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The effects of capillary forces on the propagation of two-phase, constant-flux gravity
currents in a porous medium are studied analytically and numerically in an ax-
isymmetric geometry. The fluid within a two-phase current generally only partially
saturates the pore space it invades. For long, thin currents, the saturation distribution
is set by the vertical balance between gravitational and capillary forces. The capillary
pressure and relative permeability of the fluid in the current depend on this saturation.
The action of capillary forces reduces the average saturation, thereby decreasing the
relative permeability throughout the current. This results in a thicker current, which
provides a steeper gradient to drive flow, and a more blunt-nose profile. The relative
strength of gravity and capillary forces remains constant within a two-phase gravity
current fed by a constant flux and spreading radially, due to mass conservation. For
this reason, we use an axisymmetric representation of the framework developed by
Golding et al. [“Two-phase gravity currents in porous media,” J. Fluid Mech. 678,
248–270 (2011)], to investigate the effect on propagation of varying the magnitude
of capillary forces and the pore-size distribution. Scaling analysis indicates that ax-
isymmetric two-phase gravity currents fed by a constant flux propagate like t1/2,
similar to their single-phase counterparts [S. Lyle, H. E. Huppert, M. Hallworth, M.
Bickle, and A. Chadwick, “Axisymmetric gravity currents in a porous medium,” J.
Fluid Mech. 543, 293–302 (2005)], with the effects of capillary forces encapsulated
in the constant of proportionality. As a practical application of our new concepts
and quantitative evaluations, we discuss the implications of our results for the pro-
cess of carbon dioxide (CO2) sequestration, during which gravity currents consisting
of supercritical CO2 propagate in rock saturated with aqueous brine. We apply our
two-phase model including capillary forces to quantitatively assess seismic images
of CO2 spreading at Sleipner underneath the North Sea. C© 2013 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4793748]

I. INTRODUCTION

Gravity currents in porous media occur in many natural and industrial settings, wherever gravity
acting vertically on the density difference between fluids drives mainly horizontal propagation. When
the propagating and ambient fluids are immiscible, the action of capillary forces results in a region
occupied by both phases called the transition zone or capillary fringe. Capillary forces also cause
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residual trapping, where one of the phases becomes trapped as the gravity current propagates.
Examples of two-phase gravity currents include the spread of pollutants below the water table,
the migration of oil and natural gas in the subsurface, and groundwater spreading along the lower
boundary of a perched reservoir. The thickness of this transition zone depends on the strength of the
capillary forces acting within the current and the geometry of the porous medium. This contrasts
with single-phase currents where capillary forces are absent or negligible and the fluid in the current
fully saturates the pores, thus leading to a clear interface between the intruding and ambient fluids.
An example of a single-phase gravity current is the intrusion of dense saltwater into an underground
freshwater reservoir.

One particularly timely example of a situation where two-phase gravity currents occur is the
geological sequestration of CO2. Here, capillary forces between buoyant CO2 and relatively dense
brine serve to create a capillary fringe of partial CO2 saturation. It is important to understand how
two-phase effects alter the propagation of such gravity currents and how much thicker the current
becomes. Thicker currents contact a greater region of the reservoir, which affects the storage potential
of reservoirs. Furthermore, it is not clear a priori how two-phase effects alter either the speed of
propagation or horizontal extent of a two-phase gravity current. The volume of rock reached by CO2,
along with the saturation distribution of CO2 within it, has important implications for the amount of
CO2 that can be permanently immobilised by way of residual trapping.

Capillary forces acting within a two-phase gravity current result in partial saturation of the
intruding fluid within pore spaces. This decreases the pore space available to the intruding fluid,
thus reducing the relative permeability. Capillary forces acting alongside gravity cause the saturation
distribution to be non-uniform with depth, leading to a variation of relative permeability within the
current. The relative strength of capillary and buoyancy forces within the current is set by the rate of
increase of fluid in the current (e.g., constant flux or finite volume), as well as the geometry of the
current (e.g., two-dimensional or radial).

Gravity currents have traditionally been studied using sharp-interface models, where each fluid
fully saturates the pore space it occupies and there is a sharp boundary between the injected and
ambient fluids. The axisymmetric spreading of gravity currents along horizontal boundaries in porous
media was studied by Lyle et al.1 and the effect of sloping boundaries on initially axisymmetric
gravity currents was investigated by Vella and Huppert.2 Such models are appropriate for two-phase
gravity currents when capillary forces are negligible, but not when a significant transition zone
exists.

Previous sharp-interface, or uniform-saturation, models include residual trapping by assuming
that a constant proportion of the fluid is trapped. Kochina, Mikhailov, and Filinov3 studied a slumping
groundwater mound, Hesse, Orr, Jr., and Tchelepi4 considered the spreading of a finite volume of
CO2 in a confined aquifer, and Juanes, MacMinn, and Szulczewski5 investigated the efficiency of
residual trapping in the wake of a CO2 plume. These models attempt to approximately capture
only the dependence of the volume of trapped fluid on the volume of rock the current invades.
However, they are unable to account for the extra thickness of the current, or the effect of variations
in saturation within the current, caused by capillary forces.

Examples of multiphase models for three-phase, gravity-driven systems include those presented
by Bear and Ryzhik6 and by Blunt, Zhou, and Fenwick,7 which were motivated by non-aqueous
phases, such as chemical spills, and Yortsos,8 who was motivated by oil recovery. Philip9 used the
classical two-phase flow equations to study the evolution of water saturation within unsaturated
soil in situations where gravity either can be neglected or does not significantly alter the aspect
ratio of the fluid flow. More recently, two-phase models have been developed to understand CO2

sequestration. For example, Nordbotten and Dahle10 have developed a vertically integrated model
for two-phase gravity currents in a confined aquifer. A framework for investigating two-dimensional
two-phase gravity currents in unconfined aquifers was developed by Golding et al.,11 in which an
explicit expression for the saturation distribution was obtained from the vertical balance between
gravitational and capillary forces, commonly referred to as vertical gravity-capillary equilibrium.
The model therefore resolves the non-uniform saturation distribution and incorporates the resultant
structure of the relative permeabilities into predictions for the propagation of buoyancy-driven
currents. This is particularly important if the current contains non-wetting fluid because the amount
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of fluid subsequently trapped once injection ceases is known to depend on the maximum saturation
during its initial emplacement.12 A quantitative estimation of these effects is of particular interest
in CO2 sequestration, where residual trapping is widely regarded as one of the most promising
mechanisms for permanently immobilizing CO2 in the storage site.

Golding et al.11 employed their framework to evaluate the effects of capillary forces within a
steady-state, two-dimensional gravity current spreading over a finite, horizontal barrier. Application
of the model to propagating two-dimensional gravity currents over an infinite impermeable boundary
is of limited interest because gravitational forces always become dominant as the height of the current
increases, causing the behaviour of the current to tend to the single-phase limit. In contrast, mass
conservation in axisymmetric gravity currents fed by a constant flux, both single-phase and two-
phase, results in the height scale of the current remaining constant with time, and hence the relative
strength of capillary and gravity forces is fixed. Thus the consideration of axisymmetric spreading in
this study enables us to investigate the effects of two-phase phenomena on the propagation of two-
phase gravity currents over a semi-infinite, impermeable horizontal boundary. Under the assumption
of gravity-capillary equilibrium, which is valid throughout all but the nose of the gravity current,
our framework is able to resolve the vertical saturation distribution within the current and recovers
the attractive analytical results by Lyle et al.1 in the appropriate limit of negligible capillary forces.

In this paper we show how capillary forces can be included in models of the structure and
propagation of axisymmetric, unconfined gravity currents in porous media. The equations governing
the height of a propagating axisymmetric two-phase gravity current are derived in Sec. II and are
based on the two-dimensional model developed by Golding et al.11 We find a self-similar solution to
these equations in Sec. III with the aid of scaling analysis. The effect of capillarity on the shape and
propagation rate of two-phase gravity currents is investigated in Sec. IV, as well as the sensitivity of
the behaviour to the main two-phase parameters. Finally in Sec. V, we discuss the results and their
implications for modeling gravity currents during CO2 sequestration.

II. THE AXISYMMETRIC TWO-PHASE GRAVITY CURRENT MODEL

We consider the buoyancy-driven propagation of an axisymmetric gravity current, fed by a
constant flux of non-wetting fluid, in a porous medium fully saturated with an immiscible fluid of
larger density and different viscosity as shown in Figure 1. This process, where a non-wetting fluid
invades a porous medium fully saturated with a wetting fluid, is known as primary drainage, as is the
case for CO2 sequestration. However, we note that the results are general and apply equally to the
case of injected wetting fluid, which would be a primary imbibition process. Furthermore, the theory
is also applicable when the injected fluid is denser than the ambient fluid and the gravity current
propagates above a horizontal boundary. In all cases, the pressure gradients in the ambient fluid
are negligible far from the current in an unconfined aquifer. Given the assumption that the ambient
fluid remains fully connected everywhere in the region, we can imply that there are no horizontal
pressure gradients driving the wetting fluid anywhere, including within the gravity current. The
axisymmetric gravity current model is based on and extends the two-dimensional equivalent derived

FIG. 1. (Left) A sketch of an axisymmetric gravity current propagating below an impermeable horizontal boundary in a
porous medium saturated with an immiscible fluid of higher density and different viscosity. (Right) A representative vertical
saturation profile through the current, as indicated by the gray shading on the left.
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in Golding et al.11 Here we briefly review the two-phase theory as needed for the development in
this paper. We denote quantities pertaining to the non-wetting and wetting phases by subscripts n
and w, respectively.

The motion of two phases in a porous medium is governed by local mass conservation,

φ
∂Si

∂t
+ ∇ · ui = 0 (i = n, w), (1)

where φ is the porosity of the porous medium, ui is the volumetric flux of phase i, and Si is the
fraction of pore space occupied by phase i, and therefore

Sn + Sw = 1. (2)

During drainage, a fraction of the wetting phase remains within the pore space and is known as the
irreducible wetting phase saturation, Swi . An effective non-wetting phase saturation can therefore
be defined as

s = Sn/(1 − Swi ). (3)

When immiscible fluids coexist within the same pore space, the interfacial tension between
them causes a difference in pressure between the phases, known as the capillary pressure

pc(s) = pn − pw. (4)

The capillary pressure is assumed to be a function of saturation only. One commonly used empirical
constitutive relation is Brooks-Corey

pc = pe(1 − s)−1/� (5a)

or

s = 1 − (pc/pe)−�, (5b)

where the parameters � and pe are determined experimentally,13 but can be physically interpreted as
follows. At the pore-scale a capillary pressure threshold must be overcome for the non-wetting phase
to enter pores during drainage. This capillary entry pressure for each pore is inversely proportional
to the size of its throat, so the non-wetting phase preferentially fills larger pores, whereas the wetting
phase fills the smaller pores first. The parameter pe can therefore be interpreted as the entry pressure
required for the non-wetting phase to enter the largest pores. As the pressure is increased, the non-
wetting fluid invades successively smaller pores whose distribution is captured by the parameter
�. A narrow pore-size distribution, corresponding to a large value of �, results in a rapid increase
in saturation with pressure because all the pores in the porous medium have a similar capillary
entry pressure. This results in a narrow transition zone and consequently capillary effects are weak.
Alternatively, for a wider pore-size distribution, where � is smaller, each increase in pressure causes
invasion of only a small number of slightly smaller pores. This results in a broad transition zone and
enhances capillary effects.

The volumetric flux of phase i is given by a two-phase Darcy’s law

ui = −kkri (s)

μi
[∇ pi − ρi g] i = n, w, (6)

where k is the intrinsic permeability of the porous medium, which we assume is homogeneous, g is
the gravitational acceleration, ρ i and μi are the density and dynamic viscosity of phase i, respectively,
and pi is the averaged pressure within phase i. The relative permeability of each phase, kri(s), is itself
a unique nonlinear function of the saturation during primary drainage for a given system of fluids
and porous medium, which can only be fully determined empirically. Wetting effects influence the
size of the pores occupied by each phase, which implies that relative permeability must depend on
the pore-size distribution. Several models have been developed to obtain full relative permeability
curves from capillary pressure measurements, which capture the effects of the pore-size distribution.
Brooks and Corey14 used their expression for capillary pressure (5) to obtain explicit expressions
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for the relative permeability of the non-wetting and wetting phases, and expressed them as

krn = krn0 s2[1 − (1 − s)(2+�)/�] (7a)

and

krw = (1 − s)(2+3�)/�, (7b)

respectively, where the end point relative permeability of the non-wetting phase, krn0, is determined
empirically. Li and Horne15 review a range of these models, assess their validity in various two-phase
systems, and find that the Brooks-Corey relative permeability model works well in drainage cases.

In this study we consider the propagation of a long, thin gravity current for which the vertical
velocity of each phase is negligible compared to the horizontal velocity of the non-wetting fluid
within the current. Therefore, assuming the fluids are fully connected, the pressure within each phase
is approximately hydrostatic and so (4) can be written as a function of vertical position, z, as

pc[h(r, t), z] = pe − �ρg(z − h), (8)

where �ρ = ρw − ρn . Here, we have used the assumption that pe is the value of the capillary
pressure at the current boundary, z = h, where the non-wetting phase saturation is zero. Golding
et al.11 derived an expression for the saturation distribution within a long, thin gravity current by
substituting the Brooks-Corey capillary pressure model (5) into the expression for gravity-capillary
equilibrium (8) to obtain

s[h(r, t), z] = 1 −
(

1 + h − z

he

)−�

, (9)

where

he ≡ pe/�ρg (10)

is an approximate length scale over which the hydrostatic pressure exceeds pe. This determines the
saturation, as a function of depth, within a propagating two-phase current, assumed to be in gravity-
capillary equilibrium. The validity of this assumption is discussed at the end of this section. In this
two-phase model, the saturation tends to s = 1 asymptotically when the capillary pressure tends to
infinity, as expressed by the Brooks-Corey capillary pressure curve (5). However, when capillary
effects are very weak, the saturation can be approximated by s ≈ 1 in the majority of the current.

In order to find the evolution equation for the height of the gravity current, we vertically integrate
(1) for the non-wetting phase between 0 and h, and for an axisymmetric geometry find that

ϕs0(h/he)
∂h

∂t
− ub

1

r

∂

∂r

[
rh

∂h

∂r
F(h/he)

]
= 0, (11)

where ϕ = φ(1 − Swi ) is an effective porosity which accounts for the irreducible wetting phase
saturation, ub = �ρgkkrn0/μn is the buoyancy velocity, and krn0 is the non-wetting phase relative
permeability at the maximum end-point saturation, s = 1. A more detailed explanation of this step,
which also uses the condition of zero saturation at z = h, is presented by Golding et al.11 Two-phase
effects are incorporated by the inclusion of a saturation function

s0(h/he) = 1 −
(

1 + h

he

)−�

, (12)

and a flux function

F(h/he) ≡ 1

krn0h

∫ h

0
krn[s(z)]dz (13)

= he

�h

∫ s0(h/he)

0
s2

[
(1 − s)−(�+1)/� − (1 − s)1/�

]
ds, (14)

where we have used (9) to change variables and (7a) for the relative permeability. This two-phase
model for the propagation of axisymmetric, porous gravity currents reduces to the single-phase
model when Swi ≡ 0, krn0 ≡ 1, and in the limit s(h, z) ≡ 1, s0(h/he) ≡ 1, and F(h/he) ≡ 1.
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We note that the saturation and flux functions, (12) and (13), remain unchanged between two-
dimensional propagation, presented in Golding et al.,11 and radial spreading, presented here, as
they incorporate only the vertical balance between gravity and capillarity. Here we are using a
different relative permeability model from the power law used by Golding et al.,11 who assumed that
krn = krn0sα , where α is an empirically obtained constant. This is in order to more easily and
consistently capture and illustrate the effect of pore-size distribution, described by �, on relative
permeability.

The edge of the current is located at rN(t), at which point

h[rN (t), t] = 0. (15)

Global conservation of the mass of non-wetting fluid is given by

2πϕ

∫ rN (t)

0

∫ h(r,t)

0
s[h(r, t), z]rdzdr = Qt, (16)

where Q is the constant volumetric flux of non-wetting fluid into the current.
Equivalently, the flux through the nose of the current is zero, so[

rh
∂h

∂r
F(h/he)

]
r=rN

= 0, (17)

and the flux at the origin is given by

− 2πub

[
rh

∂h

∂r
F(h/he)

]
r→0

= Q. (18)

These expressions can be obtained by integrating (11) with respect to r and substituting it into (16)
differentiated with respect to t.

It is clear from (18) that near the injection point at r = 0, ∂h/∂r must tend to infinity to maintain a
constant flux, and hence the assumption of negligible vertical velocity required for gravity-capillary
equilibrium is not valid there. We acknowledge that this model therefore does not capture the height
profile of the current in this region, but as with all vertical equilibrium models, assume that the
fluid very quickly transitions to the gravity-capillary equilibrium regime at radii beyond where the
height has dropped near the source. For example, Huppert16 verified experimentally that the very
localised regions near the origin, and the nose, do not have a significant effect on the remainder of
axisymmetric, viscous gravity currents.

III. SELF-SIMILAR PROPAGATION OF TWO-PHASE GRAVITY CURRENTS

The formalism developed in Sec. II provides the necessary tools to assess the effect of capillary
forces on the buoyancy-driven propagation of immiscible currents within porous media and could be
used to study many different situations. Here we consider the specific problem of the axisymmetric
spreading of the non-wetting fluid along a horizontal impermeable barrier from a source of constant
flux. The aim is to understand how capillary forces affect the motion and profile of the current over
time. It is also important to find how the saturation distribution within the current evolves, because
this has important consequences on the residual trapping that occurs once injection has ceased.

Scaling analysis of (11) and (16) indicates that

r ∼ (Qub/ϕ
2)1/4(F/s2

0 )1/4t1/2 (19a)

and

h ∼ (Q/ub)1/2F−1/2. (19b)

We immediately see that, as in the single-phase case, the two-phase current height has no explicit
time dependence. Therefore the dimensionless functions s0 and F , which depend only on h, have no
explicit time dependence and it follows from (19a) that the radius of the current rN(t) ∝ t1/2. A central
and somewhat surprising result of our study is therefore that, in the geometry investigated, two-phase
axisymmetric gravity currents propagate with the same t1/2 spreading rate found for single-phase
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currents.1 This scaling of radius with t1/2 is also found in the confined case10 for the same reason
of mass conservation. Furthermore in this unconfined case, the lack of an external length scale in
the problem indicates a self-similar solution for the spreading currents, which we have verified is
consistent with the results from the numerical solution of (11) to (16). Capillary forces modify both
the speed, as given by the prefactor in the spreading, and the profile of spreading currents, as shown
below. We see also from (19a) and (19b) that the aspect ratio of the current r/h ∼ t1/2, which implies
that after sufficient time the gravity current is always long and thin, and the assumption of vertical
equilibrium is valid.

Motivated by (19a) and (19b), we look for solutions as a function of the similarity variable

η = (
ϕ2/Qub

)1/4
r t−1/2, (20)

such that the radius of the current is given by

rN (t) = ηN (Qub/ϕ
2)1/4t1/2, (21)

where ηN is a constant to be determined for a given set of parameter values. Relation (19a) indicates
that

ηN ∼ (
F/s2

0

)1/4
, (22)

where s0 and F are evaluated at some representative value of height h. Hence it is the multiplicative
factor ηN that incorporates the effects of capillary forces on the propagation rate of a two-phase
gravity current.

The profile of the current is given by

h = H f (y), (23)

where the vertical scale

H = (Q/ub)1/2, (24)

and the dimensionless height profile f is solely a function of y, the scaled similarity variable, defined
as

y ≡ η/ηN . (25)

From (19b) we see that

f F( f )1/2 ∼ 1. (26)

We introduce a Bond number, which is the ratio of gravitational to capillary forces,

B ≡ �ρgH/pe = H/he, (27)

in an analogous manner to Golding et al.,11 and note that the vertical scale of the current is independent
of time for a constant-flux, axisymmetric, two-phase gravity current. The relative strength of gravity
and capillary forces therefore does not change as the gravity current propagates, as characterised
by a constant Bond number. This is an ideal situation in which to investigate two-phase effects
on propagating gravity currents and is the reason for choosing an axisymmetric geometry with a
constant input flux. This situation is in contrast with two-dimensional gravity currents fed by a
constant or increasing flux, or indeed axisymmetric gravity currents whose flux increases with time.
In all of these cases, the height and therefore Bond number increase with time. Hence, regardless of
initial conditions, the behaviour of the gravity current tends towards the single-phase limit modeled
by Huppert and Woods17 and Lyle et al.1 for the two-dimensional and axisymmetric geometries,
respectively.

The equation governing the similarity solution for the current height, f, is obtained by changing
variables from (r, t) to y using (20) in (11), and substituting (23) into the result, which yields

[
y f f ′F( f B)

]′ + 1

2
η2

N y2 f ′s0( f B) = 0, (28)
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where a prime denotes d/dy. The boundary conditions are now

f (y = 1) = 0 (29)

and

ηN =
[

2π

∫ 1

0

∫ f

0
s[B f (y), z]ydzdy

]−1/2

, (30)

which define the nose and enforce global mass conservation, respectively.
The saturation and flux functions become

s0( f B) = 1 − (1 + f B)−� (31)

and

F( f B) = 1

� f B

∫ s0( f B)

0
s2

[
(1 − s)−(�+1)/� − (1 − s)1/�

]
ds. (32)

The analytical expression obtained by integrating (32), not explicitly needed here, is displayed in
the Appendix. The limiting physical behaviour of the saturation and flux functions are discussed
further in Sec. IV.

Equation (28) along with conditions (29) and (30) and the specific models for the saturation
(31) and flux function (32) provides a closed model for the profile and propagation of the two-phase
axisymmetric gravity current. In order to calculate the dimensionless height profile, f, and determine
the value of the similarity variable at the current front, ηN, we solve (28) numerically, together with
(29) and (30). To obtain the third and final condition required to solve the problem, we approximate
the saturation and flux functions at the nose, where fB 	 1, by

s0( f B) ≈ �B f (33a)

and

F( f B) ≈ �2

4
(2 + �) ( f B)3 , (33b)

and seek a solution of (28) of the form f(y) = p(1 − y)q. This yields the gradient condition at the
current nose, given by

f ′ = −1

3

[
3η2

N

�(2 + �)B2

]1/3

(1 − y)−2/3 (1 − y 	 1). (34)

In general, both ηN and f(y) are functions of � and B. However, it is possible to make ap-
proximations to the equations in certain limits, which we demonstrate in Sec. IV in order to obtain
analytical expressions for the behaviour of the current. In the case of either very weak or very strong
capillary forces, the problem greatly simplifies to become independent of � and B, apart from a
simple scaling in the latter case. We find that when fB 
 1 and � 	 1, the number of parameters
controlling ηN and the height profile f(y) is reduced, thereby simplifying the problem.

IV. TWO-PHASE EFFECTS ON SELF-SIMILAR CURRENTS

The action of capillary forces within two-phase gravity currents results in a region of partial
saturation, known as the transition zone, or capillary fringe. The saturation determines the volume
of each fluid contained locally in the pores and its relative permeability, both of which control the
shape and propagation of two-phase currents. It is the balance between gravity and capillary forces
that determines the saturation distribution as a function of the vertical position within a current as
expressed by (8).

The strength of capillary forces determines the width of the capillary fringe relative to the depth
of the current, which is therefore a measure of the influence of capillary forces on the behaviour of
the two-phase current. When capillary forces are relatively small, the capillary fringe is negligible,
s ≈ 1 in most of the current, and the behaviour approaches the single-phase limit. Conversely, when
capillary forces are large, the capillary fringe is wide and the average saturation, and hence relative
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permeability, within the current is lower. In such currents capillary forces can have a strong influence
on the shape and velocity of propagation.

The height of the current compared to the capillary entry height defined by (10) is characterized
by fB = h/he = �ρgh/pe = [pc(h, z = 0) − pe]/pe, where (8) is used in the last equality and is
equivalent to the change in capillary pressure across the vertical extent of the current divided by the
capillary entry pressure. It is therefore a measure of the relative strength of gravitational to capillary
forces. The vertical saturation gradient associated with a given height or pressure difference is
determined by the pore-size distribution, �. A narrow pore-size distribution, � 
 1, leads to a sharp
increase in non-wetting phase saturation over a small distance, whereas a wide pore-size distribution,
� 	 1, leads to a more gradual change of saturation with height. Thus, the size of the capillary fringe
in comparison to the current height depends on both the Bond number and the pore-size distribution.

The parameter � is used to fit the Brooks-Corey model for the relation between capillary
pressure and saturation to empirical data. It indicates the distribution of pore sizes within a porous
medium and can therefore take a wide range of values in a multitude of industrial, laboratory,
and geophysical settings. Examples of typical values found in the literature are 2/3 for a reservoir
sandstone, discussed in Sec. V, 0.4 for water and air in a mixture of bentonite and crushed rock,18

and 3.7 for water and air in fine sand.13 As the pore-size distribution becomes narrower, for example,
in a sand pack in a laboratory experiment where all the sand particles are of the same size, the
value of � increases towards its limit of ∞, which indicates a porous medium of uniform pore size.
The value of B depends on many parameters describing the input flux, fluids, and porous medium,
all of which themselves depend on factors such as temperature and pressure, and can vary greatly
depending on the physical system.19 In this section we therefore consider a wide range of parameter
values for B and � to fully explore how capillary forces affect two-phase gravity currents.

The effects of capillary forces on the behaviour of two-phase gravity currents are incorporated
in the model by the saturation and flux functions. Contour plots of s0 and F are displayed in Figure 2
and show how these two functions depend on the relative strength of capillary forces, characterized
by fB, and the pore-size distribution, characterized by �. There are three physical limits, shaded
gray, where the constitutive saturation and flux functions display distinct behaviour according to
the strength of capillary forces acting in the pore geometry compared to gravity. These regions
correspond to: (1) weak capillary forces (large fB, large �); (2) strong capillary forces (small fB,
acting in a range of pore-size distributions �); and (3) weak to intermediate capillary forces (large
fB, acting in a wide pore-size distribution, small �, which magnifies capillary effects). Approximate
expressions for s0 and F can be found in these limits, as described in Secs. IV A–IV C, and are
plotted using dashed curves in regions 2 and 3 in Figure 2.

FIG. 2. Contour plots of (a) the saturation function, s0, and (b) the flux function, F , against fB and �. The shaded regions
indicate the physical limits of (1) weak, (2) strong, and (3) intermediate capillary effects discussed in Secs. IV A–IV C,
respectively, as well as the regions for which approximate expressions for s0 and F can be found. The dashed contour lines
are plotted using the approximate expressions for s0 and F , given by (33a) and (33b) and (45a) and (45b) in regions 2 and 3,
respectively, and are almost indistinguishable from the actual values there.

Downloaded 12 Apr 2013 to 131.111.18.65. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



036602-10 Golding, Huppert, and Neufeld Phys. Fluids 25, 036602 (2013)

FIG. 3. Graphs demonstrating how the self-similar height profile of a two-phase gravity current, f(y), varies with the
strength of capillary forces. The gray shading indicates how the saturation distribution within the gravity current changes.
Strengthening capillary forces, corresponding to decreasing B and �, lead to a thicker current, with a more rounded front
and lower saturations. The dashed curve when B = 10−3 and � = 1 shows the approximate profile in the limit of strong
capillary forces, given by the solution of (40). The single-phase height profile predicted by Lyle et al.1 is almost identical to
the two-phase profile displayed for B = 103 and � = 103. Note the difference in vertical scale for each graph.

Figure 3 displays height profiles of the currents with parameter values � = 10−3, 1, 103

and B = 10−3, 1, 103, resulting from the numerical solution of (28)–(32). The main effect of
increasing capillary forces, either by decreasing B or decreasing �, is to lower the saturation
everywhere in the current. This leads to reduced relative permeability and in order to maintain a
constant flux, the gradient of the current along the boundary, ∂h/∂r, must increase. This effect is
particularly significant near the front of the current where the height goes to zero and therefore leads
to a blunter nose shape in two-phase currents. When capillary effects are strong, as discussed in
Sec. IV B, the front of the current takes the shape f ∼ (1 − y)1/3, for example when B = 10−3 and
� = 1 in Figure 3. The thickness of the current is also increased due to the lower saturations for two
reasons. First, mass conservation requires that for a given flux, the height must increase. Second, the
reduced relative permeability may require a steeper gradient everywhere in the current, not just near
the nose, for example, when B = 1 and � = 10−3 in Figure 3. It is important to note that to return
to dimensional heights, the profiles displayed in Figure 3 are multiplied by H, which for fixed he,
scales with B.

Contour plots of the dimensionless height at y = 0.5 and the multiplicative factor ηN against B
and � are displayed in Figures 4 and 5, respectively. The dimensionless current height, f, increases
with increasing capillary forces due to mass conservation and reduced relative permeability because
the average saturation within such currents decreases. The behaviour of f and ηN in terms of s0 and F
is given by the scaling relations (22) and (26). There are three parameter regimes in which we can use
these scaling relations, along with the approximations of s0 andF , to find simple explicit expressions
for how the dimensionless height and radius of the current scale in terms of the parameters B and �.
The first regime corresponds to the case of negligible capillary forces, where the governing equations
reduce to those for a single-phase gravity current. The second regime corresponds to when capillary
forces are very strong, such that the saturation distribution is linear throughout the full vertical extent
of the current. The third region corresponds to intermediate capillary forces, where the Bond number
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FIG. 4. Contour plot of the dimensionless current height, f, at y = 0.5, normalised by the corresponding height of a
single-phase gravity current, fSP(0.5) = 0.348, as a function of � and B. The solid curves indicate solutions of the full
numerical equations. The circled numbers correspond to regions of (1) weak, (2) strong, and (3) intermediate capillary forces,
discussed in Secs. IV A–IV C, respectively. The dashed curves depict the contours calculated using the approximations in
regions of strong and intermediate capillary forces. These approximate contour lines have been calculated using constants of
proportionality 1 in (38a) in region 2, and 0.5 in (47) in region 3.

is large but the capillary effects are augmented by a wide pore-size distribution. The three regimes
are labelled 1, 2 and 3 in Figures 4 and 5.

The physical interpretation and analysis of the three regions in which approximate solutions
can be found are discussed in Secs. IV A–IV C. For all other values of � and B, it is not possible
to find approximate expressions for the saturation and flux functions, or height profile f, and full
numerical solutions of (28) must be obtained. However, an indication of the orders of magnitude
can be obtained from the contour plots shown in Figures 4 and 5.

A. Weak capillary forces

Capillary forces are negligible when the Bond number is relatively large, B 
 1/�, indicating
a low capillary entry pressure, and the pore-size distribution is narrow, � 
 1. The saturation s ≈ 1

FIG. 5. Contour plot showing the variation of ηN /ηS P
N with � and B, where ηS P

N = 1.155 is the value in the single-phase
limit. The circled numbers correspond to regions of (1) weak, (2) strong, and (3) intermediate capillary forces, discussed in
Secs. IV A–IV C, respectively. In the limit of strong capillary forces, ηN = 0.8704(2 + �)1/5(B/�)1/10, as discussed in
Sec. IV B. The contours using this approximation for ηN /ηS P

N = 0.4, 0.6, and 0.8 are shown by the dashed curves.
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FIG. 6. Graph of the scaled current height profiles in various limits. The dashed curve shows f(y) in the single-phase limit.
The solid curve shows g(y), in the limit of very strong capillary forces, where f(y) = [�2B3(2 + �)]−1/5g(y).

throughout most of the depth of the current, and hence the saturation and flux functions are closely
approximated by

s0 ≈ 1 (35a)

and

F ≈ 1. (35b)

In this limit, the problem defined by (28)–(30) reduces to that of a single-phase gravity current
derived by Lyle et al.,1 where ηN = ηS P

N = 1.155 and the dimensionless height profile f(y) is
independent of � and B and has order of magnitude equal to one. The function f(y) is plotted
in Figure 6 and exhibits the characteristic shape of a single-phase gravity current.

B. Strong capillary forces

When capillary forces are very strong throughout the current, the distribution of the non-wetting
phase saturation is approximately linear with depth,

s( f, z) ≈ �B( f − z). (36)

This occurs when the capillary pressure drop between z = 0 and z = h is small. For this approximation
to be valid everywhere, the second term in the Taylor expansion of s(f, z) must be small, i.e.,

(� + 1) f B 	 1. (37)

If the pore-size distribution is very narrow, the Bond number must be very small to produce a linear
saturation profile throughout the vertical extent of the current. When the pore-size distribution is very
wide, capillary forces are strong, but the wide capillary fringe causes the current height to be very
large. This can lead to the linear approximation for the saturation distribution not being appropriate
near the base of the current, where s0 is calculated, unless the Bond number is sufficiently small.

When the saturation distribution is linear throughout the height of the current, the saturation and
flux functions are given by (33a) and (33b). As noted in Sec. III, these approximations are always
true at the current nose. Contour plots using each approximation are shown by dashed lines in region
2 of Figures 2(a) and 2(b), and are mostly indiscernible from the actual values.

Substituting (33a) and (33b) into (26) and (22), we find that

f ∼ [�2 B3(2 + �)]−1/5 (38a)
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and

ηN ∼ (2 + �)1/5

(
B

�

)1/10

. (38b)

The former is used to plot the dashed contour lines in the corresponding region of Figure 4. We can
therefore re-cast our similarity solution in terms of

f (y) = [�2 B3(2 + �)]−1/5g(y) (39a)

and

ηN = η̂N (2 + �)1/5

(
B

�

)1/10

, (39b)

for the case where (33a) and (33b) are valid throughout the current, where g(y) and η̂N are new order
one variables. In this limit, the governing equations, (28) and (30), become independent of B and �

and are given by

[
yg4g′]′ + 1

2
η̂2

N y2gg′ = 0 (40)

and

η̂N =
[
π

∫ 1

0
g2 ydy

]−1/2

. (41)

We calculate that η̂N = 0.8704 and dashed contour lines for ηN using (39b) are plotted in Figure 5.
They show good agreement with the numerically obtained values in this strong capillary force limit.
The function g(y) is plotted in Figure 6 and the similarity height profile (39a) is plotted using a
dashed curve in Figure 3 when B = 10−3 and � = 1. Equation (40) indicates that the shape of the
current when 1 − y 	 1 is g ∝ (1 − y)1/3, which bears a resemblance to the profile of a viscous
gravity current on a horizontal boundary near the nose of the current.16

We return to the condition for the validity of this approximation, and by substituting (38a) for
the current height scale into (37), we find that the linear approximation is valid when

(� + 1)(B/�)1/2 	 1. (42)

Hence, this regime occurs when

B 	 1 (� ∼ 1), (43a)

�B 	 1 (� 
 1), (43b)

and

B/� 	 1 (� 	 1), (43c)

which in all scenarios of pore-size distribution require the Bond number to be very small, indicating
that capillary forces are very strong compared to gravity forces. We note that in these limits the
saturation of the non-wetting phase in the current may be too small for the assumptions leading to
gravity-capillary equilibrium to be valid. However the calculations do provide a limiting case for the
behaviour of two-phase gravity currents where capillary forces are very strong.

C. Intermediate capillary forces with a wide pore-size distribution: fB � 1, � � 1

The effectiveness of capillary forces at creating a partially saturated zone is a function of both
the Bond number and pore-size distribution. Thus, even moderate or weak capillary forces, where
fB 
 1/� for most of the current, can result in a large capillary fringe as long as the pore-size
distribution is sufficiently broad, � 	 1. The presence of a wide capillary fringe thickens the current
due to the lower average saturation. However, the lower capillary entry pressure indicated by a large
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Bond number means that it is easier for the non-wetting phase to enter pores. Therefore, the profile
of the current front approaches the linear shape observed in single-phase gravity currents.

In this regime, the saturation distribution is approximately

s( f B, z) ≈ � log[1 + B( f − z)], (44)

and the saturation and flux functions can be approximated by

s0(�, f B) ≈ � log(1 + f B) (45a)

and

F(�, f B) ≈ �2 [
log2(1 + f B) − 2 log(1 + f B) + 2

]
. (45b)

Contour lines using (45a) and (45b) are indicated by dashed curves in region 3 of Figures 2(a) and
2(b). This approximation for s0 is in fact very good for all fB when � 	 1.

We therefore know from substituting (45b) into (26) that in this regime, the dimensionless height
scales as

f ∼ 1/�[log2(1 + f B) − 2 log(1 + f B) + 2]1/2. (46)

Hence, to first approximation f ∼ 1/� and substitution of this back into the right-hand side of (46)
yields

f ∼ 1/�[log2(1 + B/�) − 2 log(1 + B/�) + 2]1/2, (47)

which is used to plot the dashed contour lines in the corresponding region of Figure 4. Similarly we
find that to good approximation

ηN ∼
[

log2(1 + B/�) − 2 log(1 + B/�) + 2

log2(1 + B/�)

]1/4

, (48)

which does not differ greatly from unity as B/� is varied. This indicates that in this intermediate
capillary force limit, the value of ηN is close to the single-phase limit. This is visualised in Figure 5,
where all values of ηN /ηS P

N in the region of small � and large B are greater than 0.9.
Furthermore, we note that in this regime ηN = ηN(B/�) and f = ḡ(y, B/�)/� and so the

quotient B/� becomes the only remaining parameter in determining the scaled, dimensionless
height profile, ḡ(y) and ηN when � 	 1. The behaviour of s0, F , and f in this region, visualized in
Figures 2 and 4, indicates that when the pore-size distribution is wide, capillary forces are important
even as B becomes large.

V. APPLICATION TO THE CO2 STORAGE SITE AT SLEIPNER

The theory presented has shown that the extent of an axisymmetric two-phase gravity current
increases as t1/2 and depends on the properties of the two fluids and the porous medium as described
by (21). However, the properties of reservoir rocks, such as their permeability, pore-size distribution,
and wetting properties, may be poorly known, or sampled with low spatial resolution. As we
have shown, the rate and manner of fluid propagation can be affected by these properties and
therefore it represents a sensitive probe of subsurface conditions. Furthermore, seismic images
provide an excellent tool for mapping the subsurface flow of CO2. Therefore, one useful application
of this work is to exploit the dependence of observed fluid flows on relatively well-constrained
fluid properties to infer rock characteristics, whilst quantitatively capturing the effects of capillary
forces.

One of the most intensively studied CO2 sequestration sites is the Sleipner project in the North
Sea, where supercritical CO2 has been injected into the Utsira sandstone formation since 1996 at a
rate of ∼1 MT/yr. Seismic imaging has shown that the injected CO2 has been advancing through
the formation and is now spreading beneath nine relatively impermeable mudstone layers. Bickle
et al.20 measured the area covered by the CO2 phase at each shale layer and calculated the equivalent
radius of an axisymmetric current as a function of time. Estimates for the porosity of the formation
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rock, as well as the viscosity and density of CO2 and brine at each layer, are thought to be relatively
well constrained. The areal extent of the current at each layer is observed to increase linearly in
time, as is the case for the two-phase axisymmetric gravity current analysed in this paper, and its
single-phase counterpart studied by Lyle et al.1 Thus the predicted radial growth rate with respect
to time is verified. A second useful application of the model is to make estimates of the more
poorly constrained multiphase parameters. Bickle et al.20 used the single phase axisymmetric model
to estimate the flux into each layer. The intrinsic permeability of the rock, a quantity which is
poorly known, was then implied to ensure conservation of the total mass of CO2 injected into the
formation, allowing for underestimates arising from fluid contained in parts of the current too thin
to be detected by seismic imaging. They found a value of k = 0.19 ± 0.014 × 10−12 m2, which
is approximately an order of magnitude smaller than the permeability, k = 1.1 − 5 × 10−12 m2

(1.1 − 5 D), measured from a core sample of the same sandstone formation, some distance away
from the injection site. Bickle et al.20 proposed that this apparent discrepancy between predicted and
measured permeabilities might be caused by the reduction in relative permeability due to capillary
effects in the two-phase system, which are not captured by the sharp-interface model.

Here, we use the seismically observed areal extent of the gravity current at each layer within
the Utsira formation, along with our prediction of the spreading of a two-phase gravity current
given by (21). We take the parameter values for �ρ and μN at each layer and φ = 0.375, as
suggested by Bickle et al.,20 and set Swi = 0.05 and krn0 = 1, as estimated by Chadwick, Noy,
and Holloway.21 The Brooks-Corey capillary entry pressure parameter, pe, and pore-size distribution
parameter, �, are harder to determine. We use a value of � = 2/3, converted from the van Genuchten
model for capillary pressure used by Chadwick, Noy, and Holloway21 for the Sleipner storage site.
Representative estimates for permeability obtained from core samples and well-test data in Bickle
et al.20 are k = 1.1 × 10−12 m2, 3 × 10−12 m2, and 5 × 10−12 m2 and we suppose that these
values are representative of the Sleipner storage site. For each of these values, we imply the capillary
entry pressure that ensures the total flux 1 MT/yr is conserved among the 9 layers. In doing so,
we infer that pe = 2 × 103 k Pa, 2 × 104 k Pa, and 6 × 104 k Pa, respectively. Estimates in the
literature for capillary entry pressure in the Utsira sandstone range from pe = 0.81 k Pa, obtained
experimentally from core samples,22 to pe = 4 k Pa, used in the reservoir simulator TOUGH2.21

Therefore, the assertion that capillary effects may account for the observed rates of propagation
cannot be reconciled with estimates for the capillary entry pressure within the Utsira sandstone,
because this would require a capillary entry pressure that is 3–4 orders of magnitude larger than
estimated, due to the small power of pe in (21). We conjecture that the disagreement between models
and observations might be explained instead by leakage that occurs between each thin shale layer as
the CO2 rises through the formation. This may cause the apparent flux into, and out of, each layer to
vary in time, producing the observed temporal behaviour of the areal extent of the gravity currents.
Evidence supporting this has been obtained from the latest seismic imaging survey of the Sleipner
storage site, which is presented by Boait et al.23 along with in-depth discussion about how the CO2

is thought to be moving within the formation.

VI. DISCUSSION AND CONCLUSIONS

The most striking result of this study is that a two-phase axisymmetric gravity current, fed by a
constant flux, propagates in a porous medium like t1/2 in a self-similar manner. The extent therefore
has the same time dependence as a single-phase axisymmetric gravity current, where capillary
forces do not play a role.1 The effects of capillary forces on the form and rate of propagation are
incorporated in the gravity current model by saturation and flux functions. These two functions
depend only on the Bond number B and the pore-size distribution parameter �. These factors are
therefore the sole determinants of the rate of propagation, given by rN = ηN(B, �)t1/2, and the shape
of the current.

Further comparison with a single-phase current provides insight into the way the dimensionless
radius and height of the two-phase current scale with the strength of capillary forces, as given by
(22) and (26). The radius and height of a single-phase current depend on the intrinsic permeability,
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k, and porosity, φ, of the porous medium, according to

rN ∼ (k/φ2)1/4 (49a)

and

h ∼ k−1/2. (49b)

The main effect introduced by capillary forces is to reduce the saturation of the fluid within the
current and this has two main consequences. First, the volume of fluid contained per unit horizontal
area in the current is reduced, which is encapsulated by the saturation function s0(fB, �). Second,
the relative permeability of the fluid in the current is reduced, which is captured by the flux function
F( f B,�). The saturation and flux functions can therefore be interpreted as an effective porosity and
an effective permeability, respectively, for the partially saturated non-wetting phase in the current.
In addition, capillary forces introduce the existence of an irreducible wetting phase saturation and
an endpoint relative permeability, which affect both the effective porosity and permeability of the
porous medium. Thus the parallel comparison drawn between the two-phase effects on porosity and
permeability and (49a) and (49b) explains the scaling in (19a) and (19b) of

rN ∼ [
krn0F/(1 − Swi )

2s2
0

]1/4
(50a)

and

h ∼ (krn0F)−1/2 . (50b)

Capillary effects also have a large influence on the shape and the thickness of two-phase gravity
currents. Stronger capillary forces lead to lower saturation of the injected fluid and therefore lower
relative permeability. The gradient of the current height profile consequently needs to be steeper
in order to drive flow and maintain a given flux, which results in a thicker current. The capillary
entry pressure determines how easily the non-wetting phase can advance into pores at the front of
the current. The front of the current becomes rounded when the capillary entry pressure is high, or
Bond number is low, in order that the height is sufficient to overcome the pressure threshold.

Residual trapping is one of the key mechanisms through which CO2 may be immobilized during
CO2 sequestration. It occurs once injection has ceased. The two key factors determining the amount
of the non-wetting fluid that is trapped are the saturation distribution at the onset of imbibition and
the volume of rock reached by the CO2, both of which are calculated by this two-phase model.
The relation between initial and residual saturation of the non-wetting fluid for a given fluid-rock
system must be obtained empirically, and is commonly summarized by a trapping model. Golding
et al.11 discussed in detail how a constant-flux drainage model can be used, in combination with a
trapping model, to provide estimates of how much non-wetting fluid would be trapped in the wake
of a two-dimensional, two-phase gravity current. In an analogous way, the axisymmetric model here
provides the tool to obtain more accurate estimates of residual trapping in storage sites, such as
Sleipner, where currents are spreading in a very approximately axisymmetric way.

In conclusion, we have presented a model that provides a way of quantitatively assessing how
capillary forces affect the behaviour of an axisymmetric, constant-flux, two-phase gravity current as
it propagates in a porous medium. It can be applied directly to data and observations on the reservoir
scale in order to give estimates of the properties of the rock-fluid system, as demonstrated. Given the
ill-constrained characterisation of the subsurface, the model provides a simple and invaluable way
of exploring the sensitivity of predictions for two-phase gravity currents on parameter estimates,
without the need to run a multitude of potentially costly numerical simulations. The model is also
useful for obtaining quantitative estimates of the amount of residual trapping that would occur
once injection has ceased, as discussed by Golding et al.11 The theory presented here represents
a significant advance in our understanding of how capillary effects, such as relative permeability,
affect the propagation of two-phase, constant-flux gravity currents propagating axisymmetrically in
porous media. Future work in preparation will incorporate drainage and imbibition consistently into
a model for a two-phase gravity current resulting from a finite volume release, where the maximum
height decreases with time and therefore capillary effects become increasingly more important.
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APPENDIX: ALGEBRAIC EXPRESSION FOR F

The definition of the flux function, (32), can be integrated analytically using integration by
parts, which yields the expression

f BF = F∗ + (1 − s0)(�+1)/�

3� + 1

[
s2

0 + 2�

2� + 1
s0

]
+ 2�2

[
(1 − s0)(�+1)/� − 1

]
(� + 1)(2� + 1)(3� + 1)

, (A1)

where

F∗( f B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + f B − 4 (1 + f B)1/2 + 3 + log(1 + f B) (� = 1/2)

1 + f B − (1 + f B)−1 − 2 log(1 + f B) (� = 1)

1 + f B + 1
1−2�

(1 + f B)1−2� + 2
�−1 (1 + f B)1−� + 2�2

(�−1)(1−2�) (� = 1/2, 1).
(A2)
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