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We study the two-dimensional flow and leakage of buoyant fluid injected at a constant
volumetric rate into a fluid-saturated porous medium confined vertically by horizontal
boundaries. The upper boundary contains a localized vertical fracture that allows fluid
to leak into an open or partially confined porous layer above. The rate of leakage
is modelled as proportional to the combined action of the gravitational hydrostatic
head of the current below the fracture and the background pressure introduced by
the injection. After the injected current reaches the fracture, leakage is initially
controlled kinematically by the rate at which injected fluid flows towards the fracture.
Once the rate at which buoyant fluid flows towards the fracture exceeds a critical
value, the current overshoots the fracture and leakage switches to being controlled
dynamically by the pressure drop across the fracture. Two long-term regimes of flow
can emerge. In one, the current approaches a steady height above the lower boundary
and essentially all fluid injected into the medium leaks at long times. In the other, the
current accumulates to fill the entire depth of the medium below the fracture. Only a
fraction of the injected fluid then leaks at long times, implying significantly greater
long-term storage than has been proposed from studies of leakage from unconfined
media. An understanding of the flow regimes is obtained using numerical solutions
and analysis of long-term similarity solutions. The implications of our results to the
geological storage of carbon dioxide is discussed.
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1. Introduction
Fluid flow through porous geological formations is a subject of intense study with

wide-reaching applications in both the Earth sciences and industry. Our interest stems
primarily from the emerging technology of carbon capture and storage (CCS), in
which carbon dioxide (CO2) is injected into a porous geological formation deep
underground (Bickle 2009; Orr 2009; Huppert & Neufeld 2014). As CO2 is injected
into a porous reservoir, it initially rises under buoyancy from the injection well before
spreading laterally below a relatively impermeable caprock. Very often, the geological
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rock contains fractures or permeable faults through which the CO2 can leak to a
higher level in the formation or to the surface. An understanding of leakage is central
to the feasibility of CCS.

The theoretical analysis of leakage from porous media has previously focused
on cases in which the medium is idealized as infinitely deep (e.g. Pritchard &
Hogg 2001; Pritchard 2007; Neufeld, Vella & Huppert 2009; Neufeld et al. 2011;
Vella et al. 2011). In those studies, the fracture was modelled as a distributed
sink, with the rate of leakage through it proportional to the hydrostatic head of
the current below the fracture. In all such cases, it was found that the current
evolves towards a long-term state in which all the fluid injected into the medium
leaks, except for an increasing volume of retained fluid flowing downstream of the
fracture, which becomes asymptotically small relative to the total volume injected. In
a two-dimensional aquifer, for example, the ratio of fluid retained to fluid injected,
defined as an efficiency of storage, decays as t−1/2, implying that the rate of leakage
approaches the rate of injection (Neufeld et al. 2009). By assuming that the aquifer
is infinitely deep, these earlier studies precluded any dynamical controls on leakage
introduced by vertical confinement.

Seismic measurements at CCS test sites have indicated that the CO2 currents
produced have comparable thickness to the depth of the aquifer (e.g. Boait et al.
2012). Particularly when the injected fluid is much less viscous than the ambient
fluid, as is relevant to CCS, vertical confinement introduces new effects that do not
occur when the medium is idealized as unconfined (Nordbotten & Celia 2006; Pegler,
Huppert & Neufeld 2014). One is the build-up of an additional, non-gravitational
background pressure associated with the pressurization at the injection. We show
how this added pressure contributes to driving leakage through fractures. Similar
contributions have been included in reduced models of fluid leakage between
stacked reservoirs (Nordbotten et al. 2005, 2009), but these models neglect the
detailed interactions between the current and its leakage. Here, we develop and solve
general model equations that describe this interaction and thus elucidate the important
fluid-mechanical balances and flow regimes that emerge.

The second effect introduced by confinement is to limit the maximum possible
accumulation of the injected current below the fracture. This contrasts with unconfined
aquifers, where the current can accumulate without limit. Importantly, this constraint
is shown to limit the contribution to leakage due to gravity and result in a maximum
possible rate of leakage. Consequently, one of two possible long-term flow regimes
can emerge, dependent on whether the rate of injection exceeds the maximum
rate of leakage. With these new dynamical considerations included, we show that
the long-term storage efficiency can be orders of magnitude greater than has been
proposed previously from studies of unconfined media with otherwise identical flow
parameters.

We begin in § 2 by developing our theoretical model describing a current of buoyant
fluid injected into a fractured porous layer. In § 3, we identify the differing dynamical
regimes described by the model. In § 4, we consider the predictions of the model in
an illustrative geophysical setting before summarizing our conclusions in § 5.

2. Theoretical development

Consider a viscous fluid of dynamic viscosity µ and density ρ injected at the
constant volumetric rate per unit width Q0 into a two-dimensional porous medium
of uniform permeability k and porosity φ saturated by an ambient fluid of dynamic
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FIGURE 1. Cross-section of a two-dimensional porous medium containing horizontal
boundaries along z = −(l + H2), −l, 0 and H, forming two parallel porous layers or
‘aquifers’. A vertical outlet, the ‘fracture’, centred on x= xF, provides a conduit between
the lower and upper layers. The buoyant fluid injected into the lower layer is shown
shaded and its sharp interface z= h(x, t) is shown as a thin curve.

viscosity µa and larger density ρa > ρ (see figure 1). The medium comprises two
porous layers, or ‘aquifers’, formed from four impermeable horizontal boundaries
along z = −(l + H2), −l, 0 and H. This configuration is motivated by the layered
formations characteristic of many geological reservoirs (Nordbotten et al. 2005; Boait
et al. 2012). Leakage to effectively unconfined regions, such as the atmosphere
or ocean, is accommodated within our model by letting H2 � H. The two fluids
in the lower layer are assumed to be separated at all times by a sharp interface
z = h(x, t) (Bear 1988), which generally intersects the upper and lower boundaries
along two contact lines x = xU(t) and x = xL(t), respectively. A narrow gap, the
‘fracture’, of horizontal breadth b and vertical length l, is centred on x = xF and
provides a conduit between the layers. With respect to a constant reference pressure
p0 ≡ p(L,−(H2 + l), t) at a location x= L along the top of the upper layer, the fluid
pressure p= p(x, z, t) is specified on x= L as

p(L, z, t)= p0 + ρag(z+H2 + l). (2.1)

In the geological context, the position x= L could be interpreted as the terminus of
an interstitial impermeable boundary or an opening or fault connecting the aquifer to
another reservoir, the atmosphere or the ocean.

Assuming that the horizontal length scales of the flow are much larger than the
thickness of the current (xF, xL, xU � h), we model the evolution of the interface in
the lower layer using the nonlinear diffusion developed by Pegler et al. (2014) as

φ
∂h
∂t
+ ∂q
∂x
= 0, where q≡

h
{
λQ(x, t)− λaU(H − h)

∂h
∂x

}
λh+ λa(H − h)

(2.2a,b)

is the volumetric flux of the current per unit width and

Q(x, t)=
{

Q0 if x< xF,

Q+(t)≡Q0 −QF(t) if x> xF,
(2.3)

is the total flux per unit width of both the current and the ambient fluid in the lower
layer, respectively. The quantity U ≡ λ1ρg is the buoyancy speed, 1ρ ≡ ρa − ρ is
the density difference, λ≡ k/µ is the mobility of the buoyant fluid and λa ≡ k/µa is
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the mobility of the ambient fluid. Without leakage, the total flux Q≡Q0 everywhere
and the equations reduce to those considered by Pegler et al. (2014). With leakage,
the total flux instead divides at x = xF between the leaked flux QF and the retained
flux Q+(t)≡Q0 −QF(t). We refer to QF(t)≡ qF(t)+ qA(t) as the ‘total’ leakage flux,
which generally contains contributions due to both the current qF(t) and the ambient
fluid qA(t).

When the interface lies between the boundaries of the medium at the injection
(h(0, t)<H), the combination of q(0, t)=Q0 and (2.2b) yields the boundary condition

−Uh
∂h
∂x
=Q0 at x= 0 if h(0, t) <H (2.4)

(Pegler et al. 2014). Following that study, we also impose the contact-line conditions

h= 0, φẋU = Q
MH
−U

∂h
∂x

at x= xU, (2.5a,b)

h=H, φẋL = MQ
H
+MU

∂h
∂x

at x= xL if h(0, t)=H, (2.6a,b)

where M≡ λa/λ=µ/µa is the mobility ratio. Conditions (2.5) and (2.6) follow from
the continuity of the interface and flux of each fluid layer (Pegler et al. 2014). We
apply (2.4) before the current spans the depth of the medium at x = 0 and (2.6a,b)
afterwards.

If the horizontal extent of the region of leakage b is small (b� H, xU), then we
can impose the leading-order continuity conditions across it given by

h− = h+, q+ − q− =QF at x= xF, (2.7a,b)

where the ± subscripts denote quantities downstream or upstream of the fracture,
respectively. Condition (2.7a) follows from a horizontal balance of depth-integrated
hydrostatic pressure between regions either side of the fracture. Conditions (2.7a,b)
differ from the distributed sink applied by Pritchard & Hogg (2001) and Neufeld
et al. (2009) but become asymptotically equivalent in the limit of small breadth b.

We model the leakage using Darcy’s law (Bear 1988),

QF = bλF

l
(p1 − p2 − ρgl) at x= xF, (2.8)

where λF ≡ kF/µ is the mobility of the injected fluid in the fracture and kF is the
permeability of the fracture, while p1 ≡ p(x, 0, t) and p2 ≡ p(x, −l, t) are the fluid
pressures at the base and top of the fracture, respectively. An allowance for the
leakage of ambient fluid will be discussed later in this section. For a thin layer,
the stresses due to vertical flow are negligible and pressure is purely hydrostatic
(Bear 1988). Consistent with the reference pressure (2.1), the hydrostatic pressure
distributions along the top boundary of the lower layer and along the bottom boundary
of the upper layer are given as

p1(x, t) ≡ p(x, 0, t)= P1(x, t)+ p0 + ρag(H2 + l)+1ρgh, (2.9)
p2(x, t) ≡ p(x,−l, t)= P2(x, t)+ p0 + ρagH2, (2.10)

respectively, where P1(x, t) and P2(x, t) are the unknown background pressure
distributions, or non-gravitational contributions to pressure, arising from confined
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horizontal flow (Pegler et al. 2014). Note that, while p1 depends on the hydrostatic
head h in the lower layer, there is no analogous dependence of p2 on the accumulation
of fluid in the upper layer because a gravity current only perturbs hydrostatic pressure
in its interior. Using (2.9) and (2.10) to evaluate p1 and p2 in (2.8), we obtain

QF = bλF

l
[P1 − P2 +1ρg(h+ l)] at x= xF. (2.11)

Importantly, (2.11) implies that leakage is driven both by the difference in background
pressure (P1−P2) between the two layers and by the hydrostatic head of the buoyant
current below the fracture. The former is a new contribution to leakage compared to
unconfined aquifers, where only the latter contributes to driving leakage.

By combining Darcy’s law with the constraint on the total thickness of the flow, the
background pressure along the lower layer P1 can be shown to satisfy

−[λh+ λa(H − h)]∂P1

∂x
+1ρgλa(H − h)

∂h
∂x
=Q(t) (2.12)

(Pegler et al. 2014). A similar expression could be written down for the background
pressure P2 in the upper layer. Rearranging (2.12) for ∂P1/∂x and then integrating over
[xF,L] subject to the specified downstream background pressure P1(L, t)= 0 consistent
with (2.1), we determine the ‘back-pressure’ below the fracture as

P1(xF, t) = (xL − xF)

λH
Q+ + (L− xU)

λaH
Q+

+
∫ xU

xL

Q+ −1ρgλa(H − h)
∂h
∂x

λh+ λa(H − h)
dx. (2.13)

The respective terms in (2.13) represent the background pressure driving fluid between:
the fracture and the lower contact line (xF < x < xL); the current and the end of
the aquifer (xU < x < L); and the fluid fronts (xL < x < xU). Note that (2.13) is
applicable in situations where the current spans the depth of the medium below the
fracture (h(xF, t)=H). If, instead, the interface lies between the fracture and the lower
boundary (h(xF, t)<H), then an expression similar to (2.13) applies but with the first
term absent and xF replacing xL in the lower limit of the integral.

We simplify (2.13) in situations motivated by CCS as follows. If the aquifer is
long compared to the current, then the contribution to the back-pressure (2.13) due
to ambient displacement LQ+/λaH is significantly larger than the other contributions.
More formally, this contribution and its analogue in the upper layer are dominant if
L�MxU, for which

P1(xF, t)≈ LQ+
λaH

, P2(xF, t)≈ LQF

λaH2
. (2.14a,b)

In other words, the background pressures at the bottom and top of the fracture, P1
and P2, can each be approximated as originating from the pressure build-up associated
with driving ambient fluid along the lower and upper layers, respectively.

Using (2.14a,b) to evaluate P1 and P2 in (2.11), we obtain

lQF

bλF
= LQ+

Hλa
− LQF

H2λa
+1ρg(h+ l). (2.15)
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The first term on the right-hand side represents leakage driven by the pressure
build-up arising from the displacement of ambient fluid along the lower layer. The
second represents the resistance to leakage due to the viscous stresses associated
with mobilizing ambient fluid along the upper layer. The last term represents leakage
driven by the combination of the hydrostatic head and gravity along the fracture.
Using (2.3) to substitute for Q+ in favour of QF in (2.15), we obtain

(1+ Γ + ΓF)QF =Q0 + 1ρgλaH2

L

[
h(xF, t)

H
+ δ
]
, (2.16)

where
Γ ≡ H

H2
, ΓF ≡ lH2λa

bLλF
and δ ≡ l

H
. (2.17a–c)

The ratio of aquifer thicknesses Γ measures the relative resistance to displacing
ambient fluid along the lower layer compared to the upper layer. At Sleipner, for
example, the sandstone layers have comparable thicknesses (Boait et al. 2012)
and hence Γ = O(1). In situations where the fracture connects the aquifer to the
atmosphere or ocean, H2 � H and Γ ≈ 0. The parameter δ is the ratio of the
length of the aquifer to the thickness of the lower layer and measures the relative
contribution to the leakage rate due to gravity acting along the fracture compared
to the maximum that can be driven by the hydrostatic head below it. The depths
of sandstone layers H = O(10 m) are generally greater than those of the interstitial
layers l = O(1 m) at Sleipner, for which δ = O(10−1). The parameter ΓF measures
the relative resistance to leakage due to the back-pressure associated with mobilizing
ambient fluid along the upper layer compared to the back-pressure generated by
viscous stresses acting inside the fracture itself. To estimate an upper bound for
ΓF, we use the characteristically small fracture aperture b = O(10−4 m) (Singhal &
Gupta 2010). Treating the flow as a Poiseuille flow, we estimate the permeability of
the fracture as kF = b2/12 ≈ O(10−9 m2). Combining this with the typical viscosity
ratio M = µ/µa ≈ 0.1, aquifer length L = O(10 km) and permeability k = 10−12 m2

(Boait et al. 2012), we obtain ΓF = O(10−3). Larger apertures b and aquifer lengths
L would imply yet smaller values of ΓF. Prior studies of unconfined aquifers have
assumed that the resistance to leakage stems purely from the viscous stresses within
the fracture. Our estimate of ΓF indicates that the back-pressure due to displacing
ambient fluid along the upper layer introduces a dynamic resistance to leakage that
has the potential to be many orders of magnitude more significant.

In obtaining (2.16), we supposed that the fluid leaking through the fracture is
composed purely of injected fluid. As we detail later, it is possible for either
purely ambient fluid or a combination of both injected and ambient fluids to leak
simultaneously. When only ambient fluid leaks, for example, the relevant mobility
λF appearing in (2.15) should be replaced by M−1λF. Apart from the special case
M = 1, ΓF is dependent on the relative contributions to leakage due to the ambient
and injected fluids, so ΓF = ΓF(qF/QF). Here, we avoid a detailed consideration of
the effective fracture mobility when combined leakage occurs by neglecting ΓF in
(2.16). The lower-bound order-of-magnitude estimate of ΓF = O(10−3) indicates that
these neglected details do not play a significant role.

Another change to (2.16) that would apply when purely ambient fluid leaks is to
remove any contribution to leakage due to buoyant fluid in the fracture, represented
by δ. A model that accounts for this contribution could be achieved by replacing δ
with the linear function δqF/QF, for example. However, in view of the small estimate
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of δ given above and to simplify our discussion of the transient leakage of ambient
fluid, we neglect this dependence (δ� 1). Were it instead retained, its effect on the
long-term predictions of our model can be straightforwardly incorporated by absorbing
δ into the constant QB appearing in the simplified leakage law (2.18) below.

With the simplifications described above (ΓF, δ ≈ 0), (2.16) reduces to

QF =QB +QGh(xF, t)/H, (2.18)

where

QB ≡ Q0

1+ Γ and QG ≡ 1ρgλaH2

(1+ Γ )L . (2.19a,b)

The constant QB represents leakage driven by the back-pressure. It is a lower bound
for the total rate of leakage (QF >QB). The quantity QG defined by (2.19b) represents
the contribution to leakage due to the largest gravitational pressure head that can fit
below the fracture (occurring when h(xF, t) = H). As implied by (2.18), the rate of
leakage due to gravity is generally given by the product of QG and h(xF, t)/H, the
proportion of the layer immediately below the fracture filled by the current. Given
that 0< h<H, (2.18) implies that QF always lies in the range

QB 6 QF 6 QB +QG (≡Qmax). (2.20)

The inequalities in (2.20) illustrate how confinement introduces two opposing effects.
In the first, background pressure enhances leakage by contributing to the lower bound
QB. In the second, the constraint on the hydrostatic head (h6H) restricts leakage by
implying a maximum possible rate of leakage Qmax. The relative significance between
these two effects in the geological context will be considered in § 4.

The leakage law (2.18) describes the total leakage rate QF = qF + qA, to which
both the injected and ambient fluids can contribute. We determine their individual
contributions by imposing

qF =
{

q− if q− <QF (kinematic leakage),
QF if q− >QF (dynamic leakage).

(2.21)

Condition (2.21) states that if q−<QF then all the injected fluid reaching the fracture
leaks through it. This follows from the fact that accumulation of the current cannot
occur before the rate at which buoyant fluid reaches the fracture exceeds the rate at
which it leaks. Once q− > QF, (2.21) states that only injected fluid leaks (qA = 0).
This is consistent with the requirement that, once q+ = q− − QF > 0, the current
overshoots the fracture to form a barrier that precludes any ambient fluid from leaking.
In summary, the total rate of leakage QF is always controlled dynamically by the
leakage law (2.18). However, the leakage of the injected fluid qF can be controlled
either kinematically by the rate at which the current flows towards the fracture or
dynamically by the balances underlying (2.18).

3. Theoretical analysis
Equations (2.2)–(2.7) and (2.18) can be non-dimensionalized by defining

(x, xU, xL)≡L (x̂, XU, XL), t≡T t̂, h≡Hĥ, (q,Q)≡Q0(q̂, Q̂), (3.1a–d)

where
L ≡UH2/Q0 and T ≡ φUH3/Q2

0 (3.2a,b)
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are the same intrinsic scales for two-dimensional flows in confined porous media as
obtained by Pegler et al. (2014). On dropping hats, (2.2) and (2.3) become

∂h
∂t
+ ∂

∂x

h
{

Q(x, t)−M(1− h)
∂h
∂x

}
h+M(1− h)

= 0, (3.3)

Q(x, t)=
{

1 if x< XF,

1−QF(t) if x> XF.
(3.4)

The source condition (2.4) becomes

−h
∂h
∂x
= 1 at x= 0 if h(0, t) < 1, (3.5)

and the contact-line conditions (2.5) and (2.6) become

h= 0, ẊU =M−1Q− ∂h
∂x

at x= XU, (3.6a,b)

h= 1, ẊL =MQ+M
∂h
∂x

at x= XL if h(0, t)= 1. (3.7a,b)

The continuity conditions (2.7a,b) become

h− = h+, −h−

[
∂h−
∂x
− ∂h+
∂x

]
=QF at x= XF. (3.8a,b)

The leakage law (2.15) becomes

QF(t)= B+D−1(1− B) h at x= XF, (3.9)

and the condition describing the rate of leakage of the current (2.21) becomes

qF =
{

q− if q− <QF,

QF if q− >QF.
(3.10)

The non-dimensionalized system depends on four dimensionless parameters

M ≡ λa

λ
, B≡ 1

1+ Γ , D≡ ΓML
L

, XF ≡ xF

L
, (3.11a–d)

representing the mobility ratio, the dimensionless rate of leakage due to the injection
pressure, the dimensionless hydrostatic head of the current at which the injection rate
equals the leakage rate (see (3.15) below), and the dimensionless fracture position.

The dimensionless form of the inequality (2.20) is

B<QF <Qmax ≡ B+D−1(1− B). (3.12)

The parameter B is the dimensionless form of the minimum rate of total leakage.
Equation (3.11b) implies that 0 6 B 6 1 and hence that the leakage driven purely by
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FIGURE 2. (Colour online) The evolution of the interface height h(x, t) for hydrostatic
parameters (a) D = 0.5 and (b) D = 2, each with B = 0.5, M = 0.2 and XF = 2 plotted
at times t = 0.25, 1, 4, 16, 64 and 256. The plots illustrate the markedly different
long-term flow regimes that arise between cases of (a) D 6 1 and (b) D > 1. In (a),
the region upstream of the fracture approaches the steady profile (3.17b) (dotted) and
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(thick, dashed). In (b), the current spans the depth of the medium below the fracture and
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crosses. The long-term asymptotic positions of the two contact lines (3.32b,c) when D> 1
are shown as lines of plus signs in (b).
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the back-pressure cannot exceed the injection rate. The special case B= 0 describes
situations where leakage depends only on accumulation (QF = h(xF, t)/D). The
case B= 1 corresponds to situations when all fluid flowing towards the fracture leaks
through it (QF=1), in accord with (3.9). This scenario would arise in physical settings
where there is a direct opening to the atmosphere or ocean that affords effectively
no resistance to leakage (Γ ≈ 0). The hydrostatic parameter D appearing in (3.9)
controls the rate of leakage due to gravity. Smaller D implies greater gravity-driven
leakage for a given hydrostatic head h(xF, t). The limit D→∞ describes situations
where the leakage is driven purely by the injection pressure (QF = B). Cases of
M � 1 describe situations where the injected fluid is much less viscous than the
ambient fluid, as is relevant to CCS. The joint limit D,XF→ 0 implies a thin current
relative to the medium (h→ 0) for which the model reduces asymptotically to that
which describes flow in an unconfined medium (Neufeld et al. 2009). As we detail
in § 4, M=O(10−1), B=O(1), D=O(10) and XF =O(1) are estimates motivated by
sequestration at Sleipner.

3.1. The transient flow
Two illustrative numerical solutions of (3.3)–(3.10) are shown in figure 2(a,b). Here,
we have plotted the interface h(x, t) at times t = 0.25, 1, 4, 16, 64 and 256 for
D=0.5 and 2, respectively, both with B=0.5, M=0.2 and XF=2. The solutions were
obtained using a partially implicit two-step finite-difference scheme of second order
and variable time step in which the time-dependent numerical domains of the current
upstream [0, max(xU, xF)] and downstream [xF, xN] were each mapped linearly onto
fixed domains. Steep gradients in the interface h immediately upstream of the fracture
(see figure 4b and (3.13) below) present a numerical difficulty in the evaluation of the
flux of the current towards the fracture q− needed in (3.8b) and (3.10). Noting that
q remains regular, despite the steep gradients in h, we addressed this difficulty by
approximating q− as a linear extrapolation of q towards the fracture.

The solutions illustrate two different flow regimes. When D=0.5, the flow upstream
of the fracture approaches a steady state (see figure 2a). At all times, the interface
below the fracture remains in the interior of the medium (h(XF, t) < 1) and the
lower contact line converges towards a steady position XL(t)→ 1.625 < XF. As this
convergence occurs, the flow downstream of the fracture continues to propagate
time-dependently. When D = 2, the current instead grows to fill the entire depth of
the medium below the fracture, with h(XF, t)= 1 occurring at t≈ 35 (see figure 2b).
At that time, the lower contact line overshoots the fracture. It then continues to
propagate downstream indefinitely (XL(t)→∞), as illustrated in figure 3(b).

In the initial stages, before the current reaches the fracture (XU <XF), the evolution
is equivalent to that of a current injected into a medium with no fracture (Pegler
et al. 2014). In that analysis, we showed that the early-time propagation in all such
examples is described by XU∼ 1.48t2/3, the self-similar propagation that also describes
a current fed at a constant flux into an unconfined two-dimensional medium (Huppert
& Woods 1995). This asymptote, shown by the dashed lines in figure 3(a,b), matches
our numerical solutions at early times.

In figure 4(a–c), we have illustrated three transitional stages that occur as the
current first interacts with the fracture. Before the current reaches the fracture
(figure 4a), only ambient fluid leaks, qA = QF = B, in accord with (3.9) and (3.10).
This initial equivalence is illustrated in figure 4(d), where the evolution QF(t) is
plotted as the red curve, and the injected and ambient contributions to QF, denoted
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FIGURE 4. The interface height h(x, t) at times (a) t= 0.3, (b) t= 0.9 and (c) t= 1.5 for
B= 0.5, D= 0.5, M= 0.2 and XF = 2. The sequence has three stages: (a) the current lies
entirely upstream of the fracture; (b) the front remains temporarily pinned at the fracture;
and (c) the current overshoots the fracture. The asymptote (3.13) is shown as a blue curve
in (b). (d) The leakage rate of injected fluid qF (thick, dashed), ambient fluid qA (thin,
dashed), the total leakage of both fluids QF = qF + qA (red, solid) and the flux of the
current towards it q− (blue, solid), as functions of time t. The plot shows the transition
from purely ambient leakage for t . 0.38, to combined leakage for 0.38 . t . 0.97 and
to zero ambient leakage for t & 0.97. Propagation downstream of the fracture (q+ = q−−
QF > 0) occurs once q−>B. Subsequent enhancement of the total leakage flux QF occurs
due to growth of the hydrostatic head below the fracture.

by qF(t) and qA(t), are shown by the thicker and thinner dashed black curves,
respectively.

Once the current reaches the fracture at t≈ 0.38, the flux of the current towards it,
q−, shown by the blue curve, begins to increase from zero. Initially, the total rate of
leakage QF exceeds the rate at which the current flows towards the fracture (q−<QF).
The leakage of injected fluid is therefore initially controlled kinematically in accord
with (2.21b). The equivalence qF=q− is illustrated in figure 4(d). During this transient
stage, shown in figure 4(b), the front of the current remains temporarily pinned at
the fracture with a vanishing thickness (h(XF, t)= 0) but a finite flux (q−(t) > 0). By
considering the form of the flux of the current (2.2b) in the asymptotic limit h→ 0
with q= q− held finite, we obtain the leading shape of the current

h∼ [2q−(t)(XF − x)]1/2 (x→ X−F ). (3.13)

This asymptote, which describes a singular gradient at the fracture, is shown by the
blue curve in figure 4(b).
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FIGURE 5. (Colour online) (a) The evolution of the rate of leakage of the current qF for a
selection of hydrostatic parameters D= 0, 0.125, 0.5, 1, 2 and 8, all with the illustrative
background leakage parameter B = 0.5. When D 6 1, the rate asymptotes towards the
injection flux (qF ∼ 1), shown by a horizontal dashed line. When D > 1, qF attains the
value (3.33b) less than unity. The time at which the current overshoots the fracture is
shown as a filled circle. Times when the current accumulates to fill the depth of the
medium below the fracture are shown as crosses for D = 2 and 8. (b) The efficiency
of storage E(t), defined by (3.14), showing its approach towards the asymptote (3.19c)
if D 6 1 and (3.31) if D> 1.

At t ≈ 0.97, the flux of the current towards the fracture first exceeds the total
leakage rate (q− > QF), causing the leakage of injected fluid qF to switch to being
controlled dynamically by the total leakage rate (3.10b). The residual q+ = q− − qF
then begins to feed flow downstream of the fracture (XU > XF), as illustrated in
figure 4(c).

With D= 0.5, the position of the interface below the fracture approaches the long-
term asymptotic height h ∼ 0.5 in the vertical interior of the medium. The plot in
figure 3(a) indicates that the position of the upper contact line is XU = O(t1/2) for
t→∞. Furthermore, figure 5(a) indicates that the rate of leakage of the current qF
converges towards the rate of injection (qF ∼ 1). Therefore, almost all fluid injected
into the medium leaks in the long term. The efficiency of storage, defined as

E(t)≡ 1− qF(t) (3.14)

(cf. Neufeld et al. 2011), provides an instantaneous measure of the rate at which
buoyant fluid is retained in the lower layer normalized by its rate of injection.
The plot of E(t) in figure 5(b) shows that E = 1 before the current reaches the
fracture, consistent with no leakage. Once leakage begins, E decreases. At late times,
E→ 0. Apart from a minor residual, almost all of the fluid injected into the medium
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therefore leaks. This mode of decay is qualitatively identical to that determined by
Neufeld et al. (2009) in the context of unconfined aquifers. Figure 5(b) shows that
E similarly decays for other values of D 6 1. The asymptotes describing this decay
will form the focus of § 3.2.

When D = 2, the current fills the entire depth of the medium below the fracture.
Instead of approaching a steady position, as it does for D 6 1, the lower contact
line XL extends ahead of the fracture (XL > XF) and continues to propagate forwards
indefinitely. Figure 3(b) indicates that both contact lines eventually grow in proportion
with time (XU, XL = O(t)) but with differing constants of proportionality. When
the current fills the depth of the aquifer (h(XF, t) = 1), the leakage rate of the
current qF attains the maximum qF = Qmax < 1 in (3.12). The times at which this
occurs are shown as crosses in figure 5(a,b). Importantly, the efficiency of storage
E→ 1−Qmax does not decay. This differs from the conclusions drawn from studies of
unconfined aquifers, and the case D= 0.5 described above, and implies the potential
for substantially greater long-term storage in confined aquifers.

In summary, the solutions with D = 0.5 and D = 2 illustrate two regimes of
flow distinguished by whether the interface approaches a steady position in the
vertical interior of the medium or accumulates to fill its full depth. We determine the
parameter settings under which the former regime arises by considering the conditions
for which convergence towards a steady interface upstream of the fracture can occur.
With steady flow (∂h/∂t = 0), the continuity equation (2.2a) implies that q = 1 is
uniform in 0 < x < XF. For this steady state to be realized, the leakage rate (2.18)
must balance the injection rate, so

q=QF = B+D−1(1− B) h∼ 1 or h∼D. (3.15a,b)

From (3.15b), we see that D can be interpreted as the long-term steady thickness of
the current below the fracture. In order for the asymptotic approach of (3.15a,b) to be
possible, it is necessary that D6 1. Otherwise, the interface would penetrate the lower
boundary (h> 1). An equivalent interpretation is that D 6 1 corresponds to when the
leakage flux can grow to match the injection flux. This is confirmed by noting that

Qmax ≡ B+D−1(1− B)> 1 ‘implies that’ D 6 1 (3.16a,b)

on rearrangement of (3.16a). In conclusion, convergence towards steady flow upstream
of the fracture is critically dependent on whether D6 1 or D> 1. The long-term flow
in the former cases will be analysed in § 3.2. If D> 1 then the rate of leakage can
never match the rate of injection (Qmax < 1) and, as exemplified by our solution with
D = 2, an approach of the interface towards a steady state upstream of the fracture
cannot occur. The long-term dynamics for D> 1 will be considered in § 3.3.

3.2. Long-term flow for D 6 1
When D61, we calculate the long-term asymptotic steady state in the upstream region
0< x< XF as follows. The steady-state form of (3.3) implies that

h
[

1−M(1− h)
∂h
∂x

]
h+M(1− h)

= 1 and hence h= [D2 + 2(XF − x)]1/2 (3.17a,b)

on rearrangement for ∂h/∂x and integration subject to (3.15b). The convergence
towards the steady-state profile of (3.17b) is confirmed in figure 2(a), where (3.17b)
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FIGURE 6. (Colour online) The numerically determined solutions of the similarity
equations (3.20)–(3.22) (all solid) describing the long-term evolution of the interface h
in the region x > XF when D 6 1, shown for D = 0.1, 0.25, 0.5, 0.75 and 1, when
(a) M = 0.2, (b) M = 1 and (c) M = 5. The numerical solutions are compared with the
asymptotic solution (3.23) (dashed) that applies when D�M.

is plotted as a dotted curve. By setting h = 1 in (3.17b), we obtain the steady-state
position of the lower contact line XU ∼ XF − (1−D2)/2 shown by the line of crosses
in figure 3(a).

By combining (3.15a,b) and (3.8a,b), we obtain the asymptotic conditions

h+ =D, −h+
∂h+
∂x
= q+ at x= XF. (3.18a,b)

Inspection of (3.3), (3.8b), (3.7a,b) and (3.18a,b) reveals that there is no horizontal
length scale associated with the flow described by these equations. This indicates that
the asymptotic evolution of the flow downstream of the fracture can be described by
a similarity solution. Motivated by the scalings between terms in these equations, we
formulate the similarity variables

η= t−1/2(x− XF), h= h(η), q+ =Q t−1/2, (3.19a–c)

where Q = Q(M, D) is the unknown coefficient of flux. In terms of (3.19a–c),
equations (3.3), (3.18a,b) and (3.6a,b) transform to the ordinary differential system

−ηh′

2
+
{

h[Q−M(1− h)h′]
h+M(1− h)

}′
= 0, (3.20)

h(0)=D, h′(0)=−Q/D, (3.21a,b)

h(ηU)= 0, h′(ηU)=Q/M − ηU/2, (3.22a,b)

where a prime denotes d/dη. We solve (3.20)–(3.22) using a fourth-order Runge–Kutta
scheme in which Q is treated as a shooting parameter.

A suite of solutions for M = 0.2, 1 and 5 are shown in figure 6(a–c), each for
a selection of D = 0.1, 0.25, 0.5, 0.75 and 1. The shapes of the solutions are
qualitatively similar to those of the similarity solutions obtained in the context of a
constant-flux injection into a medium with no fracture (Pegler et al. 2014). Likewise,
these have a long concave shape that terminates at a relatively sharp front if M < 1
and an approximately linear shape if M > 1. The specific case M = D = 1, shown
in figure 6(b), is described exactly by the linear solution h= (ηU − η)/2 with extent
ηU = 2 and coefficient of flux Q= 1, which we used to validate our numerical solver.
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FIGURE 7. (Colour online) (a) The prefactor Q(M, D) to the long-term flux of storage
q+∼Qt−1/2, defined by (3.19c), and (b) the frontal similarity coordinate ηU(M,D) plotted
against the mobility ratio M for dimensionless hydrostatic parameters D= 0.25, 0.5, 0.75
and 1. The asymptotes (3.30a,b) that describe Q and ηU in the limit M→ 0 are shown
as dashed curves.

As indicated in figure 7(a,b), both the coefficient of flux Q and the frontal position
ηU decrease with M and tend to infinity as M→ 0. Analytical descriptions of these
singular asymptotes, which correspond to situations relevant to CCS, will be developed
later in this section.

If the dimensionless thickness of the current at the fracture is much less than the
mobility ratio (D�M), then the flow is effectively unconfined (see Pegler et al. 2014).
Equations (3.20)–(3.22) then simplify to those considered by Neufeld et al. (2009). By
appropriately rescaling h and ηU by D, we obtain the scaled form of their universal
solution to the unconfined equations as

h∼Df (D−1/2η), ηU ∼ 1.62 D1/2, Q∼ 0.44 D3/2, (3.23a–c)

for D�M, where f is a numerically determined function describing the shape of the
current. The profile of (3.23a) is compared against our numerical solutions in figure 6,
where it is plotted as a dashed curve for D = 0.1 and 0.25. The approximation of
an unconfined aquifer is better for larger M, which is consistent with D�M being
more strongly satisfied in those cases. When M � 1, corresponding to a relatively
small ambient viscosity, D � M is satisfied for all values D 6 1 relevant to the
asymptotic regime considered here and (3.23) provides an excellent approximation
in these cases (see the comparison when D = 1 and M = 5 in figure 6c). Note that,
although (3.23) describes the long-term flow in the unconfined limit, this does not
imply that confinement plays no role in leakage if D � M. Specifically, while the
gradient in background pressure then has a negligible effect on horizontal flow, the
leakage due to background pressure, controlled by B, can still contribute significantly
in (3.4).

As noted above, both Q and ηU are singular as M→ 0. In analysing this limit, we
begin by supposing that the gradient h′=O(1) remains regular as M→ 0. Under this
assumption, the second terms in both the numerator of (3.20) and in (3.22b), which
represent gravitational spreading, are each O(M) and negligible compared to the other
terms. With these contributions neglected, (3.20) and (3.22b) simplify to[

−η
2
+ M
[h+M(1− h)]2

]
h′ = 0, h′(ηU)=−Q

M
. (3.24a,b)
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FIGURE 8. (Colour online) (a) The profile of the interface h(η) of the similarity solution
to (3.20)–(3.22) for the small mobility ratio M = 0.05 and D = 0.9 (grey; blue online).
The inner solution governed by (3.28) and (3.29) (black, solid) and the outer solution
(3.25) (black, dashed) together comprise the boundary-layer structure that emerges in
the asymptotic limit M→ 0. (b) The prefactor R(D) to the coefficient of flux (3.30a)
determined as part of the solution to the inner equations (3.28) and (3.29), and on which
the outer solution (3.25) depends, as a function of D. The asymptotic approximation (A 3)
that describes R in the limit D→ 0 is shown as a dashed curve.

Since h′ > 0, the factor multiplying h′ in (3.24a) must be identically zero and hence

h= h0(η)≡ −M + (2QM/η)1/2

1−M
(3.25)

on rearrangement. The flow described by (3.25) is driven purely by the injection
pressure. The profile is qualitatively similar to the injection-driven asymptotic solution
describing late-time flow due to a constant-flux injection (see Pegler et al. (2014)
and (3.32a) below). Like that case, (3.25) is more concave for smaller M, and the
slope near the fracture is O(M−3) larger than that downstream. Combining (3.24b)
and (3.25), we obtain

ηU ∼ 2Q/M, (3.26)

stating that ηU is proportional to the flux coefficient Q in the limit M → 0. This
is consistent with a larger retained flux producing a longer current. The inverse
dependence of ηU on M reflects the tendency for background pressure to drive the
current faster when it is less viscous relative to the ambient (Pegler et al. 2014).

The interface described by (3.25) intersects the lower boundary (h0 = 1) at the
positive coordinate η = 2QM > 0. Therefore, h0 cannot provide a uniformly valid
approximation to h, as indicated by the mismatch between them in figure 8(a).
Furthermore, the conditions at the fracture (3.20a,b) cannot be imposed on h0. This
reflects the fact that, in obtaining (3.25), we neglected the highest-order derivative in
(3.20). By finding when (3.25) predicts the balance of the two terms in the numerator
of (3.20), we identify a boundary-layer structure in which (3.25) applies in the outer
region η � M1/2 and a different leading-order solution applies in the inner region
η� M1/2. Note that the important coefficient Q on which the outer solution (3.25)
depends is still unknown, indicating that its determination depends on gravitational
forces in the inner region neglected in obtaining (3.25).

In order to obtain the leading-order equations describing the inner solution, we
recast (3.20)–(3.22) in terms of the inner variables

ζ ≡M−1/2η, R ≡M1/2Q, (3.27a,b)
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where ζ and R are of order unity in the boundary layer (η� M1/2). The form of
(3.27b) is motivated by a scaling between the two terms in the numerator of (3.20).
On recasting (3.20) and (3.21) in terms of (3.27a,b) and neglecting higher-order terms,
we obtain the simplified equations describing the flow in the inner region given by

− 1
2ζh′ +Rh−2 + [(1− h)h′]′ = 0, h(0)=D, h′(0)=−R/D. (3.28a–c)

The inner and outer solutions overlap in the intermediate region M1/2 � η � 1.
Therefore, we can close (3.28a–c) by imposing the matching condition

h∼ (2R/ζ )1/2 as ζ→∞, (3.29)

obtained by recasting the outer solution (3.25) in terms of ζ and neglecting the higher-
order terms in the limit ζ → 0 (van Dyke’s rule; see Bender & Orszag 1999). We
solve (3.28) and (3.29) numerically using an adapted form of the scheme used earlier
to solve (3.20)–(3.22). For the illustrative case M= 0.05 and D= 5, the inner solution
(thin, black) is seen to approximate our full solution to (3.20)–(3.22) (blue) close to
the fracture (η . 0.5) in figure 6(a). Downstream (η & 2), the inner solution departs
from the full solution, which instead approaches the outer solution (3.25) (dashed).
Having determined the function R(D) by solving (3.28) and (3.29) over a range of D,
we obtain

Q∼R(D)M−1/2 and ηU ∼ 2R(D)M−3/2, (3.30a,b)

where (3.30a) follows from (3.27b), and (3.30b) follows from the combination
of (3.26) and (3.30a). As illustrated by the dashed curves in figure 7(a,b), these
asymptotes approximate our numerically determined values of Q and ηU in the limit
M → 0. The increase of R(D) with D illustrated in figure 8(b) is consistent with
the dependence of Q and ηU on D shown earlier in figure 7(a,b). Analysis of the
asymptotic limit of a small hydrostatic parameter, D → 0, yields the asymptotic
approximation R ∼ 0.21 D2 (see the appendix), shown by the dashed curve in
figure 8(b). Combining this asymptote for R with (3.30a,b), Q and ηU are found to
increase quadratically with D. In summary, storage is more efficient when D is larger
and when the ambient fluid is more viscous relative to the current.

3.3. Long-term flow for D> 1
When D > 1 the steady-state thickness at the fracture (3.15b) cannot fit within the
lower layer, so (3.15) cannot apply. Instead, the current fills the depth of the lower
layer (h(XF, t)= 1) and the lower contact line overshoots the fracture (XL >XF). Once
that occurs, leakage is fixed at the maximum rate Qmax in (3.12). Therefore,

qF =Qmax ≡ B+D−1(1− B) and E= q+ = 1−Qmax. (3.31a,b)

The approach towards the long-term constant efficiency (3.31b) is illustrated by the
examples with D> 1 shown in figure 5(b).

Once the storage efficiency q+ becomes fixed at the constant value (3.31b), the
conditions on flow in front of the fracture (x > XF) become equivalent to those
associated with a source of constant strength q+ ≡ 1 − Qmax, as analysed by Pegler
et al. (2014). Given the asymptotic solutions described in that study, we can identify
the long-term asymptotic interface and contact lines downstream of the fracture as

h∼ −M + (q+Mt/x)1/2

1−M
, XU ∼M−1q+t, XL ∼Mq+t. (3.32a–c)
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FIGURE 9. The long-term asymptotic rate of leakage qF as a function of the dimensionless
parameter D for a selection of B= 0.01, 0.1, 0.5 and 0.9. The plot illustrates how qF is
unitary for all values of D61 in accord with (2.21a), for which effectively all the injected
fluid leaks through the fracture at large times, and decays with D for D> 1 in accord with
(2.21b), for which only a fraction of the fluid injected into the medium leaks through the
fracture. The special case B= 0 for which qF ∼D−1, corresponding to purely hydrostatic
leakage, is shown by the thick curve.

This applies when M 6 1 (see Pegler et al. (2014) for the different late-time regime
that applies when M> 1). The asymptotic height (3.32a) is plotted as a dashed curve
in figure 2(b) for D = 2, where it is seen to approximate the numerical solution.
The long-term positions of the contact lines (3.32b,c) show good agreement with our
numerical solution in figure 3(b). In the joint limit B→ 0 and D→∞, there is no
leakage (q+→ 1) and the asymptote (3.32) recovers that which applies when there is
no leakage.

In summary, the long-term rates of leakage given by (3.15a) or (3.31) are

qF ∼
{

1 if D 6 1,
B+D−1(1− B) < 1 if D> 1.

(3.33a,b)

In general then, the asymptotic value of qF depends only on B and D. The plot of qF
in figure 9 illustrates that, when D6 1, absolute leakage occurs (qF→ 1), independent
of B. When D> 1, qF tends to the value (3.33b), which is less than unity, and only
a fraction of the fluid injected ultimately leaks. The value of qF increases with B
because these cases imply greater background leakage. Purely hydrostatic leakage
(B = 0) (thick curve) provides the minimum leakage rate for a given hydrostatic
parameter D.

3.4. Transient leakage
While the long-term rate of leakage (3.33a,b) depends on B and D alone, the transient
evolution of the leakage rate of injected fluid qF(t) towards its asymptotic value is
dependent on all the parameters M, B, D and XF. To indicate the influence of B, we
have plotted qF(t) in figure 10(a) for a selection of B= 0.1, 0.5 and 0.9, with M= 0.2,
D=2 and XF=2 all held fixed. The main effect of B is to alter the time when the flux
of the current towards the fracture first exceeds the minimum rate of leakage (q−=B),
indicated by a dot for each solution. Before this time, the evolution follows the same
curve given by the special solution in which all fluid flowing towards the fracture
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FIGURE 10. (Colour online) The evolution of the dimensionless rate of leakage qF for
(a) a selection of B= 0.1, 0.5 and 0.9 with D= 2, M = 0.2 and XF = 2 held fixed, and
(b) a selection of M= 0.2, 1 and 5 with B= 0.5, D= 2 and XF = 2 held fixed. In (b), the
minimum rate of leakage qF =B at which the current begins to propagate into the region
x> XF is shown by a horizontal grey (red online) line. In both panels, the dimensionless
flux of injection q= 1 is shown by a horizontal dashed line.

leaks through it unconditionally (B= 1). While qF <B, the flow is independent of both
leakage parameters (B and D). Only once q− > B, and leakage becomes controlled
dynamically by the leakage law (2.18), do the solutions with different B begin to
realize different asymptotic rates of leakage in accord with (3.33b). The time when
this occurs is smaller when B is larger because in those cases the current propagates
downstream of the fracture earlier and its vertical accumulation below the fracture is
more delayed.

To indicate the effect of the mobility ratio M on the transient flow, we have plotted
the variation of the evolution qF(t) with B= 0.5 and D= 2 held fixed for a selection
of M= 0.2, 1 and 5 in figure 10(b). As implied by (3.33a,b), the leading-order long-
term leakage is independent of M, so all the solutions shown in figure 10(b) have the
same late-time value. Since increasing M implies a slower current (Pegler et al. 2014),
larger values of M delay the initiation of leakage. However, the flux of leakage for
M > 0.2 soon overtakes the example with M = 0.2 because those cases result in a
longer and thinner current that takes more time to accumulate below the fracture.

4. Geophysical discussion
We form illustrative estimates of the four parameters given by (3.11a–d) motivated

by the ongoing CCS operation at the Sleipner field (Bickle et al. 2007). The formation
at Sleipner is divided into a number of stacked, roughly horizontal sandstone layers
of typical thicknesses (H or H2) varying between 5 and 20 m, separated by interstitial
layers of mudstone of typical thicknesses between 1 and 5 m (Boait et al. 2012).
Seismic data have shown that the injected CO2 has migrated vertically through a series
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of porous layers. The interstitial layers therefore contain fractures or localized regions
of leakage.

The ratios between the depths of any two stacked layers can be characterized as
Γ ≡H/H2 ≈ 0.25–4, for which the leakage parameter (3.11b) lies in the broad range
B≈ 0.2–0.8. The dynamic viscosity of CO2 and ambient water can be characterized by
µ≈ 10−4 Pa s and µa ≈ 10−3 Pa s, respectively, and hence their ratio M ≈ 0.1. The
density difference is roughly 1ρ ≈ 300 kg m−3. The volumetric rate of injection is
2W Q0≈ 0.04 m3 s−1 (equivalent to 1 Mt yr−1), where we have set W ≈ 1 km as the
characteristic extent of the CO2 current (Boait et al. 2012), giving the flux per unit
width Q0≈ 5× 10−5 m2 s−1. With these estimates, the intrinsic length and time scales
(3.2a,b) are L ≈ 1 km and T ≈ 6 years. The hydrostatic parameter (3.11c) is then
found to be D=O(10). Background pressure, which was neglected in previous studies
considering unconfined media, is thus indicated to be significant in driving leakage
through the formation (QG =O(10−1QB)). This is because the pressure introduced by
the injection is much greater than the maximum possible gravitational pressure head.
For less permeable aquifers, like that at In Salah (Vasco, Ferretti & Novali 2008), D
would be yet larger.

Using the parameter estimates given above, we perform an illustrative calculation of
our model predictions. We assume that the depth of the sandstone layer into which
fluid is injected is comparable to that into which the current leaks, so H = H2 and
B= 0.5. We also set M = 0.1 and D= 10. The long-term asymptotic rate of leakage
is then predicted by (3.33b) to be qF ∼ 0.55Q0. Note that 90 % of this contribution
to leakage is driven by the background pressure. The remaining 10 % is due to the
gravitational hydrostatic head.

We use an illustrative fracture position xF=2 km, for which the dimensionless form
(3.11d) is given by XF ≡ xF/L = 2. In figure 11(a,b), we have plotted the evolution
of the depth of the current below the fracture normalized by the depth of the aquifer,
h/H, and the rate of leakage of the current normalized by its rate of injection,
qF/Q0. The time taken for the current to reach the fracture is just t ≈ 1.2 years.
The front of the current then remains pinned at the fracture for a duration of three
years before overshooting it. When that occurs, the leakage rate is already within
90 % of its long-term value. The duration of approximately four years on which this
90 % level is reached is much shorter than the current 18-year running time of the
Sleipner project. The subsequent enhancement of leakage due to the development
of the hydrostatic head below the fracture adds the remaining 10 % contribution to
the leakage rate over the much longer period of approximately 200 years. This is
consistent with the currents in the sandstone layers at Sleipner not yet having spanned
the depth of any layer (Boait et al. 2012). The relatively insignificant addition to
leakage due to accumulation of the current below the fracture contrasts sharply
with the predictions of unconfined models, where most leakage stems from this
accumulation. Boait et al. (2012) note that, while vertical migration through a series
of interstitial layers is evident at Sleipner, the planforms of the CO2 currents in the
sandstone horizons between them do not show much evidence of slowing down in
response to their growth. The relatively rapid onset of steady leakage predicted by
our model could explain how the leakage rates can remain largely constant despite
the continued accumulation of currents through the interstitial layers.

The calculation above provides an insightful illustration of the first-order effects
of confinement on leakage in a geological formation. Note, however, that real
aquifers contain three-dimensional variations in topography, as well as anisotropic
and heterogeneous permeabilities, not accounted for by our idealized model.
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FIGURE 11. (Colour online) The evolution of (a) the thickness of the current below the
fracture normalized by the thickness of the aquifer, hF/H, and (b) the rate of leakage of
injected fluid normalized by its rate of injection, qF/Q0, for parameter settings motivated
by the geophysical example in § 4. In (a), the thickness of the aquifer h=H is shown as
a horizontal dashed line. In (b), the leakage due to background pressure B is shown as
a horizontal solid line and the maximum rate of leakage Qmax is shown as a horizontal
dashed line. In both panels, the time at which leakage switches from kinematic to dynamic
leakage is indicated by a filled circle. The time at which the current first spans the depth
of the aquifer below the fracture is indicated by a cross.

Three-dimensional spreading from a point injection, for example, may introduce
long-term asymptotic regimes different from those that we have identified. The
effect of a spatially dependent background pressure (2.13) may also allow leakage
due to the hydrostatic head to have a greater impact on leakage relative to the
background pressure to further distances from the injection. Other physics excluded
from our model include the compressibility of the injected and ambient fluids. With
compressible ambient fluid, for example, pressure diffuses with diffusivity D ≡ λaK,
where K ≈ 3× 108 is the bulk modulus of water (Dake 2010). Pressure disturbances
therefore propagate for distances of x ∼ 2

√
D t ≈ 10 km in one year and 30 km in

10 years. When flow is incompressible (D = ∞), as we have assumed, pressure
disturbances instead propagate infinitely fast and dynamics respond instantaneously
to far-field conditions like (2.1). This may provide a good approximation over long
time scales of several decades or more, when the communication between the current
and the far field becomes faster relative to the time scales of the flow. However,
on time scales of a year or less, the pressure disturbance due to the injection has
yet to interact with the downstream condition (2.1) if L= O(10 km), indicating that
compressible dynamics may play an important role at early times.

5. Conclusions
We have shown that the confinement of flow in a porous geological formation by

a lower boundary leads to fundamentally new dynamical controls on the leakage of
buoyant injected fluid. Generally, it has two distinct effects.
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First, confinement introduces a background pressure associated with driving fluid
horizontally along the length of the aquifer. The build-up of back-pressure due to
the flow of ambient fluid along the lengths of the lower and upper aquifers – the
former promoting leakage and the latter resisting it – sets a background rate of leakage
independent of gravitational effects. Generally, this enhances leakage at early times.
The resistance to leakage due to displacing ambient fluid along the upper layer can be
orders of magnitude larger than that due to the viscous stresses acting in the interior
of the fracture itself.

Second, confinement constrains the maximum possible leakage by limiting the
gravitational hydrostatic head of buoyant fluid below the fracture. The resulting
maximum rate of total leakage Qmax has significant implications for the long-term
storage efficiency, or proportion of injected fluid retained. More specifically, two
possible long-term flow regimes emerge dependent on whether the dimensionless
parameter D≡ lQ0/bHU satisfies D 6 1 or D> 1.

When D 6 1, the interface of the current approaches a height h ∼ DH below
the fracture. Upstream of the fracture, the current becomes steady. Downstream,
it converges towards a similarity solution that extends in proportion to t1/2. The
long-term storage efficiency decays as E∼Qt−1/2, where Q is the constant coefficient
of storage, implying that most fluid injected leaks at long times. If the injected fluid
is much less viscous than the ambient (M → 0), as is relevant to CCS, then an
asymptotic structure emerges downstream of the fracture comprising an inner region
of extent O([Mt]1/2), wherein both gravity and background pressure control the flow,
connected to an outer region dominated by background pressure. The dynamics in
the inner region independently determine the coefficient of storage Q. Analysis of
the inner equations showed that E≈ 0.21 D2(Mt)−1/2, implying more efficient storage
with less viscous injected fluid.

When D> 1, the thickness of the injected fluid layer accumulates to fill the entire
depth of the medium below the fracture. Unlike when D6 1, the long-term efficiency
of storage does not decay to zero and instead approaches the positive value E →
1 − Qmax. Hence, while confinement causes greater leakage at earlier times by the
introduction of background pressure, the constraint on the maximum hydrostatic head
below the fracture has the potential to mitigate leakage by orders of magnitude if
D> 1.

Analysis of the model predictions in the context of Sleipner reveals that background
pressure may be dominant in driving leakage between the interstitial layers. The
results indicate that the accumulation of the hydrostatic head below the fractures,
assumed dominant in studies of unconfined aquifers, plays a relatively minor role. The
propensity for thinner reservoirs to better constrain the hydrostatic head and provide
more secure storage presents a potentially vital consideration in the assessment of
long-term CO2 storage in underground aquifers.
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Appendix A. The asymptotic solution for small D

We develop the asymptotic solution to the inner equations (3.28) and (3.29) that
applies in the limit of a small hydrostatic head D→ 0. To do this, we recast these
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equations in terms of the scaled variables

h≡DF(ζ ) and R ≡D2S , (A 1a,b)

where F(ζ ) and S are assumed to be of order unity. On applying the approximation
h∼D� 1, (3.28) and (3.29) reduce to

− 1
2ζF′ +S F−2 + F′′ = 0, F(0)= 1, F′(0)=−S , F(∞)∼ ζ−1/2, (A 2a–d)

respectively, where we have used a prime here to denote d/dζ . There are no free
parameters in this reduced set of equations, implying that their solution represents a
special curve that uniquely describes the asymptotic solution to (3.28) and (3.29) in
the limit D→ 0. By solving (A 2a–d) using an adapted form of our numerical scheme
used earlier to solve (3.20)–(3.22), we obtain the prefactor S ≈ 0.21. Combination
of this value of S with (A 1b) determines the asymptotic relationship for the scaled
coefficient of storage,

R ∼ 0.21D2 as D→ 0, (A 3)

which we have plotted as a dashed curve in figure 8(b).
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