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The two-dimensional motion of a fluid confined between two long horizontal 
planes, heated and salted from below, is examined. By a combination of per- 
turbation analysis and direct numerical solution of the governing equations, 
the possible forms of large-amplitude motion are traced out as a function of the 
four non-dimensional parameters which specify the problem : the thermal 
Rayleigh number RT, the saline Rayleigh number R,, the Prandtl number u 
and the ratio of the diffusivities r .  A branch of time-dependent asymptotic 
solutions is found which bifurcates from the linear oscillatory instability point. 
In general, for fixed u, r and R,, as RT increases three further abrupt transitions 
in the form of motion are found to take place independent of the initial conditions. 
At the first transition, a rather simple oscillatory motion changes into a more 
complicated one with different structure, at the second, the motion becomes 
aperigdic and, at the third, the only asymptotic solutions are time independent. 
Disordered motions are thus suppressed by increasing R,. The time-independent 
solutions exist on a branch which, it is conjectured, bifurcates from the time- 
independent linear instability point. They can occur for values of R, less than 
that at  which the third transition point occurs. Hence for some parameter 
ranges two different solutions exist and a hysteresis effect occurs if solutions 
obtained by increasing RT and then decreasing RT are followed. The minimum 
value of RT for which time-independent motion can occur is calculated for 
fourteen different values of u, r and Rs. This minimum value is generally much 
less than the critical value of time-independent linear theory and for the larger 
values of u and R, and the smaller values of r ,  is less than the critical value of 
time-dependent linear theory. 

~ 

1. Introduction 
Since its birth as ‘an ocemographical curiosity’ (Stommel, Arons & Blanchard 

1966), double-diffusive convection has matured into a subject with a large variety 
of applications. Many situations exist in oceanography, astrophysics and 
chemical engineering, to cite only three areas, where there are two components 
of different molecular diffusivities which contribute in an opposing sense to the 
vertioal density gradient. Whether the components are heat and salt, as in the 
oceanographic situation, heat and helium, as in the astrophysical situation, or 
two different solutes, as in chemical engineering situations, the qualitative 
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aspects of double-diffusive convection are the same; only the time and possibly 
space scales of the motion are different. In  addition to the many applications, 
interest in the subject has developed as a result of the marked difference between 
double-diffusive convection and convection involving only one component, as 
for example in purely thermal convection. I n  contrast to thermal convection, 
motions can arise even when the density decreases with height, that is, when the 
basic state is statically stable. This is due to the effects of diffusion, which is a 
stabilizing influence in thermal convection, but can act in a double-diffusive 
fluid in such a way as t o  release potential energy stored in one of the components, 
and convert i t  into the kinetic energy of the motion. 

The physical mechanism underlying one of the fundamental forms of double- 
diffusive motion can be understood from the following parcel argument. Using 
the terminology of heat and salt, as we shall throughout this paper, consider a 
fluid whose temperature, salinity and density all decrease monotonically with 
height. If a fluid parcel is raised it comes into a cooler, less salty and less dense 
environment. Because the rate of molecular diffusion of heat is larger than that 
of salt, the thermal field of the parcel tends to equilibrate with its surroundings 
more rapidly than does the salt field. The parcel is then heavier than its surround- 
ings and sinks. But owing to the finite value of the thermal diffusion coefficient, 
the temperature field of the parcel lags the displacement field and the parcel 
returns to its original position heavier than it was a t  the outset. It then sinks 
to  a depth greater than the original rise, whereupon the above process continues, 
leading to growing oscillations, or overstability as it is sometimes called, which 
is resisted only by the effects of viscosity. This linear mechanism was first 
explained by Stern (I96O)j- and explored further in a beautifully written paper 
(Moore & Spiegel 1966) which develops an analogy between this form of double- 
diffusive convection and the motion of a flaccid balloon in a thermally stratified 
fluid. If the temperature gradient is sufficiently: large compared with the salinity 
gradient, nonlinear disturbances may exist which lead to time-independent 
motion because the large temperature field is then able to overcome the restoring 
tendency of the salinity field. 

An evaluation of the conditions under which this time-independent form of 
motion can occur is one of the aims of this paper. One of the important aspects 
of time-independent motion is that the heat and salt transports are very 
much larger than those in typical time-dependent motions. Thus an evolution 
calculation for a laboratory experiment, an oceanographical situation or a star 
will be significantly dependent upon what form of double-diffusive motions 
exists. 

The traditional geometry in which convective motions have been quanti- 
tatively analysed conhes the fluid between two infinite horizontal planes, 
heated, and in our case also salted, from below. In  the purely thermal situation, 
many of the theoretically determined results have been experimentally verified 
and successfully used to explain various phenomena, as summarized by Spiegel 
(1971). I n  a double-diffusive situation, using this geometry, Huppert & Manins 
(1973) develop some theoretical results which accurately predict the outcome 

t In a footnote. 
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of a series of experiments in which two deep uniform layers of different solute 
concentrations were initially separated by a paper-thin horizontal interface. 
For details the reader is referred to the original paper. The essential comment 
to be made here is that the theoretical model, which incorporates the seemingly 
constraining presence of the horizontal planes, was successfully used in a situation 
uninfluenced by boundaries. 

Turning now to an explicit statement of the model analysed in this paper, we 
consider a fluid which occupies the space between two infinite horizontal planes 
separated by a distance D. The upper plane is maintained at temperature To 
and salinity So and the lower plane at temperature To + AT and salinity So +AS.  
Both planes are assumed to be stress free and perfect conductors of heat and salt. 
We restrict attention to two-dimensional motion, dependent only upon one 
horizontal co-ordinate and the vertical co-ordinate, and discuss in 9 7 the con- 
sequences of this restriction. We non-dimensionalize all lengths with respect to 
D and time with respect to D 2 / ~ T ,  where K~ is the thermal diffusivity, and 
express the velocity q* in terms of a stream function $ by 

q* = (KT/D) ($89 - P,), 
the temperature T* by 

and the salinity S* by 
T" = T O + A T ( l - z + T )  

S* = S o + A S ( l - ~ + S ) ,  

so that we can write the governing Boussinesq equations of motion as 

a-1v2at - c - ~ J ( + ,  v2$) = - R, a, T + R, a, s + ~ 4 $ ,  (1 .4)  

a ,T+a,$-J($,T)  = V 2 T ,  (1.5)  

a, 8 + a, $ - J($, 8) = rV2S,  (1 .6)  

$ = a;,$ = T = s = o (2 = 0, I), (1 .7)  

(1 .8)  

where the Jacobian J is defined by 

J ( f ,  9 )  = a,.fa, 9 - a z f  a, 9. 

We have assumed the linear equation of state 

where a and 
term of (1 .4) .  

are taken to be constant, in the expressions for the body-force 

Four non-dimensional parameters appear in (1.4)-( 1.6) : the Prandtl number 

Q = V / K T ,  (1.10) 

7 = KS/KT, ( 1 . 1 1 )  

where v is the kinematic viscosity; the ratio of the diffusivities 

where K~ is the saline diffusivity, which is less than K ~ ;  the thermal Rayleigh 
number 

R, = agATDs/(K, v), (1.12) 
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where g is gravity; and the saline Rayleigh number 
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Rs = &AsDs/(KT V). (1.13) 

The fist  two parameters characterize the fluid, while the last two characterize 
externaIIy applied parameters of the model. In  this paper both Rayleigh numbers 
are positive.? For brevity, we refer to the system (1.4)-(1.7) as 8. 

Some solutions of 8 were obtained by Veronis (1965, 19686) in terms of 
truncated Fourier expansions. He concluded from the latter, more accurate, 
study that, for u 2 1, as RT is increased oscillatory motion first occurs and then 
at  a value of R, greater than Rs the motion becomes steady. Veronis conjectured 
that, for increasingly large values of Rs, the minimum value of R, for which 
steady convection can occur tends to R,. The approach adopted in this paper 
is very different in both numerical detail and interpretation. The numerical 
methods employed are supported by analytical calculations which allow a larger 
range of values of CT, 7 and R, to be investigated. We find that as RT is increased 
from zero, steady motion can occur fist, at a value of RT significantly less 
than Rs. 

are discussed in $2. It is shown that the stability 
boundary occurs at  the same horizontal wavelength for both oscillatory and 
steady linear modes and the possible forms of linear motion are mapped out in 
an R,, R, plane (figure 1). 

The horizontal scale of linear theory is then used in the nonlinear investigations 
discussed in $0 3-7. Results obtained using different horizontal scales are similar, 
as briefly discussed in the footnote on page 828. We focus on the asymptotic 
solutions of .ul,, that is those solutions which result from long-time integrations 
of yZ considered as an initial-value problem. We find that these solutions may be 
oscillatory, aperiodic or steady. Further, there exist ranges of u, 7 and RT for 
which two stable equilibrium solutions of different character exist. These results 
are obtained from the combined use of modified perturbation theory (as 
described for example in Sattinger 1973), direct numerical integration of 
.ul, and the generally known results concerning solutions of nonlinear 
differential equations. 

From modified perturbation theory, the analytic form of the equilibrium 
solutions in the vicinity of the linear modes can be investigated by an ordered 
expansion about these modes. As the degree of nonlinearity increases, the form 
of solution is numerically investigated by integrating 8 using finite-difference 
techniques. The numerical program places constraints on the values of u and 7 

for which quantitative results can be obtained. In particular, it is not possible 
to use the program with u = 7 and 7 = &, the appropriate values for heat and 
salt in water. However, a sufficient number of different values of u and 7 are 
investigated to discern the overall pattern of the results. Because it is this 

If both Rayleigh numbers are negative the analysis models a fluid in which temperature 
and salinity increaae monotonically with height. In  this situation the motion is generally 
time independent and is due to fluid parcels with downward motion diEusing heat to 
adjacent rising fluid parcels, much in the manner of a heat exchanger. This form of motion, 
called salt-hgering, was first explicitly discussed by Stern (1980) and some nonlinear 
aspects have been considered by Straus (1972). 

The linear solutions of 
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overall pattern which is of greatest interest, the discussion of the possible forms 
of solution is fairly general, with the calculated results being used only as 
quantitative illustrations. 

2. Infinitesimal motions 
The results of linearized theory have been derived elsewhere (Stern 1960; 

Veronis 1966, 19683; Baines & Gill 1969). However, since these results act aa a 
foundation for the nonlinear aspects of our investigations, we restate them 
briefly in this section in a manner convenient for future reference. 

The equations governing infinitesimal motions are obtained by deleting the 
nonlinear Jacobian terms of (1.4)-( 1.6). The resulting differential system has 
constant coefficients and a solution in terms of the lowest normal modes 

+(x,  z, t )  
T ( x ,  z, t )  j = To cos n a x ]  ep t  sin nz 

+o sin nax 

S ( x ,  2, t )  so cos nax 

( 2 . 1 ~ )  

(2.lb) 

(2.lc) 

leads to the dispersion relationship 

p9 + (a + 7 + 1) k2p2 + [(a + 7 + OT) k" - n%a2k2(RT - R,)]p 

+ v ~ ~ C S + ~ ~ ~ O ~ C ~ ( R ~ - ~ R T )  =: 0,  (2 .2 )  

where k2 = n2(1 +a*). (2.3) 
Since (2 .2 )  is a cubic with real coefficients its zeros are either all real or consist 
of one real root and two complex-conjugate roots. Overstability, which arises 
when the pair of complex-conjugate roots crosses the imaginary axis, p,, = 0, 
occurs when 

(2.4) 

(2.5) 

a+7 
B,(a) = afl B, + (1 + 7) (1 + T 0 - l )  .E8/(n2U2) 

and 

For fixed values of a and 7, R,(a) is least for a = 2-4 at which value 

p t  = (CTT + a + 7) k4 - a(RT - R,) n2a2k2. 

Pl(n2a2) = yn4, (2.6a) 

(2.63) 

and p = kipo, say. Exchange of stabilities, which arises when one of the roots 
equals zero, i.e. p E 0, or equivalently a, = 0, occurs when 

(2.7) 

(2.8) 

R,(a) = R& + P/(n2a2). 

R, = RS/7 + ?$+, 
As before, R,(a) is least for a = 2-$, at which value we denote R, by 

where the subscript 6 anticipates the development in subsequent sections. 
Descriptions of and, where possible, analytic expressions for B,, . , ., R, are given 
in table 1. 
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+ A  

FIQTJR,E 1. The results of linear stability theory for u = 1*0,7 = 0.5. Only the region below 
the two heavy lines is stable to linear disturbances. Each small pair of axes with its three 
orosses represents the complex p plane and the relative position of the solutions of (2.2) for 
the values of RT and Rfi at the origin of the axes. 

I n  the R,, R,  plane the linear stability boundary is a combination of RT = R, 
and B, = &, as depicted in figure 1 ,  which presents a complete summary of the 
linear results for a = 1 and 7 = 0.5. For &?, > R,,,, where 

is the value of R, at which R, = &, as RT exceeds R, the conduction state is 
unstable to an oscillatory mode. This instability occurs because of the physical 
mechanism discussed in the second paragraph of the introduction. For 

the salt gradient is too small for the mechanism which gives rise to the oscillations 
to be effective and the conduction state is destabilized by a monotonic mode as 
RT exceeds R,. 

For fixed R, > R,,,, as R,  increases above R,, the two complex-conjugate roots 
acquire positive real parts until R,  = Rco, say, at which point these roots coalesce 
on the real axis. The value of Rco can be determined from the implicit relationship 

Rl,s = 9 7 p T 2 (  1 + a-1) (1 - 7 ) - 1  (2.9) 

0 < RS < Rinm 

4 2 
1 3  1 [~+a+a7+- 4a (Rs-Rco)-+(a+7+1)2 +$ $(a+7+1)' 

277p 

(2.10) 

= 0, 
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which expresses the condition that (2.2) has a repeated root. The graph of Rco 
as a function of RB for g = 1.0 and T = 0.5 is presented in figure I. As R, 
increases above Rco, one of these two real roots increases and the other decreases 
until at R, = R, the latter root is identically zero. Thus at this exchange-of- 
stability point, as R, increases, one root of (2.2) decreases through zero, while 
one of the other roots remains positive, the other negative. For 0 c R8 < R1n6 
there is one positive (real) root and two negative roots for all R, > R,. ,Also 
drawn in figure 1 is the line RT = R,, above which the basic density is statically 
unstable. 

I n  summary, the conduction solution bifurcates a t  R, = R, into a pair of 
conjugate oscillatory solutions and, at R, = R,, into a monotonic convective 
solution, where the term monotonic in this paper is synonymous with non- 
oscillatory. According to linear theory, for 0 < R, < Rl,.,)B convection is always 
monotonic, while for R, > Rln6 it  is oscillatory for R, < R, < R,, and mono- 
tonic for R, 2 Rco. Since R,, > R,, linear monotonic convection is possible only 
if the basic density is statically unstable. 

Higher normal modes of the form 

W m j  $oshmTax] (2.11a) 

T ( x ,  z ,  t )  = To cos mmax ept sin nmz ( 2 . l l b )  

have critical thermal Rayleigh numbers which can be calculated in the same 
manner as described above. As before, the lowest values occur for a = 2-4. 
Overstability for the (m, n) mode (using obvious notation) sets in at a thermal 
Rayleigh number given by 

S(x,  x ,  t )  So cos m m x  (2.11 c )  

(2.12) 

and exchange of stabilities a t  a thermal Rayleigh number given by 

Rg" = R8[T + 2n4m-2(n2 + QmZ))". (2.13) 

The (2,l)  modes, with half the horizontal scale of the lowest normal modes, have 
smaller critical Rayleigh numbers than the (1 ,2)  modes, with half the vertical 
scale of the lowest normal modes. These higher modes play no essential part in 
our investigation and are mentioned here mainly for completeness. 

3. Finite-amplitude motions 
The main aim of this paper is to examine how the various instability regions 

of the previous section extend into the nonlinear domain and in particular to 
determine the possible asymptotic solutions for given RT and R,. Essentially, 
this requires the addition to figure 1 of a third dimension representing the 
amplitude of the motion. For convenience, graphical results are presented by 
considering planes of constant R,, and asymptotic solutions are hence plotted 
in an R,, amplitude plane. 
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Solutions are obtained by direct numerical integration of .ul,, supplemented 
by analytical calculations using modified perturbation techniques. The numerical 
computation is accomplished by approximating .ul, by space- and time-centred 
second-order difference equations in @, V2+, T and S on a rectangular staggered 
mesh in the domain 0 < x < a-l= 2 )  and 0 Q z Q 1. The equations incorporate 
the periodicity conditions + = $xz = T, = S, = 0 at 2 = 0 and a-1. From the 
equations, values of Vz$, T and 8 at the grid points are advanced in time steps of 
at. The variable $ is then calculated from V2@ by inverting the Laplacian 
using an implicit finite-difference approximation to Poisson’s equation. This 
process is repeated for as many time steps as required. The program is an exten- 
sion of one used originally by Moore, Peckover & Weiss (1973) and is discussed 
further in the appendix. The appendix also contains a list of almost all the 
numerical experiments conducted. 

A full investigation has been carried out for the 14 sets of (Q, T,  R,) values 
displayed in table 3. For each set of parameters, the branch of nonlinear asymp- 
totic solutions emanating from the oscillatory bifurcation point €2, and the 
branch of monotonic solutions, presumably emanating from the bifurcation 
point R,, are traced out in an R,, amplitude plane. In particular, the value of 
R, below which a monotonic solution cannot exist is found (table 3, column 6). 

The amplitude of any solution could be characterized in a number of different 
ways, using either local values, such as the velocity or stream function at a 
particular point, or global values, such as the heat or salt transport, or the 
kinetic energy. In this paper we find it most convenient to use the horizontally 
averaged heat and salt transport, or their non-dimensional representation, the 
thermal and saline Nusselt numbers. These are given by - -  - -  

A?&(Z) = l-a,T+wT, Ns(z) = 1-aES+w8, (3.117 (3.2) 
where w is the (non-dimensional) vertical velocity and an overbar denotes a 
horizontal average. At either of the boundaries w = 0 and the second term of (3. I )  
and (3.2), which is the direct contribution made to the heat transfer by convec- 
tion, is zero. In particular, at the lower boundary the Nusselt numbers are given by 

- - 
NT = 1-a5T15=o, Ns = 1-8,8ls=0, (3.31, (3.4) 

where the value at z = 0 in the representations on the left-hand side is understood. 
We use either of these two, or where appropriate their maxima, MT and Mg, 
say, as an indication of the amplitude of the motion. 

Using a global energy analysis Shir & Joseph (1968) show that for R, 2 0 
a suflcient condition for the conduction solution to be the only solution of .sP, 
is that R, < %$+. However, we find that for all of the parameter space which 
we investigate, the conduction solution is the only solution for a range of values 
of R, larger than ?$?-.”. The double-diffusive BBnard problem heated and salted 
below hence provides an example where straightforward global analysis does not 
yield attained bounds.? This result should be contrasted with the case of negative 

t This conclusion is based on the additional facts that the solutions outlined in this 
paper for a = 2-4 are relatively insensitive to a change in a to within a factor of 2, and, 
in particular, that the minimum value of RT for which convection can be sustained at 
a = 2-4 is only slightly larger than the absolute minimum obtained by varying a. 
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RT and Rsr (heated and salted above), for which Shir and Joseph show that a 
necessary and sufficient condition for the conduction solution to  be the unique 
solution of yZ is RT < R,. 

The next section discusses the nonlinear oscillatory motions and $6 discusses 
the nonlinear monotonic motions. The relationship between these two equili- 
brium solutions is discussed in fj 6 .  

4. The branch of oscillatory solutions 
I n  the immediate neighbourhood of the oscillatory bifurcation point R,, the 

nonlinear equilibrium solution can be obtained from a modified perturbation 
expansion of $. For fixed R,, this is achieved by introducing the new time 
variable 
and expanding each variable as 

t' = pt (4 .1)  

and 

03 

RT = I; enrn 
n=O 

m 

P = C enfin, 
n=O 

(4.2 a-c)  

(4 .2d)  

(4.2e) 

where E is a convenient expansion parameter whose value can be determined 
from (4 .2d)  for given 22,. Substituting (4.1) and (4 .2)  into 3 and equating like 
powers of B, we find that 

( 4 . 3 4  

(4.3b)  

(4.3c) 

(4 .34  e )  

(4 .4a)  

(4 .4b)  

(4 .4c)  

(4.4d, e )  

d 
(k2  - [(ifi, + k2)  (ijo + 7k2) ( i r l f i o  + k2)]  - in2a2(ro - Rs))fi2 - n2a2(ifio + 7k2)  r2 

dfi0 
= & 7 n 8 ~ ~ ~ {  [+k2(+P +&)-" (2n% + ifio)-' (7k2 + ifio)-'] (ifio + k2) R,g 

- n-2k2(P +fit)-' + (2n2 + ijo)-' (k2 + ifiO)-l] (ifio + 7k2) R,}, (4.5) 
where in (4 .3) ,  (4 .4)  and in similar equations to be presented below, the real 
part of each right-hand side represents the variable on the left. Using these 
results and the definitions (3 .2)  and (3 .3) ,  we h d  that as RT +- R, 

and 
NT N 1 + &n"a2(kz + ijo)-l [tn-z + (2n2 + ij0)-l eZit'] ril(BT - Rl)  (4.6) 

Ns N 1 + f&X2(7k2 + ij0)-' [&n-"T-' + (2n27 +ifi0)-' eZit'] rF1(RT - Bl).  (4.7) 
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F r u m  2. The solutions rz a n d j z  of (4.5) as a function of Rs for (a) u = 1, 7 = lo-*, (b) 
u = 1, 7 = 0.1, (c) (r = 10, 7 = 0.1 a d  (d) u = 7, 7 = &-. 

L I I I I I I - I  I I 1 1 I 
1 .o 2.0 3.0 1.0 2.0 3.0 4.0 

F I ~ ~ L E  3. The oscillatory solution branch for c = 1, 7 = 0.1 and Rs = lo4. ---, calculated 
stable portion of the branch; ---, sketched unstable portion of the branch; --, first 
approximation to the unstable portion, as obtained from (4.6) and (4.7). 

Graphs of r2 and b2 as functions of R, for four values of CT and 7 are displayed 
in figure 2 and the maximum value of N,, obtained from the right-hand side of 
(4.7), is displayed in figures 3 and 5 for different values of CT, 7 and R,. 

For small R,, r2 is positive. Thus R, increases with amplitude (2M, or M,) 
and the bifurcation point is supercritical. It can be shown in general (see for 
example Sattinger 1973) that, since they arise from a supercritical bifurcation, 
solutions on this branch will be stable with respect to any further linear two- 
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dimensional disturbance. The essence of this result can be explained by con- 
sideration of the associated potential energy function, for which all extrema 
represent equilibrium points, with potential energy minima (maxima) corres- 
ponding to stable (unstable) asymptotic solutions. For RT larger than the value 
at a supercritical bifurcation point, the asymptotic solution of zero amplitude 
is unstable and hence is a t  a potential energy maximum. With increasing ampli- 
tude, the next equilibrium point is at a potential energy minimum and hence 
corresponds to a stable asymptotic solution. The numerical solution of $ for 
small R, confirmed this stability and the comparison between (4 .6)  and (4.7) 
and the numerical results is seen from figure 5 to be very good for quite a range 
of RT - R,. For large R,, r2 is negative and the bifurcation is thus subcritical. 
Solutions on subcritical branches are unstable because the zero-amplitude 
solution, being stable, is at a potential energy minimum and hence the next 
equilibrium point is at a potential energy maximum. Unstable solutions cannot 
be obtained from the scheme we have employed for the numerical solution of 
S$. However, it can be inferred from previous studies that the branch continues, 
and solutions on it are unstable, until a minimum value of R,. is reached. The 
branch then continues with the amplitude of the motion increasing with in- 
creasing RT. The asymptotic solutions on this portion of the branch correspond 
to potential energy minima and the associated solutions are hence stable (and 
time dependent). An example of this behaviour is depicted in figure 3. 

Comparisons of the period of the nonlinear motions obtained from (4 .2e) ,  (4 .3e)  
and (4.5) and from the numerical solution of g are made in figure 4 for u = 1.0, 
r = 10-4 and for three values of R,. These three comparisons reflect the general 
tendency that for small values of R,, carrying out the perturbation procedure 
to the order indicated (determining only Po, and p2)  leads to results in good 
agreement with the exact solutions, while for larger values of R, further terms 
are needed in order to obtain useful information. 

For values of RT beyond the range of applicability of the perturbation pro- 
cedure, the numerical solution of is needed to investigate the oscillatory 
branch further. A summary of the results of such an investigation is shown in 
figure 5 and table 3. The branch continues in the RT, amplitude plane with the 
amplitude increasing with increasing R,. Along this branch the period of the 
oscillation increases monotonically because of the increasing influence of the 
temperature field. Expressed in terms of the motion of a typical fluid particle, 
the explanation is that during its oscillatory displacement the particle experiences 
a restoring force which decreases as R, increases, and hence the period increases. 
Figure 6 presents for one value of cr, r ,  RT and R, a typical plot of NT and N, 
against time. The phase delay of N, with respect to NT is clearly seen. This 
delay occurs because the salt field diffuses more slowly than the temperature 
field. The slower diffusion of salt is also the reason why both the mean and the 
range of are larger than those of NT. Expressing Ns as a Fourier series and thus 
evaluating the power a t  each frequency, we obtain the result shown in figure 7 (a).  
This figure, which is to be viewed as an indication of the degree of nonlinearity 
of the motion, displays the large amount of power in the fundamental and the 
smaller, but by no means insignificant, power in the higher harmonics. 
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I I I I I I I I I 1 1  
0.7 0.8 0.9 0.35 0.40 0.45 

2.h 2.1P 

I I I I I I 
0.19 0.20 0.21 

2.lP 

FIUURE 4. The period of oscillation 2n/p as a function of RT for (r = 1, 7 = 10-1 and (a) 
RS = lo8 (R, = 1797), (b)  Rs = 10% (R, = 3220) and (c) Rs = lo4 (R, = 7720). -, result 
obtained from the numerical calculation of 9,; -- , result obtained from the modifkd 
perturbation expansion of 8 4. 

Diagrams of the stream function, temperature, salinity and resulting density 
fields for one value of cry 7 and Rs are shown in figure 8. Eight representations of 
the fields, equally spaced in time and commencing when the maximum point of 
N ,  is achieved, are presented which cover a complete cycle of NT and N,. The 
eight times are indicated in figure 6. The period of the basic fields is twice that of 
N, and Ns and thus the figure presents these fields over only half a period. Their 
continuation occurs in the following manner: the ninth representation of the 
stream function field is the negative of the f i s t  in the depicted series, the tenth 
is the negative of the second and so on; and the ninth representations of the 
temperature, salinity and density fields are the reflexions about a vertical edge 
of the first representations, and so on. 

Examining the stream function field first, we see that fluid particles move back 
and forth in their predominantly circular motion around part of the cell. The 
intensity of the motion reaches a maximum before the maximum of either N, or 
ATs, which as explained above is the essential characteristic of oscillatory double- 
diffusive motion. At one point in this oscillation, rising hot fluid and sinking 
cold fluid produce the reflected S-shaped contours of the first representation 
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FIQURES B(a,b) .  For caption see page 834. 
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F ~ a m  5. The stable solution branches in an RT, MS plane for (a) u = I, 7 = lo-&, Rs = 108, 
(b) u = 1,7  = 10-1, Rs = lo*, (c) = 1 , ~  = 10-1, Rs = IO4md (d) u = 1 , ~  = 0.1, Ra = 10%. 
For R, < RT < R, both local maxima are shown and for R, < RT < R, the rapidly oscil- 
lating curve indicates that no definite maximum can be assigned to the aperiodic motion 
in this range. The dots indicate the transitions that can take place between the oscillatory 
and monotonic branches. The dashed curve is the first approximation to the oscillatory 
solution branch, aa obtained from (4.7). 
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FIGURE 6. The thermal and saline Nusselt numbers rn a function of time for 
R, < RT = 8600 < R,, Rs = lo4, u = 1 and 7 = 10-*. 

The marks on the time axis indicate the times at  which the stream function, temperature, 
salinity and density fields are displayed in figure 8. The horizontal line in the bottom 
right-hand corner represents 0.05 non-dimensional time units. 

0 0 

FIGURE 7. The spectral lines of &(t) for u = 1,7 = lo-&, RS = lo* 
with (a) R, < RT = 8600 < R, and (b)  R, < RT = 9800 < R,. 

of the temperature field. As the oscillation proceeds, the fluid reverses its 
direction and the temperature field relaxes, until in the fifth representation the 
horizontal temperature gradients are extremely small. In the last few represent- 
ations, the horizontal temperature gradients increase until the temperature 
contours reach their maximum S-shape again. The salinity field is similar to the 
temperature field except for the following important differences. First, the 
salinity field attains its maximum structure after the temperature field, for the 
reason explained previously. Second, owing to the relatively slower diffusion 
of salt, the horizontal salinity gradients, which decrease to a large extent by 
diffusion, do so less rapidly than the horizontal temperature gradients. However, 
they increase approximately as rapidly because the increase occurs by the differ- 
ent process of advection, as evidenced by the increasing stream function field. 
Turning now to the density field, we clearly see the relative oscillatiow of the 

53-2 
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FIGVRE 8. "he basic fields for R p  = 8600, Rs = lo4, u = 1 and 7 = 10-4. (a) "he stream 
function $ with a contour spacing of 0.0115. (b) Perspective representations of (a) viewed 
from a point 8 cell widths from the centre of the cell at an elevation of 0.3 red from the 
horizontal plane and an azimuthal angle of 1.0 rad measured clockwise. (c) Thenon- 
dimensional temperature T*/AT with a contour spacing of 0.2. (d) The non-dimensional 
salinity S*IAS with a contour spacing of 0.2. (e) The non-dimensional densityp*/Ap, 
where Ap is the density excess a t  the bottom of the cell over that at the top, with a contour 
spacing of 0.3. The H and L on the density representations indicate the regions of relatively 
heavy and light fluid. 

heavy and light regions of the fluid. The comparison of the density field with the 
stream function field indicates the continual exchange that takes place between 
the potential energy and kinetic energy of the system. At one extreme, in the 
second representation, the stored potential energy is close to its maximum, with 
large regions of heavy fluid lying above relatively lighter fluid, and the kinetic 
energy is almost zero. Thereafter, the kinetic energy increases at the expense 
of the potential energy until at the other extreme, in the seventh representation, 
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RT = R, 

RT = Roo [equation (2.10)] 

The lowest-mode linear instability point 
for oscillatory motion (overstability) 

The transition point between motion with 
one maximum per period and that with 
two maxima per period 

The transition point between motion with 
two maxima per period and aperiodic 
motion 

The transition point between aperiodic 
motion and time-independent motion 

The maximum value of RT for time- 
dependent motion 

The minimum value of RT for time- 
independent motion 

The lowest-mode linear instability point 
for time-independent motion (exchange 
of stabilities) 

The coalescence point of the two (complex- 
conjugate) eigenvalues of linear stability 
theory 

for oscillatory motion 
The (m, n) -mode linear instability point 

The (m, n)-mode linear instability point 
for time-independent motion 

The value of Rs at which RT = R, 
intersects RT = R, 

The value of Rs above (below) which the 
lowest exchange of stability point is a 
subcritical (supercritical) bifurcation 

TABLE 1 .  Nomenclature 

4.0 - 

1.0 - 
l--+--+ 
0 0.05 0.1 

t 

FIGURE 9. The thermal and saline Nusselt numbers as a function of time for 
R, < RT = 9800 < R,, Rs = lo4, u = 1 and 7 = 10-4. 

The marks on the time axis indicate the times at  which the stream function, temperature, 
salinity and density fields are displayed in figure 10. The horizontal line in the bottom right- 
hand corner represents 0.1 non-dimensional time units. 
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u = 1.0, 7 = lo-&, R~ = 104 u = 1.0, 7 = 0.1, R s  = 10t 

7720( = R1) 0.0940 2535( = R,) 0.145 
7750 0.0949 2600 0.146 
7800 0.0954 2660 0.150 
8200 0.102 2720 0.154 
8600 0.111 2780 0.159 
9000 0.120 3000 0.183 
9200 0.125 3250 0.205 

0-123 0,134 3325 0.212 
9400 {z 0.126 0.132 

0.122 0.144 
0.126 0.140 9600 {z 
0.122 0.155 
0.126 0.151 3600-4 100 Aperiodic 

RT Period RT Period 

0.192 0.236 
0.209 0.222 
0.189 0.256 
0.206 0.239 

3400 {:: 
3500 {z 9800 {$ 

10200-1100 Aperiodic 

TABLE 2. The period of NT and Ns. For R, < RT < R, the time between the smaller 
maximum and the following larger maximum is given first followed by the time between 
the smaller maximum and the preceding larger maximum for NT. The next line consists 
of these times for Ns. 

FIQURE 10. For caption end remainder of figure see opposite page. 
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FIGURE 10. The basic fields as in figure 8 for RT = 9800, RS = 104, cr = 1, r = 10-*. The 
contour spwing in the stream function representations is 0.0115, in the temperature and 
salinity representations 0.2 and in the density representations 3-0. 

the stored potential energy is close to its minimum, with the density 
increasing with height everywhere, while the kinetic energy is close to its 
maximum. 

As R, increases, this form of motion continues until R, reaches a specific 
value, B,, say. At R, = R, the motion changes in form. Either the motion 
becomes time independent, a situation discussed at the end of this section and 
in greater detail in the next section, or, the more general case, the motion develops 
a further structure as is indicated in the form of N, or N, as a function of time, 
as graphed in figure 9. I n  both N, and N, there are four extrema, two maxima 
and two minima, per period, where the period is defined in the usual sense as the 
time between two identical states. As seen in figure 9 and table 2 the time between 
the smaller maximum and the preceding larger maximum is greater than the 
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time between the smaller maximum and the following larger maximum. This 
holds for both NT and N,. As RT increases above R, these times evolve con- 
tinuously from the single period exhibited by NT or N, for RT just below R,. 
The power at  each frequency of the Fourier representation of N, is shown in 
figure 7 (b) ,  from which it can be seen that this second form of motion has much 
more structure than the first form discussed previously. 

The physical reason for this form of motion is that the increasing temperature 
difference attempts to induce monotonic motion. Fluid near one of the lower 
corners of the cell rises, sinks by a different route, rises by a smaller amount in an 
attempt to readjust the form of motion, sinks again and the total form of motion 
is then repeated. Other fluid particles in the cell move accordingly, as is shown in 
figure 10. This figure presents the stream function, temperature, salinity and 
density fields at  sixteen equally spaced times over a complete cycle of NT and 
N,. The figure is constructed in a manner similar to figure 8 except that a complete 
cycle of NT and N, is now equal to a complete cycle in the motion fields rather 
than the previous half-cycle. The first representation is, as before, at the maxi- 
mum of N, and the times of each representation are indicated in figure 9. 

The asymmetry of the two half-cycles is evident in all the fields, in contrast to 
the situation when RT < R,. Closely following the stream function field of 
maximumintensity (representation 16), the third, fourth and fifth representations 
of the stream function field show how part of the fluid moves with a predomin- 
antly vertical component through the interior portion of the cell. This motion 
is reflected in the corresponding density field, where heavy fluid descends just 
to the left of the middle of the cell and light fluid rises just to the right. The flow 
results in a temperature structure with an interior maximum and minimum 
(representations 4, 5 and 6) and a similar salinity field somewhat delayed 
(representations 5, 6 and 7). The first part of the cycle is thus very different 
from that with RT < R,, though the second part is quite similar, and almost 
all of the discussion of figure 8 applies to it. In terms of modern mathematical 
jargon, the solution for R, less than R2 is on a sphere, while for RT greater than 
R, it is on a torus, and the transition at RT = R, is called a bifurcating torus 
(Hirsch & Smale 1974). This form of motion occurs until RT = R,, say, at which 
value a transition either to a time-independent solution or, more generally, to a 
disordered, aperiodic form of motion occurs. 

No stable asymptotic motion with three, four or more maxima per cycle was 
found, though it may be that such motion exists in a different parameter range 
from the one examined. 

It is difficult to describe the aperiodic form of motion further. Figure 11 
presents for one value of r, 7, RT and R, a plot of N, and N, against time. Long 
computational runs have not revealed any periodic structure. It may be that 
the solutions are in some way similar to the apparently aperiodic solutions of a 
class of ordinary difference equations found by May (1976) to be made up of a 
finite number of periods. But, as discussed by May, the motion is so complicated 
that assigning a period to it is of very little use in understanding the motion or 
interpreting the results. 

Aperiodic motion continues to exist for increaaing R, until for RT = R4, say, 
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FIGURE 11. The thermal and saline Nusselt numbers aa a function of time for Q = 1,7 = 10-* 
and (a) R, < RT = 8600 < R,, (a) R, < RT = 9800 < R, and (c) R, < RT = 11000 < R,. 
The horizontal line in the bottom right-hand corner of (c) represents 0.5 non-dimensiond 
time units for each of the three graphs. 

an asymptotic time-dependent solution can no longer be maintained and the 
only asymptotic solutions are time independent, a form of motion which will 
be analysed in the next section. For some values of a, T and B, this time- 
independent form occurs before the solution passes through the two-maxima- 
per-cycle form of motion or the aperiodic form. Transitions which do occur are 
indicated in table 3. It is seen that for small values of R, only the simplest form 
of time-dependent motion occurs, and that for large values of R, the time- 
dependent branch includes the three different types of motion. 

Also tabulated in table 3 are the linear oscillatory and monotonic critical 
Rayleigh numbers P11 and Ril for the second lowest mode. These Rayleigh 
numbers do not seem connected in any way with the Rayleigh numbers R,, 
R, or R4. 

For future use we denote by Bi the value of RT at which the transition to an 
equilibrium time-independent solution occurs. 

5. The branch of monotonic solutions 
For all R, > 3; monotonic motion ensues. As indicated in figure 12, such a 

form of motion exists in a double-diffusive fluid because the temperature field 
can produce an almost isosaline core, with all salinity gradients confined to 
boundary layers, which are thinner than the thermal boundary layers by an 
amount 7-4. In  these salinity boundary layers, the effect of the stabilizing 
salinity gradient on the temperature field is small because of the different 
diffusivities. For sufficiently high RT the destabilizing temperature effects can 
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(f 1 fs) (h) 

FIGURE 12. The basic fields for RT = 10700, RS = lo4, u = 1 and T = 10-*. (a) The per- 
spective representation of the stream function viewed from the same point P as in figure 8. 
(b)  The perspective representation of the vorticity Vz$ viewed from P. (c) ,  (d),  (e) The 
non-dimensional temperature, salinity and density with contour spacings of 0.2, 0.2 and 
1-0 respectively. (f) The mean temperature profile averaged across the cell. (9) The mean 
salinity profile. (h) The mean density profile. 

thus overcome the restoring effects of the salinity. This steady form of motion 
is a very efficient way of transporting heat and salt and thus the equilibrium 
Nusselt numbers undergo a discontinuous increase as the solution changes from 
the oscillatory branch to the monotonic branch. 

The fields displayed in figure 12 are typical of solutions on the monotonic 
branch. These all consist of steady, roughly circular motion with the largest 
vorticity in the central region of the cell. There is rising hot salty fluid adjacent 
to one edge of the cell and sinking relatively colder, fresher fluid adjacent to the 
other edge. The mean temperature and salinity gradients illustrate the thin, 
principally conductive, boundary layers and the larger, principally convective, 
interior, in which the mean gradients are very much smaller. The mean density 
gradient has a double structure in the boundary layer, due to the opposing 
influences of the temperature and salinity, and a much more uniform distribution 
in the interior. 

As RT increases above Ri the Nusselt numbers also increase. For very large 
RT and fixed R,, the temperature field and thermal Nusselt number are very 
similar to those for the purely thermal problem (Rs = 0) at  the same RT. Using 
the mean-field equations, Huppert (1972) suggests that at infinite Prandtl 
number 

NT = 0.224 [ I  - (d&?,g/RT)]+R& (5 .1 )  

and i& = 7-4 NT (5.2) 

as RT+m. For a Prandtl number of 1-0, the multiplicative constant in (5.1) 
is increased, so that 

NT = 0.238[1.-(74R,/RT)]~R~ (C = 1 ,  RT-tm).  (5.1') 

Nusselt numbers obtained from the numerical solution of Yt for o = 1 are 
compared with those calculated from (5.1') and (6.2) in figure 13. It is seen that 
the agreement is rather good. 
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FIGTJRE 13. The thermal and saline Nusselt numbers ae a function of RT for cr = 1, 7 = 10-* 
and Rs = los. The crosses are the results obtained from the numerical solution ofYt and 
the curves are the results (5.1’) and (5.2) obtained from the mean-field calculations. 

The accurate investigation by Moore & Weiss (1973) of the purely thermal 
problem indicates that an @ relationship between NT and R, holds for 

5 < R/R, < d, 
where B, is the linear critical Rayleigh number. At higher thermal Rayleigh 
numbers advection of vorticity becomes important and Moore & Weiss fkd 
that N, cc R!$366. A large number of different results and a more complete dis- 
cussion is contained in that paper and the reader is referred to it for further 
details. 

As R, is gradually decreased from some value greater than R;, the equilibrium 
monotonic motions retrace the states that would have been obtained on in- 
creasing R, from &; thus there is a unique stable equilibrium solution to .sP, 
for RT > Ri. 

As R, is decreased below R;, an equilibrium monotonic solution continues to 
exist, with decreasing Nusselt numbers, until R, = R,, say. Further decrease 
in R,  leads to a solution on the oscillatory branch already described, or, if 
R, < R,, to conduction. There is thus a hysteresis between these two different 
modes of motion, which will be discussed further in the next section. 

It is entirely reasonable to suppose (but has not been rigorously proved) that 
the nonlinear steady branch emanates from the bifurcation point at  R, = Re. 
The behaviour of the solution about RT = 22, can be obtained by using modified 
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perturbation theory in the same way as discussed in $ 3  except that all time 
derivatives are neglected. We find that: +, T and S are the same m ( 4 . 3 ~ )  
if Po is set equal to zero and eif is set equal to 1 therein; r,, = R,,; T, and 8, 
are the same as ( 4 . 4 ~ )  (withbe set equal to 0 and eit' to 1); and 

r, = @r2(R6 - 7-3 R,) a%-2. 

NT N I + 2(R6 - 7-'RS)-l (RT -Re) (RT +- Re) 

(5.3) 

(5.4) 

N, N 1 +27-2(R,,-7-3R,)-1(RT-R,,) (R,+-R6), (5.5) 

Using these results and the definitions (3.3), (3.4) and (4.2), we find that 

and 

independent of a. The monotonic branch hence emanates from a subcritical 
bifurcation point (r2 c 0 )  if 

R6 = 7-lRS + %c+ < 7-3R8 (5.6a, b)  

and from a supercritical bifurcation point otherwise. Rearranging (6.6 b) ,  we 
find that the bifurcation point is supercritical for 0 < R, < Rbi, say, and sub- 
critical for R, > Rbl, where 

Rbl = Yh2(7-l - 7)-l. (5.7) 

Rbi < R l n 6 .  (5.8) 

By comparison of (5.7) with (2.9) it is apparent that 

Hence, for that range of R, for which linear theory predicts the onset of an 
oscillatory instability, the accompanying linear monotonic mode bifurcates 
subcritically. 

Solutions on this subcritical branch are unstable to time-dependent two- 
dimensional disturbances until R,  attains a minimum value. The branch then 
continues, and solutions on it are stable, with the amplitude of the motion 
increasing as R,  increases. We identify this part of the branch as the one dis- 
cussed at  the beginning of the present section and displayed for four values of 
cr, 7 and R, in figure 5 .  We have not rigorously proved this identification but no 
other possibility seems at all plausible. A parabola of the form 

R,  = a(%-N~,min)~+R, (5.9) 

has been fitted through the three calculated cases on the monotonic branch 
with the lowest values of R,  (see table 6 ) .  The values of the saline Nusselt number 
at the minimum point, N,, min, are tabulated in table 4 for as many values of 6, 
7 and R, for which it was believed that the curve fitting could be accurately 
carried out. The results of a similar procedure using the numerically obtained 
values of N, are also tabulated in table 4. The two procedures lead to values of 
R, which differ by at most l%, a satisfactory amount considering that the 
procedure involves extrapolation. 

The unstable portion of the monotonic branch of solutions might be approxi- 
mated by 

(5.10) RT = ( R 6 - R 6 )  (N8,mln-NS)2 (NS,min-1)-2+R5, 
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Rs NT,IUln NS, mln R d T )  RdS)  
U = 1.0, 7 = lo-* 

103 1.64 3.07 2000 2000 
104 2.05 3-67 4110 4110 
104 2.75 4.71 10450 10430 

1.5 x 104 3.13 5-43 15060 15050 

U = 1.0, 7 = 0.1 
103 1.64 5-51 1740 1760 
109 2.26 6.94 3570 3570 

TABLE 4. The minimum values of RT and the corresponding thermal and saline Nusselt 
numbers for which monotonic convection can occur. These results are obtained by 
extrapolation of the three calculated solutions on the monotonic branch with the lowest 
value of RT. 

U = 1.0, 7 = d = 1.0, 7 = 0.1 

R s  - dRT/dNs - (dRT/dNs),, Rs - dRT/dNs - (dRT/dNs)psr 
103 1.4 1.7 10s 4.9 3.9 
105 4.4 4.9 10% 16 9.7 
104 14 12 

1.5 x 1.04 21 15 

TABLE 5. The gradient in the RT, Ns plane (of the unstable portion) of the monotonic 
branch at RT = R,. dRTldNs is the gradient obtained by modified perturbation theory 
and (dRT/dNs), is that obtained from fitting a parabola through the minimum values 
of table 4 and the point RT = R,, NS = 1. 

a parabola which has a minimum of RT = R, a t  Ns = N,, and passes through 
the point RT = R6, N, = 1. The slope of this parabola at NB = 1, (dRT/dNs)par 
say, is given by 

(dRT/dN,) par = - 2(R6 - R5) RB, min - 1Y. (5.11) 

This is compared in table 5 with the value 

dRTfdNs = 47’(& - T ~ R ~ ) ,  (5.12) 

which is the correct slope of the steady branch at Ns = 1 as analytically deter- 
mined by (5.5).  Considering the simplicity of the parabolic representation (5.10) 
and the large differences between R, and R6, we find the agreement between the 
two results to be quite good and conclude that (5.10) is a fair representation of 
the unstable portion of the monotonic branch. 

6. The relationship between the branches of oscillatory and monotonic 
motion 

As is clearly evident from figure 5 and table 2, the oscillatory and monotonic 
branches take quite different relative positions depending upon the values of cr, 
7 and R,. The influence of these parameters can be summarized as follows. The 
linear steady mode is independent of u because fluid particles undergoing steady 
linear motion conserve their momentum. Along the nonlinear part of the steady 
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branch the motion is only weakly dependent upon cr for the values of Q we are 
considering (a 2 1), just as in purely thermal convection (cf. Veronis 1966; 
Moore & Weiss 1973). By contrast, the motion on the oscillatory branch is quite 
dependent upon the value of cr because the magnitude of the phase lag between 
the temperature and displacement field, which drives the motion, is determined 
by cr. By way of contrast, the whole steady branch is strongly dependent on the 
magnitude of T because its value indicates how slowly the salt field diffuses, and 
hence how effectively the salt field can overcome the tendency of the temperature 
field to drive steady convection. Along the oscillatory branch, on the other hand, 
the value of 7 determines the phase lag between the salinity and temperature 
field, a lag which has only a small influence on the motion. The value of R,, 
which indicates the magnitude of the stabilizing salt field, has a large influence 
on both branches. 

Table 3 and the discussion in the last two sections summarize the various 
different orientations of the two branches and the hysteresis loop that connects 
them. Of particular interest is the value of R,, the least thermal Rayleigh 
number for which (nonlinear) monotonic convection is possible. Table 3 presents 
upper and lower bounds to R, for various values of a, 7 and R,. These are drawn 
on figure 14. 

Consider first figure 14 (a), which presents the bounds to R5 for cr = 1,7 = 10-4, 
and six values of R,. For the four lowest values of R,, R, lies below R,, and above 
both R, and R,. For the two highest values of R,, R, lies below R,, but above R,. 
An interesting observation, to be exploited further below, is that for all but the 
lowest value of R, the four ranges within which R, lies can be joined by the 
straight line 

and this straight line only just passes beyond the range of R, when R, = 103; 
(6.1) suggests R, = 2120 while the calculated range is 2000-2050. 

Decreasing 7 to 10-l without altering Q, we obtain the results plotted in figure 
l4(b) .  The five ranges for R, are, as expected, all less than those for 7 = 10-1. 
For R, = lo4 and R, = 1.5 x lo4, R, is less than R,. The straight line 

R, = 1200+0-92R, (6.1) 

R, = 1043+0*777R, (6.2) 

passes through the ranges calculated for R, for the three larger values of R, 
but lies slightly above that calculated for R, = lo3; (6.2) suggests R, = 1820 
while the calculated range is 1700-1800. No calculated value of R5 is less than the 
linear oscillatory value R,, and extrapolation of (6.2) beyond R, = 1.5 x lo4, an 
admittedly dangerous procedure, suggests that, for these values of cr and 7, 
there is no value of R, for which R, < R,. However, an appreciation of the 
different dependences of the position of the oscillatory branch and the steady 
branch on a suggests that by increasing cr it may be possible to  decrease R, 
below R,. 

The ranges of R, for cr = 10 and 7 = 10-l are plotted in figure 14(c). For 
R, = 104 or 1.5 x lo4, R, is less than both R, and Rs. Thus for these values of 
cr, 7 and R,, (nonlinear) monotonic convection can occur when the fluid is 
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F ~ a m  14. The minimum value of Br for which monotonic convection can oocurfor 
(a) u = 1, 7 = 10-4, (b)  u = I, 7 = 0.1 and (c) (r = 10, 7 = 0.1. The vertiod bars represent 
the regions within which the minimum OCCUI‘EI. The long-dashed straight lines (--) in 
(a), (a) and (c) are (6.1), (6.2) and (6.3) respectively. 

statically stable and linear theory predicts the existence of only a conduction 
solution. As before, there is a straight line, 

RT = 1033+0*844R,g, (6.3) 

which passes through the ranges of R, for the three larger values of Rs but lies 
slightly above that calculated for R, = lo3; (6.3) suggests R, = 1877, while the 
calculated range is 1700-1800. 

7. Discussion and conclusions 
Three-dimensional effects in the problem studied should be minimal for the 

following reason. In  purely thermal convection between rigid boundaries, 
theoretical analysis indicates that two-dimensional rolls are stable to three- 
dimensional disturbances within a closed region of the R,, a plane commonly 
referred to as the ‘Busse balloon’ (Busse 1967). Quite extensive experimental 
investigation has confirmed the existence and shape of the balloon (Busse & 
Whitehead 1971), and in particular the maximum value of RT = 22600 for 
which very large Prandtl number two-dimensional rolls are stable. In contrast, 
theoretical analysis of purely thermal convection between free boundaries 
indicates that the balloon is still ‘open’ for infinite Prandtl number at RT = 20 000 
(Straw 1972); that is, infinite Prandtl number two-dimensional rolls between 
free boundaries are stable up to at least RT = 20000. It is commonly believed, 
and correctly in our opinion though no proof is yet available, that the Busse 
balloon for free boundaries remains open as RT tends to infinity. Arguing by 
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analogy, we conjecture that the double-diffusive convective rolls between free 
boundaries treated herein are also stable to three-dimensional disturbances for 

The major conclusions of the work presented in this paper are as follows. 
Nonlinear asymptotic solutions of Yt belong to one of two branches. One is an 
oscillatory branch, which emanates from the linear oscillatory mode, either 
supercritically or, for sufficiently large values of R,, subcritically. In general, 
as RT is increased, the solution along this branch alters in such a way that the 
associated Nusselt numbers change from one maximum per period (figure 6), 
to two maxima per period (figure 9) to being aperiodic (figure 11). For sufficiently 
small R, this branch does not exist at all. The other branch is composed of 
steady solutions, which emanate from the linear monotonic mode. Unless R, is 
extremely small this bifurcation is subcritical. In  this general (subcritical) case, 
solutions on the monotonic branch are unstable until the branch passes through 
its minimum value of RT, whereafter the solutions are stable - at least in two 
dimensions. Stable solutions on both branches can exist at the same values of 
RT, R,, Q and T .  This leads to a hysteresis effect if solutions obtained from 
increasing and then decreasing RT are followed. Depending upon the value of 
Q, T and R,, as RT increases, instability may first occur as an oscillatory mode, 
either linear or nonlinear, or as a steady mode, either linear if R, is very small or 
nonlinear otherwise. Thus nonlinear time-dependent double-diffusive convection 
can occur when linear stability theory indicates the existence of only a con- 
duction solution, in contrast to the conjecture by Veronis (1968b). Finally, 
existence of an aperiodic solution which at a critical value of RT becomes steady, 
by changing from one branch to another, indicates that by increasing RT dis- 
ordered motion can be suppressed. 

While these conclusions hold exactly only for double-diffusive convection 
heated and salted from below, they act as a guide for a number of other problems. 
Amongst these are: convection in the presence of a magnetic field, currently 
being studied by N. 0. Weiss (see Prigogine & Rice 1975, p. 101); convection in a 
rotating system, a preliminary study of which has been undertaken by Veronis 
(1968a); and convection accompanied by a strong Soret effect, whereby con- 
centration gradients are induced by thermal gradients, as discussed in a number 
of papers in Prigogine & Rice (1975). The conclusions are not appropriate for 
double-diffusive convection heated and salted from above (salt-fingering), for 
which all asymptotic solutions are time independent. 

all RT. 
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Appendix. Numerical considerations 
The numerical solutions of .sP, were obtained by the methods described briefly 

in $ 3  and in detail by Moore et al. (1973), in which paper the parameters K,  K ~ ,  

R' and v are related to the parameters used in this paper by 

K = (gRT)-*, ~ , g  = T(~R,)-*, R' = Rs/RT, v = g/RT. (A 1a-d) 

The majority of the calculations were performed by covering the region 

O < x < l / a ,  o < z , < g  

with a uniform rectangular grid of points with N, horizontal intervals and N, 
vertical intervals. The solutions on the entire vertical interval 0 < z < 1 were 
obtained, when required, by using the symmetry relationships 

$(x, 4 = $(l/m-x, 1 -z ) ,  (A2a) 

T(z , z )  = -T(l /a-x, l -z) ,  S(X,Z) = -S(l/a-x, 1-z). ( A z b , ~ )  

If this symmetry exists at any particular time, Fourier analysis confirms that 
the solutions to (1.4)-(1.7) retain this symmetry for all future time (Veronis 
1965). A large number of solutions were also calculated using a different program 
which obtained the solutions of Yt directly over the entire region 0 < x < 1/a, 
0 < z < 1. I n  each case the same solutions were obtained by the two different 
methods. The purpose of generally using the smaller size grid was that it halved 
both storage and computation time. 

The time step 6t was chosen both to yield an accurate solution to the DuFort- 
Frankel representation of the diffusion effects and to satisfy the Couranti 
Friedrichs-Lewy criterion for stable representation of the advection effects. 

Accuracy in resolution was achieved by requiring at  least three grid intervals 
across each feature. The method used to determine ?,h from V2$ made it necessary 
for N, to be 12, 24 or 48, though N, could be any even number larger than or 
equal to 12. The most rapid spatial variation in each solution occurred in the 
horizontal salinity boundary layers on z = 0, 1. It was found that the requisite 
number of grid intervals were placed across these boundary layers if N, was 
chosen to be at least three times N , .  An indication of the internal consistency of 
the numerical program is obtained from the fact that in monotonic asymptotic 
solutions the Nusselt numbers, calculated a t  the middle of each horizontal 
interval by adding the mean of the vertical convected flux across the top and 
bottom of the interval to the conducted flux across the interval, varied by less 
than 0.01 yo across the entire layer. 

Two additional tests on the accuracy of the program were performed. First, 
solutions obtained on a fine grid generally agreed to within 0.3 % with solutions 
obtained on a coarser grid with A?, and N, half as large (but still sufficient 
for adequate resolution). Second, many of the solutions obtained by Veronis 
(1968 b) were recomputed. The two sets of results differed by significantly less 
than the 1 yo quoted by Veronis as the limit of accuracy of his solutions. 
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u =  1, 7 =  10-* 

N5= 12, Nz= 12 

(0 )  1800 (50) 2000 

2200 (26) 2276 

3500,5000 (250) 15000 

2000 (100) 2200 

(m) 2050,2100 (100) 2300 

N5= 12, N,= 14 
(0 )  3250,3300,3500,3800 

4250,4425 (26) 4475 

N5=24, N,=20 

(0 )  4100 (100) 4400 
(m) 4150,4200 (100) 4500 

N5= 12, N,= 16 

7800 (400) 10200 
9200,9300,9600 
10400 (100) 11000 

(m) 10500 (100) 10700 
11200,11400 

(0) 7735,7750 

b=1, 7 = 0 . 1  

N5= 12, N,= 12 

(0 )  1450 (50) 1750 (26) 1800 
1900 

R~ = 103 

N5= 24, N,= 22 

1700 (60) 1800,1900 
(0 )  1400,1450 

(m) 1800 (100) 2100 

Rs = 10* 
N,= 12, Nz= 12 

(0 )  2630 (30) 2780,3000 
3250,3325,3400 

N5= 24, Nz= 28 

(0) 2600,2630 
3500 (100) 4100 

(m) 3600 (100) 4000,4200 

R ~ =  104 
N5= 12, N,= 12 

(0) 6000 (50) 6100,6178 
6265,6310,6325,6355 

N,= 24, Nz= 34 

(0 )  8600 (200) 8800 
(m) 9000,9200,10200 

R~ = 1.5 x 104 
N5= 12, N,= 20 N,=24, N,= 38 
N5= 24, N5= 20 

(0 )  14800 (200) 15600 (0) 12300 
(m) 15200 (200) 15800 (m) 12700 

N5= 12, N,= 12 

(0) 1900 

N5= 24, N,= 18 

(0 )  1600 (100) 2100 

(m) 1800,2200 

N,=24, N,= 28 
(0) 3500 (100) 4600 
(m) 3800 (100) 4000,4800 

N,= 12, N 5 = 3 4  

(0) 9000,9300 
(m) 9600,9900,10000 

N5= 24, N,= 34 

9700 
(0 )  9000 (200) 8400,9500 

(m) 10000 

N,= 12, N,= 38 

(0 )  13700 

(m) 14000 

(0) 12700 (300) 13600 
(m) 14400 

(0) 13400 
(m) 13700, 14000 

N,= 24, Nz= 38 

N5= 24, N,= 42 

[Table 6 oontinued on facing page] 
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Rs  = 2 x 10‘ 

R~ = 2.5 x 104 

853 

N,= 24, N,= 24 

(0) 19400 
(m) 19600 (200) 20000 

N, = 24,N, = 24 

(0) 23600,24000,24200 
(m) 24400 

TABLE 6. Most of the computations carried out in this work. (0 )  indicates that the solution 
was oscillatory, (m) that it was monotonic. 

On theIBM 370/165 at theUniversityof Cambridge the time takenfor 1000time 
steps was approximately 20s for N, = N, = 12. For each set of parameters the 
program was generally run for between 3000 and 10000 steps, though some were 
run for as many as 40 000 steps. An indication of all the numerical experiments 
performed is given in table 6. 
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