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We report theoretical and experimental studies to describe buoyancy-driven fluid
drainage from a porous medium for configurations where the fluid drains from an
edge. We first study homogeneous porous systems. To investigate the influence of
heterogeneities, we consider the case where the permeability varies transverse to the
flow direction, exemplified by a V-shaped Hele-Shaw cell. Finally, we analyse a model
where both the permeability and the porosity vary transverse to the flow direction.
In each case, a self-similar solution for the shape of these gravity currents is found
and a power-law behaviour in time is derived for the mass remaining in the system.
Laboratory experiments are conducted in homogeneous and V-shaped Hele-Shaw cells,
and the measured profile shapes and the mass remaining in the cells agree well with
our model predictions. Our study provides new insights into drainage processes such
as may occur in a variety of natural and industrial activities, including the geological
storage of carbon dioxide.
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1. Introduction
Gravity currents propagating in porous media occur in a large variety of geophysical

and industrial processes (Huppert 2006), including applications to CO2 storage that
have attracted much recent interest (Pacala & Socolow 2004; Metz et al. 2005; Zheng
et al. 2010). Typically, the latter refers to injection of supercritical CO2 into saline
aquifers, where it is expected that, following injection, the lower-density CO2 will
migrate over more dense interstitial fluid. In many situations, these gravity-driven
flows occur in long narrow geometries and can be described by similarity solutions
(Gratton & Minotti 1990; Huppert & Woods 1995), including allowance for power-law
injection scenarios (Huppert & Woods 1995; Lyle et al. 2005). Specific application of
these ideas to CO2 sequestration include a study of front propagation due to a constant
injection rate in a confined porous medium (Nordbotten & Celia 2006b), analysis of
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the post-injection period (Hesse et al. 2007), and the influence of residual saturation
and trapping (Hesse, Orr & Tchelepi 2008).

The above studies highlight the dynamics of spreading currents in homogeneous
media over impermeable substrates. The effect of substrate permeability during the
liquid injection process has been considered also. For example, the leakage from a
gravity current flowing in a porous medium over a fractured substrate (Acton, Huppert
& Worster 2001; Pritchard 2007; Hesse & Woods 2010), or a substrate with localized
sinks (Neufeld et al. 2011), or line sinks (Vella et al. 2011) has been studied. In
contrast, in this paper we focus on buoyancy-driven drainage from the edge of a
porous reservoir, which is important when assessing long-term storage of buoyant
materials such as CO2 in a geological stratum. Previous studies related to this topic
were mainly theoretical or numerical. For example, interface upconing around a well
(Nordbotten & Celia 2006a) and the migration of a vertical gas plume through a
heterogeneous porous medium (Silin, Patzek & Benson 2009) have been studied,
where both of these examples were inspired, at least in part, by questions of CO2

storage. We note that a similar problem of drainage from the water table, which
can be treated as a gravity current, has also been studied theoretically, with strong
assumptions being made on the boundary and initial conditions (e.g. Boussinesq 1904;
Rupp & Selker 2005). In this paper, we will study the drainage problem theoretically,
and verify the theoretical results using laboratory experiments in Hele-Shaw cells.

It is also important to understand the influence of heterogeneity on flow in porous
media (e.g. Class & Ebigbo 2009). Pore-scale heterogeneity may induce unstable
displacement processes when the capillary force is dominant, even with a mobility
ratio that favours stability (Protiere et al. 2010). Macro-scale heterogeneities such as
a gradient of the permeability could change the propagation behaviour of the front.
For example, the influence of permeability variations in the flow direction are known
to impact the imbibition process (Reyssat et al. 2009) and the interfacial stability in
multi-phase displacement (Al-Housseiny, Tsai & Stone 2012). In this paper, we will
examine the influence of permeability and porosity gradients perpendicular to the flow
direction on the fluid drainage process driven by buoyancy.

In order to describe the fluid drainage behaviour from porous media, we examine
the fundamental problem of drainage from an edge. We first present in § 2 a theoretical
model of the problem and obtain a self-similar solution to the nonlinear partial
differential equation (PDE) that describes the propagation. In § 3 we present the
results of a series of laboratory experiments in a Hele-Shaw cell to compare with the
theoretical results, and find good agreement. We study both the case of homogeneous
porous media and the case with a vertical permeability gradient.

2. Theoretical study
We consider the problem of drainage of a viscous fluid from an edge of a model

porous medium. In particular, we are interested in a buoyancy-driven gravity current
in a porous system (figure 1a), where the fluid drains away by flowing over an edge
(figure 1b), with x and y denoting the flow and transverse directions, respectively.
We imagine fluid stored in a rectangular chamber of length L with an impermeable
boundary at x = 0 and where the fluid drains at x = L. The unknown interface shape
of the draining gravity current is denoted by h(x, t). In the case of drainage from a
uniform channel (figure 2a), we use the notation hc(x, t), and in the case of drainage
from a V-shaped channel (figure 2b), which involves a spatially varying permeability,
k(y)= b2(y)/12, the shape is denoted by hv(x, t).
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FIGURE 1. (Colour online) Sketch of a gravity current draining from the edge of a model
porous medium. As emphasized in (a), the length of the current is constant. As shown in (b),
near the edge, we assume that the height of the current h(L, t)→ 0, which corresponds to a
late period of the drainage.

(a) (b)

FIGURE 2. Sketch of the two Hele-Shaw cells we use to mimic the porous medium: (a) a
uniform Hele-Shaw cell and (b) a V-shaped Hele-Shaw cell.

We make various approximations in this study. First, we assume that there is a
sharp interface between the fluids (Bear 1972), which is expected to be a good
approximation for a time scale shorter than those where diffusive effects cause
variation transverse to the flow direction. Also, we neglect the influence of surface
tension. The flow is driven by gravity acting on the density difference 1ρ between
the fluids. Second, when the gravity current is long and thin, we assume that the flow
is nearly horizontal. This assumption is often called vertical equilibrium (Bear 1972;
Yortsos 1995), since we take the pressure to be hydrostatic within the liquid. Third, we
assume that drainage leads to the vanishing of the height of the profile near the edge,
h(L, t)→ 0, i.e. the height at the edge is much smaller than the typical height of the
gravity current (figure 1b). The adjustment period is relatively short, as confirmed by
our experiments, and we concentrate on the long-time drainage problem because it is
of primary concern. We refer to this later stage of the dynamics as the ‘late period’
of the drainage process, and we obtain similarity solutions for the time dependence of
the drainage process. This solution does not satisfy the typical initial condition, but
becomes a better and better model as time progresses. It should also be noted that,
in the language of Barenblatt (1979), this solution is the intermediate asymptotic limit
when the initial condition is not important.
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A summary of the three analytical models we present is given in table 1. We discuss
some of the details in the next three subsections.

2.1. Uniform Hele-Shaw cell
We begin by formulating the drainage problem for flow in a uniform Hele-Shaw cell,
which models a homogeneous porous medium of permeability k = b2/12, where b is
the gap thickness. As is standard in studies of gravity currents, with the use of Darcy’s
law and the mass conservation equation, the shape of the current hc(x, t) is described
by a nonlinear diffusion equation, derived for example by Boussinesq (1904), Huppert
& Woods (1995) and others,

∂hc

∂t
= Ac

∂

∂x

(
hc
∂hc

∂x

)
, (2.1)

where Ac = 1ρgk/µ, g is gravity and µ is the viscosity of the liquid. Since the
reservoir is sealed at x = 0, there is no horizontal flow there, i.e. ∂hc/∂x = 0. In the
experiment, we have an initial condition hc(x, 0) = h0, though, as indicated above, we
only consider times when the height at the draining edge (x = L) has approached zero.
Therefore, we have two boundary conditions, which can be expressed as

∂hc

∂x
(0, t)= 0, hc(L, t)= 0. (2.2a,b)

One difference with other gravity current problems is that here the horizontal length
is a constant. Because the dimensions of Ac are length/time, and as the solution
involves the variables hc(x, t,Ac,L), then dimensional analysis allows us to conclude
that hc/L = f (x/L,Act/L). Second, the form of the PDE demands that hc ∝ L2/(Act),
which, together with the results of dimensional analysis, suggests that the self-similar
solution for (2.1) with boundary conditions (2.2) is given by

hc(x, t)=
(

L2

Act

)
fc

( x

L

)
. (2.3)

In this way, the nonlinear PDE is reduced to a nonlinear ordinary differential equation

( fc f ′c)
′+ fc = 0, f ′c(0)= 0, fc(1)= 0. (2.4a,b,c)

This equation was solved numerically. The total liquid mass remaining in the porous
medium is calculated according to

wc(t)= ρb
∫ L

0
hc(x, t) dx= ρbL3

Act

∫ 1

0
fc(s) ds. (2.5a,b)

Consequently, we predict that the drainage has a power-law behaviour proportional
to t−1.

2.2. V-shaped Hele-Shaw cell
As a second study, we consider the gravity-driven drainage of fluid from an edge
of a V-shaped Hele-Shaw cell (figure 2b), with the thickness of the cell at height
y given by b(y) = b1y, where b1 is a constant. The permeability is given by
k(y) = b2(y)/12 = b2

1y2/12. Again, we assume that the fluid and the surroundings
have a sharp interface between them and assume vertical equilibrium. An analysis
of the gravity current accounting for this variation in permeability leads first to the
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Uniform Hele-Shaw cell V-shaped Hele-Shaw cell Porous media

Partial
∂hc

∂t
= Ac

∂

∂x

(
hc
∂hc

∂x

)
∂h2

v

∂t
= Av

∂

∂x

(
h4
v

∂hv
∂x

)
∂hm+1

∂t
= A

∂

∂x

(
hn+1 ∂h

∂x

)
differential hc(L, t)= 0 hv(L, t)= 0 h(L, t)= 0

equations
∂hc

∂x
(0, t)= 0

∂hv
∂x
(0, t)= 0

∂h

∂x
(0, t)= 0

Solutions hc(x, t)= L2

Act
fc

( x

L

)
hv(x, t)=

(
L2

Avt

)1/3

fc

( x

L

)
h(x, t)=

(
L2

At

)1/(n−m+1)

f
( x

L

)

Ordinary ( fc f ′c)
′+ fc = 0 ( f 4

v f ′v)
′+2

3
f 2
v = 0 ( f n+1f ′)′+ m+ 1

n− m+ 1
f m+1 = 0

differential fc(1)= 0 fv(1)= 0 f (1)= 0

equations f ′c(0)= 0 f ′v(0)= 0 f ′(0)= 0

Mass in cell wc(t)≈ t−1 wv(t)≈ t−2/3 w(t)≈ t−(m+1)/(n−m+1)

Notes Ac = 1ρgk

µ
Av = 1ρgb2

1

24µ
A= 1ρgk1(m+ 1)

µφ1(n+ 1)

k = b2

12
k(y)= b2

1y2

12
k(y)= k1yn, φ(y)= φ1ym

b is a constant b(y)= b1y 2 6
n

m
6 3

TABLE 1. Summary of theoretical studies.
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one-dimensional conservation law

∂

∂t

∫ hv(x,t)

0
b(y) dy+ ∂

∂x

∫ hv(x,t)

0
b(y)uv(x, y, t) dy= 0, (2.6)

where the flux is

uv(x, y, t)=−k(y)

µ

∂p(x, y, t)

∂x
=−k(y)1ρg

µ

∂hv(x, t)

∂x
. (2.7a,b)

Therefore, we obtain a partial differential equation for the shape of the current hv(x, t)
of the form

∂h2
v

∂t
= Av

∂

∂x

(
h4
v

∂hv
∂x

)
, (2.8)

where Av =1ρgb2
1/(24µ), which is to be solved with boundary conditions

∂hv
∂x
(0, t)= 0, hv(L, t)= 0. (2.9a,b)

Following the same techniques as described above, we find that a self-similar solution
is given by

hv(x, t)=
(

L2

Avt

)1/3

fv
( x

L

)
, (2.10)

and the nonlinear partial differential equation is reduced to

( f 4
v f ′v)

′+ 2
3 f 2
v = 0, f ′v(0)= 0, fv(1)= 0. (2.11a,b,c)

Again, the equation was solved numerically.
In this case, the liquid mass remaining in the Hele-Shaw cell is given by

wv(t)= ρb1

2

∫ L

0
h2
v(x, t) dx= ρb1L7/3

2A2/3t2/3

∫ 1

0
f 2
v (s) ds. (2.12a,b)

Therefore, in particular, we predict theoretically that, when viscous fluid is draining
from the edge of a V-shaped Hele-Shaw cell, the liquid mass remaining in the cell
decreases in time with a power-law behaviour proportional to t−2/3.

2.3. Permeability and porosity gradients
For a gravity current propagating in the x direction, we consider the more general
case in which the porous medium has a vertical permeability gradient in the form
k(y) = k1yn, and a porosity gradient in the form φ(y) = φ1ym, where k1 and φ1

are constants. However, m and n are generally not independent. In practice, it is
found that 2 6 n/m 6 3. In particular, n/m = 2 is representative of porous media with
tubular fluid paths, and n/m= 3 is representative of porous media with an intersecting
network of cracks or fissures as the fluid paths (Phillips 1991; Dullien 1992).

We again determine the time-dependent shape of the current, assuming a sharp
interface between the two fluids, and neglect the vertical velocity. In this case, the
one-dimensional conservation law is

∂

∂t

∫ h(x,t)

0
φ(y) dy+ ∂

∂x

∫ h(x,t)

0
u(x, y, t) dy= 0, (2.13)
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where the flux is the same expression as in (2.7), i.e.

u(x, y, t)=−k(y)

µ

∂p(x, y, t)

∂x
=−k(y)1ρg

µ

∂h(x, t)

∂x
. (2.14a,b)

Thus, the interface profile satisfies the nonlinear diffusion equation

∂hm+1

∂t
= A

∂

∂x

(
hn+1 ∂h

∂x

)
, (2.15)

where A=1ρgk1(m+1)/(µφ1(n+1)), which is to be solved with boundary conditions

∂h

∂x
(0, t)= 0, h(L, t)= 0. (2.16a,b)

This PDE has a self-similar solution of the form

h(x, t)=
(

L2

At

)1/(n−m+1)

f
( x

L

)
, (2.17)

from which we find a nonlinear ordinary differential equation

(f n+1f ′)
′+ m+ 1

n− m+ 1
f m+1 = 0, f ′(0)= 0, f (1)= 0. (2.18a,b,c)

As above, we calculate the total liquid mass in the porous reservoir as

w(t)= bφ1

m+ 1

∫ L

0
hm+1(x, t) dx

= bφ1L(n+m+3)/(n−m+1)

(m+ 1)A(m+1)/(n−m+1)t(m+1)/(n−m+1)

∫ 1

0
f m+1(s) ds. (2.19a,b)

In the homogeneous case, we have m = n = 0, and the power-law behaviour reverts to
t−1, which agrees with (2.5). The special case in § 2.2 corresponds to m= 1, n= 3.

3. Experimental results
We conducted a series of drainage experiments in Hele-Shaw cells. Specifically, we

first used a Hele-Shaw cell with a constant gap thickness to mimic a homogeneous
porous medium (figure 2a) and then used a V-shaped cell with a constant gradient in
gap thickness to mimic a porous medium with a permeability gradient transverse to
the flow direction (figure 2b). The Hele-Shaw cells were made by joining two scratch-
resistant clear cast acrylic sheets (McMaster-Carr, No. 8560K247). Glycerol–water
solutions with different glycerol concentrations were used in the experiments, and
the physical properties were determined from available tabulated results. To track the
drainage, we placed the cell on a scale (Ohaus Scout Pro, SP4001), and recorded the
mass in the cell as a function of time. We carried out experiments with various lengths
and gap thicknesses of the Hele-Shaw cells. In a typical experiment, we filled the cell
to a given height, removed a barrier on the side (x = L), which initiated drainage, and
recorded the profile shape at different times using a USB camera. We then determined
the fluid mass remaining in the cell, by subtracting the fluid drained from the total
fluid mass in the cell at the beginning of the experiment.

3.1. Uniform Hele-Shaw cell
First, we present results for a uniform Hele-Shaw cell. Interface shapes at different
times of a typical experiment are shown in figure 3. In this figure, we compare the
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FIGURE 3. (Colour online) Images of a gravity current draining from a uniform Hele-Shaw
cell, with comparisons between the experimental results and theoretical predictions (solid
curve) for the shape, at various times: (a) t = 0 s; (b) t = 250 s; (c) t = 350 s; (d) t = 500 s;
(e) t = 2000 s. In the late period, the self-similar solutions are seen to agree well with the
experimental data. The liquid is pure glycerol, which is leaking from the right-hand edge of
the cell. The grid has markings 1 cm apart.
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FIGURE 4. (Colour online) Comparison of the experimental results and the theoretical
predictions for drainage from uniform Hele-Shaw cells. (a) Experimental results: liquid mass
remaining in a Hele-Shaw cell versus time. (b) Re-scaled liquid mass versus time. The solid
line is the prediction (2.5) from the theoretical study, with no fitting parameters. The typical
value of gap thickness b in the experiments is 5 mm.

theoretical predictions of the profile shape (solid curve) with the experimental results,
where all material and geometric parameters are measured so that there are no fitting
parameters. As can be seen, after an initial period when h(L, t) is finite (figure 3a–c),
the predictions from the self-similar solution agree very well with the experimental
results (figure 3d,e).

The liquid masses remaining in the cell for different experiments are plotted as
functions of time in figure 4(a). We then rescale the experimental data of the liquid
mass based on the theoretical study in § 2.1, and observe the collapse of data from
different experiments (figure 4b). We also plot the prediction from the theoretical study
as the solid curve in the figures. At longer times, the liquid mass exhibits a power-
law behaviour t−1 as predicted. At early times, however, the experimental data were
different from the model prediction. There are two reasons for the difference during
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FIGURE 5. (Colour online) Images of a gravity current draining from a V-shaped Hele-Shaw
cell, including comparisons of theoretical predictions and experimental results of the profile,
at various times: (a) t = 0 s; (b) t = 50 s; (c) t = 100 s; (d) t = 1000 s; (e) t = 3000 s. The
solid curve represents the predictions from the theoretical study. The liquid is pure glycerol,
which is draining from the edge of the cell. The grid has markings 1 cm apart.
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FIGURE 6. (Colour online) Experimental results on self-similar behaviour for fluid drainage
from Hele-Shaw cells. (a) Liquid mass remaining in the Hele-Shaw cells versus time. (b) Re-
scaled liquid mass in the Hele-Shaw cells versus time, based on (2.12), with no fitting
parameters. The typical value of b1 in the experiments is ∼0.05.

the early time period: (i) the initial conditions are still important at early times, and
the long-time self-similar behaviour has not been obtained; (ii) the vertical velocity is
not negligible, and therefore the horizontal flow assumption of the model fails during
this period.

3.2. V-shaped Hele-Shaw cell
In order to study the influence of permeability variations and test the theoretical
predictions, we conducted experiments in V-shaped Hele-Shaw cells (figure 2b).
Typical results of the profile shapes are shown in figure 5, and are compared with
the theoretical predictions (solid curves). Again, at early times we observe h(L, t) 6= 0,
but, following an initial transition, the self-similar solutions give very good predictions.

The liquid masses in the cell versus time in different experiments are shown in
figure 6(a). We also display the rescaled liquid weight as functions of time (figure 6b),
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along with the theoretical predictions. In the late period, the liquid mass exhibited
a power-law behaviour proportional to t−2/3, as predicted by the theoretical study in
§ 2.2.

4. Summary and conclusions
In this paper, we first studied theoretically the problem of fluid drainage from an

edge of a homogeneous porous medium. We also studied the drainage from an edge
in the case where the permeability varies transverse to the flow direction (V-shaped
Hele-Shaw cell), and a model where both the permeability and the porosity vary
transverse to the flow direction. In all these cases, we found self-similar solutions for
the drainage processes, and we predicted that the fluid mass remaining in the porous
medium exhibits a power-law behaviour in time. Specifically, for the homogeneous
porous medium, we found that the mass remaining in the medium is of the power-
law behaviour t−1; for the V-shaped Hele-Shaw cell, the power law is of the form
t−2/3; and finally, for the heterogeneous porous medium with both permeability and
porosity variations given by k(y) = k1yn and φ(y) = φ1ym, the remaining mass obeys a
power-law behaviour of form t−(m+1)/(n−m+1).

To compare with the theoretical studies, we conducted laboratory experiments in
uniform Hele-Shaw cells and V-shaped cells that have a constant vertical gradient in
gap thickness. We recorded a series of profile shapes when the fluids drain from the
cells. We also measured the fluid mass remaining in the cell when it drains. Following
an initial adjustment period, we found that the experimental results agree well with
theoretical predictions.

Understanding the buoyancy-driven drainage in porous materials can provide new
insights into practical industrial processes such as geological CO2 storage. In particular,
after CO2 has been injected into a porous reservoir, it is necessary to keep it
underground for hundreds of thousands of years. However, in case there is a location
where drainage can happen, such as produced by a poorly sealed well or a geological
fault, because of buoyancy effects, CO2 can drain and may possibly then leak into
the atmosphere from underground. Our study predicts the time dependence of model
fluid drainage processes from an edge, which is the extreme case when the vertical
leakage pathway becomes infinitely permeable. It can help inform further engineering
and regulatory studies focused on preventing unfavoured outcomes from CO2 leakage,
and so ensure CO2 capture and storage as a reliable technology option for long-term
climate mitigation.
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