume in a control volume (dashed blue). The resulting model
is a partial differential equation for the height of the interface as a
function of time.

one. The flow rate is given by the product of the thickness of
the fluid phase and its volumetric flux, Qi = hiqi . Hence, we
obtain

Q1 = −h1kλ1

(
∂PI

∂x
− ρg

∂h1

∂x

)
, (6a)

Q2 = −h2kλ2

[
∂PI

∂x
− (ρ + �ρ)g

∂h2

∂x
− ∂Pc

∂x

]
. (6b)

Imposing global volume conservation (Q1 + Q2 = 0), we
solve for ∂PI /∂x and substitute into Eq. (6) to obtain the
flow rates of both fluids. Since h1 + h2 = H , we can express
the flow rates in terms of only h2, which also represents the
height of the interface:

Q2 = �ρgk

μ2
(1 − f )h2

(
∂h2

∂x
− ∂Pc/�ρg

∂x

)
, (7a)

f = h2

h2 + M(H − h2)
, (7b)

where f is the fractional flow function and M = μ2/μ1 is
the viscosity ratio. To obtain an equation for the evolution of
the interface, we consider the conservation of volume of the
dense fluid over region �x and time �t (Fig. 9). The change
in volume of the dense fluid is given by

�V2 = �h2�xφ = (Q2|x+�x − Q2|x)�t. (8)

Inserting Eq. (7) into Eq. (8) and taking limits for small �x and
�t , we get the partial differential equation for the evolution of
the interface height h ≡ h2:

∂h

∂t
− κ

∂

∂x

[
(1 − f )h

(
∂h

∂x
− ∂hc

∂x

)]
= 0, (9)

where κ = �ρgk/(μ2φ) is the characteristic buoyancy veloc-
ity and hc = Pc/�ρg is the capillary height.

The function g(h;M) ≡ (1 − f (h;M))h in Eq. (9) can
be interpreted as a nonlinear diffusion coefficient. It is well
behaved for all finite (even large) values of M (Fig. 10). In the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

M = 103

M = 102

g

H

h

H

M = 104

M = 1
M = 10

FIG. 10. (Color online) The dimensionless nonlinear diffusion
coefficient g(h;M)/H ≡ (1 − f (h;M))h/H in Eq. (9) as a function
of the dimensionless height of the interface h/H for several values
of viscosity ratio M.
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limit M → ∞, application of the L’Hôpital rule indicates that
g∞(h) ≡ limM→∞ g(h;M) = h, which is the well-known
limit for a viscous fluid slumping against a horizontal surface
in an inviscid ambient fluid [13,27]. Our experiments, however,
always correspond to a finite value of M.

We take Pc to be some characteristic drainage capillary
pressure P dr

c , where the nonwetting fluid displaces the wetting
fluid, and some characteristic imbibition capillary pressure
P imb

c , where the wetting fluid displaces the nonwetting fluid.
Across the pinned interface, Pc jumps from P dr

c to P imb
c . Since

we have constant capillary pressures along the active drainage
and imbibition fronts, ∂hc/∂x = 0. Therefore, ∂hc/∂x �= 0
only along the pinned interface. In other words, it introduces
a jump �hc� in the interface height of magnitude (P dr

c −
P imb

c )/(�ρg).
We solve Eq. (9) for the interface height h, subject to an

initial condition that approximates a step function from h = 0
for x < 0 to h = 1 for x > 0, and no-flow boundary conditions
(∂h/∂x = 0) at the ends of the cell. We solve the equation
numerically using a centered finite volume method in space
with forward Euler time integration.

The capillary pressure term vanishes everywhere except
at the nodes that separate the portion of the interface that is
in drainage from the portion that is in imbibition. Here the
capillary pressure term contributes a finite jump in the flux
across these two nodes, and this jump causes a sharp step in
the height of the interface.

B. Simulation of lock-exchange flows

The shape of the interface predicted by our model exhibits
good agreement with the experiment (Fig. 1). We measure a
priori all the parameters in the model (porosity, permeability,
fluid densities, and viscosities) except for �hc�, which we
obtain by measuring the length of the pinned interface in the
experiment.

Additionally, the model predicts quantitatively the time
evolution of the nose position of both currents: the buoyant
nonwetting current [Fig. 11(a)] and the dense wetting current
[Fig. 11(b)]. It is encouraging that our mathematical descrip-
tion, which assumes horizontal flow, predicts accurately a lock
exchange where clearly there is vertical flow since a portion
of the interface remains pinned (and therefore vertical) at all
times. Capillarity reduces the gravity-exchange flow rate (and
as a result slows down the process), but the nonwetting and
wetting currents still advance in a way that is well described
by the x ∼ t1/2 scaling of the miscible lock exchange before
they hit the cell boundaries (Fig. 11).

C. Simulation of finite-release gravity currents

The impact of interface pinning effects due to capillary
hysteresis is most pronounced when the initial interface is
close to one of the lateral boundaries. In this case, one of
the currents hits the boundary early and the process models a
finite-volume release. The finite release of a miscible buoyant
fluid spreads indefinitely [12]. In contrast, a finite volume of
immiscible fluid spreads up to a finite distance at which the
hydrostatic pressure difference that drives the flow is exactly
balanced by the difference in capillary pressures at the drainage
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FIG. 11. (Color online) Time evolution of the nose positions of
the (a) buoyant nonwetting current, and (b) dense wetting current,
measured relative to the position of the initial vertical interface.
We scale nose position by the cell height H and time by the
characteristic time T = H/κ . We show the data for five experiments
with different values of Bo−1 (black symbols: × = 0.021; ∗ = 0.028;
� = 0.029; � = 0.041). For a particular experiment (Bo−1 = 0.052;
M = 2580), we compare the nose positions from the experiment (red
circles) with those computed with our model (red solid line). We also
show nose positions from the numerical solution to the miscible flow
model (�hc� → 0; dashed line).

and imbibition fronts. In other words, capillary hysteresis stops
the gravity current (Fig. 12).

V. DISCUSSION: RELEVANCE TO CO2 SEQUESTRATION

The potential for capillary pinning to stop a spreading
gravity current is particularly relevant in the context of CO2

sequestration, where CO2 is injected into aquifers saturated
with denser and more viscous groundwater. During and after
injection, the difference in density between the two fluids will
drive a gravity-exchange flow [5–7], increasing the lateral
extent of the CO2 plume and the risk that the CO2 will
encounter a fault or fracture through which it could leak.
Deep saline aquifers are naturally water-wet and, therefore, the
hysteresis behavior will be similar [28–30]. The vertical-flow
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56 cm

t = 2 s

1 min
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1 d

FIG. 12. (Color online) Finite release of a buoyant, nonwetting
fluid (air) in a porous medium filled with a dense, wetting fluid
(silicone oil). The dense, wetting front hits the left boundary,
changing the spreading behavior of the buoyant current. Capillary
hysteresis is responsible for the pinning of the initial interface and,
ultimately, for stopping the buoyant plume at a finite distance, in
stark contrast with a miscible plume which would continue to spread
indefinitely.

equilibrium assumption is also appropriate in the field setting
due to the very large aspect ratio L/H of aquifers. Therefore,
transfer of the results depends on the values of Bo−1 =
γ /(�ρgHd) in the field. The value of the interfacial tension
γ is relatively insensitive to depth and is ∼ 0.025 N/m
[31], and the density difference �ρ varies between 250
and 500 kg/m3 for deep and shallow aquifers, respectively
[32]. Large capillary effects occur in aquifers that are deep

(�ρ ∼ 250 kg/m3), either thin or vertically disconnected by
low-permeability shale layers (H ∼ 10 m), and have small
grain sizes (d ∼ 10 μm). In contrast, small capillary effects
correspond to aquifers that are shallow (�ρ ∼ 500 kg/m3) and
thick (H ∼ 100 m) and have large grain sizes (d ∼ 50 μm).
Thus, Bo−1 ∈ [0.001,0.1], a range that exhibits a large overlap
with our experimental conditions (Fig. 5). Even though the
shape of the CO2 plume after the injection period does matter
quantitatively [33], the fundamental qualitative impact of
the capillary pinning phenomenon is already present in the
lock-exchange flow configuration. This suggests that capillary
pinning is possibly an important, yet unexplored, trapping
mechanism during geologic CO2 sequestration.
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