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We consider theoretically and experimentally the propagation in porous media of
variable-density gravity currents containing a stably stratified density field, with most
previous studies of gravity currents having focused on cases of uniform density. New
thin-layer equations are developed to describe stably stratified fluid flows in which the
density field is materially advected with the flow. Similarity solutions describing both
the fixed-volume release of a distributed density stratification and the continuous input
of fluid containing a distribution of densities are obtained. The results indicate that the
density distribution of the stratification significantly influences the vertical structure of
the gravity current. When more mass is distributed into lighter densities, it is found
that the shape of the current changes from the convex shape familiar from studies
of the uniform-density case to a concave shape in which lighter fluid accumulates
primarily vertically above the origin of the current. For a constant-volume release,
the density contours stratify horizontally, a simplification which is used to develop
analytical solutions. For currents introduced continuously, the horizontal velocity
varies with vertical position, a feature which does not apply to uniform-density
gravity currents in porous media. Despite significant effects on vertical structure,
the density distribution has almost no effect on overall horizontal propagation, for
a given total mass. Good agreement with data from a laboratory study confirms the
predictions of the model.
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1. Introduction

Gravity currents are thin fluid layers driven by the horizontal gradients in pressure
arising from density differences with surrounding fluid. Such flows occur widely in
both the natural world and industry. Important examples include the lateral migration
of groundwater, hydrocarbons and carbon dioxide through porous rock (Bear 1988).
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330 S. S. Pegler, H. E. Huppert and J. A. Neufeld

The analysis of gravity currents to date, both in porous media and elsewhere, have
concentrated on situations where the density of the current is idealized as uniform,
with a sharp interface separating it from either a uniform or density-stratified ambient.
However, there are many situations in which a gravity current develops, or is
introduced, with variations in its density composition. One example arises when
a region of vigorously convecting fluid meets a horizontal surface and generates
a gravity current along it. Another is through a process, such as dispersion in a
porous medium, that mixes the boundary of the gravity current with surrounding
ambient fluid. Processes of this kind are thought to play a key role in the geological
storage of carbon dioxide (CO2) in underground aquifers (Orr 2009). The analysis
of variable-density gravity currents has received relatively little attention. Our aim in
this paper is to elucidate the dynamical principles that apply to gravity currents of
variable density, focusing here on those that propagate in porous media.

Our primary motivation stems from flows arising during geological carbon storage
in underground aquifers. Once injected into an aquifer, CO2 gradually dissolves in
the ambient water over times scales of decades to create a relatively dense gravity
current of CO2-rich water along the base of the aquifer. Szulczewski, Hesse & Juanes
(2013) have recently considered the case of a gravity current produced from plumes
of vertically convecting CO2, showing that the gravity current produced along the
base of the aquifer is fed by a source of variable-density composition. As the flow
adjusts into a stable stratification along the base, the gradients in concentration
become significantly smaller than those generated during its vertical convection and
further solutal diffusion may be rendered negligible. Parameter estimates indicate that
diffusion may remain negligible for at least tens of thousands of years following
the injection of CO2, during which time the dominant mode of transport is purely
advective. Szulczewski et al. (2013) developed depth-integrated models of longer-term
regimes in which there is a simplification of the vertical density structure under
diffusion. The regime of a purely advective density-stratified gravity current has
received no significant attention.

In this paper, we address the dynamics of density-stratified gravity currents.
When the density field is controlled purely by advection, the vertical structure of
the density field is not known a priori and it is necessary to consider explicitly
the two-dimensional transport of the density field. No simplified depth-integrated
formulation is possible without a loss of closure. This contrasts with the long-term
regimes considered by Szulczewski & Juanes (2013) and Szulczewski et al. (2013),
where diffusion structures the density field into a long-term linear stratification
(cf. a thermal boundary layer, e.g. Daniels & Punpocha 2005). It also contrasts
with variable-density flows controlled by a dominant gravity–capillary equilibrium
(Golding et al. 2011), where the overriding vertical structuring of the density field by
the capillary fringe allows for a depth integration. Without any overriding physical
control of the density structure, purely advective variable-density gravity currents
have a fundamentally distinctive character. The main aims of this paper are to
develop the theoretical, numerical and experimental tools necessary to investigate fluid
mechanical regimes of this kind. It will be demonstrated that, while a depth-integrated
formulation is generally unavailable, significant simplification of the full fluid
mechanical equations does occur under the approximations of a stably stratified
and thin fluid layer. A flow of the kind we analyse has, to our knowledge, been
considered previously only briefly by Woods & Mason (2000), who calculated a
solution describing the case of a finite release of linearly stratified fluid as an
extension of their results relating to two-layer gravity currents. Here, we present
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Stratified gravity currents in porous media 331

Free or rigid surface

FIGURE 1. (Colour online) Cross-section of a fluid-filled two-dimensional porous medium
of depth H containing a horizontal impermeable boundary along z = 0. The medium
contains a stratified gravity current of variable density ρ(x, t). Darker shading indicates
denser fluid. The outline of the current z= h(x, t) is shown as a solid curve. The medium
is assumed to be much deeper than the current (h�H ).

a comprehensive study of continuously stratified currents, with an allowance for
generalized density distributions and input conditions. We also present a focused
laboratory study of a stratified gravity current formed from the lock release of a
linearly stratified region into a uniform ambient fluid.

We begin in § 2 by developing general equations describing continuously and
discretely stratified gravity currents. Similarity solutions to these equations are
obtained first in the context of a finite release of mass in § 3 and second in the
case of a continuous injection in § 4. In § 5, we present our laboratory study, along
with comparisons between the data and our theoretical predictions. A discussion of
the time scales on which advection-controlled gravity currents arise in situations
where diffusivity is present is given in § 6.

2. Theoretical development
Consider a two-dimensional porous medium of uniform permeability k and porosity

φ saturated by fluid of constant viscosity µ but variable density ρ(x, t), where
x≡ (x, z), as illustrated in figure 1. We assume a constant reference pressure p∞ along
the horizontal line z =H , equivalent to assuming that the medium is much deeper
than the vertical scales of the flow. The fluid flow is modelled as incompressible and
governed by Darcy’s law, with momentum and mass continuity equations given by

µφu= k(−∇p− ρgẑ) and ∇ · u= 0, (2.1a,b)

respectively, where u(x, t)≡ (u,w) is the interstitial (pore) velocity, p(x, t) is the fluid
pressure and ∇ is the gradient operator (Bear 1988). For incompressible fluids, density
is materially conserved and is thus governed by the advection equation

Dρ
Dt
≡ ∂ρ
∂t
+ u · ∇ρ = 0. (2.2)

Thermal and solutal diffusivity are neglected. In writing (2.2), we also assume
that there are no capillary forces acting between the fluids, which could otherwise
control the density field through a capillary fringe (Golding et al. 2011). Under our
assumption of a deep porous medium (h�H ), the results of this paper are equally
applicable to situations with a confining or free upper boundary (Hesse et al. 2007;
Pegler, Huppert & Neufeld 2014). It is also applicable to cases where a buoyant
current flows along a free surface (as in our experiments presented in § 5).
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332 S. S. Pegler, H. E. Huppert and J. A. Neufeld

The flow is assumed to be stably stratified, ∂ρ/∂z 6 0, and with horizontal length
scales much longer than the vertical. In common with gravity currents of uniform
density, these assumptions imply, via a scaling analysis of (2.1), that the flow is
predominantly horizontal (w � u) (the Dupuit approximation; see Bear 1988). An
implication of the relative sizes of the velocity components is that the viscous
stresses due to vertical flow w can be neglected in the vertical component of the
force-balance equation (2.1a). This neglect yields a purely hydrostatic pressure field
p(x, t) described by

0=−∂p
∂z
− ρ(x, t)g or p= p∞ + g

∫ H

z
ρ(x, z̃, t) dz̃ (2.3a,b)

on integration subject to the reference pressure p(x,H , t)= p∞.
The outline, or height profile, of the current z= h(x, t) is defined so that the density

has the ambient value (ρ=ρa) for z>h(x, t) but is heavier (ρa 6ρ6ρ0) in the interior
0 6 z 6 h(x, t), where ρ0 is the maximum density. For convenience, we describe the
density field ρ(x, t) using the normalized relative density c(x, t)≡ [ρ(x, t)− ρa]/1ρ,
where 1ρ ≡ ρ0 − ρa. The value c = 0 represents the ambient density and c = 1 the
maximum density present in the flow. In terms of c, (2.3b) becomes

p= p∞ − ρag(z−H )+1ρg
∫ h(x,t)

z
c(x, z̃, t) dz̃. (2.4)

Substitution of (2.4) into the horizontal component of (2.1a) yields the horizontal
velocity

u=− k
φµ

∂p
∂x
=−U

∂C
∂x
, where C(x, t)≡

∫ h(x,t)

z
c(x, z̃, t) dz̃ (2.5a,b)

represents the vertically integrated dimensionless density (or weight per unit horizontal
area) of fluid above the point x and U ≡ 1ρgk/φµ is the speed associated with
gravity-driven vertical flow of fluid with density ρ0. Equations (2.5a,b) show that the
horizontal velocity of a fluid element u is driven by the horizontal gradient in the
weight of fluid columns above it. In order to see how contributions to this gradient
in weight arise, we differentiate the integral in (2.5) to yield

u=−U
[

c(x, h, t)
∂h
∂x
+
∫ h(x,t)

z

∂c
∂x
(x, z̃, t) dz̃

]
, (2.6)

which shows that the flow is driven both by the peripheral gradient in weight arising
from the interfacial slope ∂h/∂x and by the internal gradient in weight arising from
the integrated horizontal gradient of the density ∂c/∂x interior to the current. The
latter is identically zero for a uniform-density gravity current (c ≡ 1 for z < h), in
which case (2.6) recovers the familiar linear relationship between the horizontal
velocity and the gradient in height, u=−U∂h/∂x (e.g. Barenblatt 1952; Bear 1988).
The potential to drive flow via density gradients internal to the current is a new
feature of variable-density flow.

By differentiating (2.6) with respect to z, we obtain the further result

∂u
∂z
=U

∂c
∂x
, (2.7)
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Stratified gravity currents in porous media 333

which shows that vertical variations in horizontal velocity are in direct proportion to
horizontal variations in density. As a consequence, vertical variations in horizontal
velocity only arise when horizontal variations in density are present in the flow. This
is consistent with studies that assume a uniform density, where it is found that the
horizontal velocity does not vary through the height of the current. In physical terms,
(2.7) implies that horizontal gradients in pressure increase with depth only if density
decreases in the direction of the flow, ∂c/∂x< 0.

Integrating (2.1b) with respect to z subject to the no-penetration condition
w(x, 0, t) = 0 and using (2.5) to evaluate u, we determine the vertical velocity
of the flow as

w=−
∫ z

0

∂u
∂x

dz=U
∂2D
∂x2

, where D(x, t)≡
∫ z

0
C(x, z̃, t) dz̃. (2.8a,b)

Note the different physical controls by which the two velocity components u and w
are determined compared to the unsimplified equations (2.1). As a generic property of
models that assume a hydrostatic pressure field, the horizontal velocity u is controlled
independently by the gravity–viscous balance (2.5a). Given this u, the vertical velocity
w simply takes the values it must in order to satisfy the condition of incompressibility
(2.1b). This sequential determination does not apply to the governing equations (2.1),
where horizontal and vertical velocity are determined on equal footing via an elliptic
boundary-value problem.

The dimensionless relative density c(x, t) is the dependent variable describing the
state of the system. Substituting (2.5a) and (2.8a) into (2.2), we obtain the equation
governing the evolution of the density field,

∂c
∂t
+U

[
−∂C
∂x
∂c
∂x
+ ∂

2D
∂x2

∂c
∂z

]
= 0, (2.9)

where C(x, t) and D(x, t) are related to vertical (columnar) integrals of c(x, t) via
(2.5b) and (2.8b). Equation (2.9) is simpler than the original coupled system of
elliptic–transport equations (2.1) and (2.2), where determination of velocity depends
on a two-dimensional integration of the elliptic system (2.1a,b) over the full domain.
The important physical property highlighted by (2.9) is that the dynamics of thin
stratified gravity currents depend only locally on vertical columns of the density field.

While (2.9) represents a simplification of the dynamics, it cannot be simplified
further by depth integration without a general loss of closure. To confirm this, we
note that the depth-integrated form of (2.9) is given by

∂h
∂t
+ u(x, h, t)

∂h
∂x
=w(z, h, t), (2.10)

which can be recognized as the standard evolution equation for a material fluid
interface z= h(x, t) (see appendix A for the derivation of (2.10) from (2.9)). With a
uniform density (c≡ 1), (2.5) and (2.8) yield

u=−U
∂h
∂x

and w=Uz
∂2h
∂x2

(c≡ 1), (2.11a,b)

and (2.10) recovers the familiar one-dimensional nonlinear diffusion equation
describing the evolution of a uniform-density gravity current. Modified expressions
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for the velocity field as a direct function of h(x, t) could also be developed in
situations where the density field c(x, t) is at all times related directly to height h
by the control of a dominant gravity–capillary equilibrium (Golding et al. 2011).
Without any overriding physical control of the density field of this kind, no general
expressions are available to substitute for u and w in terms of just h in (2.10) and
there is therefore a loss of closure associated with the depth integration of (2.9).
The failure of depth integration represents a fundamental departure from models of
uniform-density gravity currents, as well as situations where simplified structuring of
the density field occurs under diffusion (Szulczewski & Juanes 2013). Variations in
density controlled by advection alone thus introduce the need to explicitly consider
the full, two-dimensional transport of the density field.

2.1. Velocity conditions
Equation (2.9) describes the evolution of the density field subject to suitable boundary
conditions. In the canonical problems of a finite-volume release and of a constant-flux
input considered later in this paper, the relevant boundary conditions are of either no
penetration or of an imposed horizontal velocity, respectively. Both of these situations
can be represented by

u(0, z, t)= u0(z, t), (2.12)

where u0(z, t) is a spatially and temporally dependent function representing the
velocity prescribed at a height z along the vertical line x = 0. The case of no
penetration is given by u0 ≡ 0, while the case of a continuous input involves
a non-zero specification of the horizontal velocity u0(z, t), to be detailed at the
beginning of § 4. Note that, because the vertical velocity w is fully specified for a
given horizontal velocity field u via (2.8), it is not possible to independently specify
the vertical velocity w in addition to (2.12). By differentiating (2.12) with respect to
z and using (2.7), we obtain

∂u
∂z
=U

∂c
∂x
= ∂u0

∂z
(z, t) on x= 0, (2.13)

which yields a boundary condition on the gradient of the density field c. Condition
(2.13) is physically analogous to the condition on the interfacial gradient ∂h/∂x
imposed in studies of uniform-density gravity currents, which likewise specifies the
horizontal gradient in weight of vertical fluid columns along x= 0 needed to generate
the imposed velocity u0. Equation (2.9) along with (2.13) and a suitable initial
condition on c(x, 0), form a closed system. In our later analysis of similarity solutions,
we will not impose (2.13) directly, favouring instead the alternative specification of
global constraints on fluid volumes (see § 2.2). However, the condition on ∂c/∂x
implied by (2.13) will be confirmed to arise in our mathematical solutions and
laboratory experiments.

In the case of a no-penetration boundary condition, u0 ≡ 0, (2.13) reduces to

∂c
∂x
(0, z, t)= 0. (2.14)

The horizontal gradient of the density is therefore identically zero along x = 0. In
physical terms, (2.14) implies that there are no internal variations in the horizontal
gradient of the weight of fluid columns from which vertical variations in horizontal
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FIGURE 2. (Colour online) A schematic illustrating the interpretation of the cumulative
volume–density function V(c̃) defined by (3.7) as the volume of the current above the
isopycnal c̃= c(x, t). Darker shading indicates denser fluid.

velocity along x= 0 could arise. By combining (2.14) with (2.6) and u= 0, we obtain
the further condition,

lim
x→0

[
c(x, h, t)

∂h
∂x

]
= 0, (2.15)

which implies that at least one of the interfacial density c(x,h, t) or interfacial gradient
∂h/∂x vanishes at x= 0. With uniform density, c≡ 1, (2.15) can only imply the latter.
In the situations considered in this paper, the density c will generally vanish at the top
corner of the current, c(0,h, t)=0 and (2.15) is automatically satisfied. An implication
is that there is then no constraint on the interfacial gradient ∂h/∂x(0, t), contrasting
with uniform-density gravity currents. Indeed, our analysis will show that it can be
infinite.

2.2. The density distribution
Previous studies of uniform-density gravity currents have typically focused on the
calculation of similarity solutions. In these studies, it is usual to specify a constraint
on the total volume of the current (e.g. Barenblatt 1952; Huppert & Woods 1995).
For a gravity current containing a continuous spectrum of densities, a single volume
constraint of this kind is insufficient. Instead, it is necessary to prescribe the volume
of each fluid density, or volume per unit density. In effect, this requires an infinite
number of constraints. In order to apply constraints of this generalized form, we
introduce the cumulative volume–density function V(c) defined as the volume of fluid
per unit width that contains densities of value c or less. Formally,

V(c̃)≡ φ
∫ xN (t)

0

∫ h(x,t)

0
Θ
[
c(x, t)− c̃

]
dz dx, (2.16)

where Θ is the unit step function. Under our assumption of a stable stratification
(∂c/∂z< 0), the function V(c̃) can be interpreted as the volume of the current lying
above the isopycnal c(x, t)= c̃, as illustrated in figure 2. In the absence of any input
of fluid, V(c) is a conserved quantity because material fluid volumes are conserved in
incompressible flow (Acheson 1990). Depending on how V(c) is specified, a range of
different density distributions are possible, from those where density c is concentrated
primarily towards a single value to those where density is distributed more evenly over
a wide range (illustrative examples will be shown later in figure 5).

As an alternative to V(c), we also define the cumulative mass–density function

M(c̃)≡ φ
∫ xN (t)

0

∫ h(x,t)

0
Θ
[
c(x, t)− c̃

]
1ρc(x, t) dz dx, (2.17)

representing the relative mass (the mass minus the mass of ambient fluid displaced)
of relative density c or less. This is equivalent to (2.16) but with the relative density
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(a) (b)

Gate

FIGURE 3. (Colour online) A schematic of a lock gate prior to release. (a) Illustrates
how the distribution function V[c0(z̃)] represents the volume above the line z = z̃ for a
given stably stratified density profile c0(z) behind the lock gate. Darker shading indicates
denser fluid. (b) Shows an example plot of the initial density stratification c0(z) and the
interpretations of the distribution functions V(c0) being proportional to (h0− z̃) and M(c0)
being proportional to the area to the left of the curve c0(z), each defined by (2.21a,b).

1ρc(x, t) included in the integrand. The functions M(c) and V(c) can be related by
noting that the volume δV and mass δM of the fluid strip containing densities between
c and c+ δc can be expressed as

δV = V(c+ δc)− V(c)= V ′(c)δc+O(δc2), (2.18)
δM = (1ρc)δV +O(δcδV), (2.19)

respectively, where the prime in (2.18) denotes differentiation with respect to the
argument. Using (2.18) to evaluate δV in (2.19) and taking the limit δc→ 0, we
determine that M′(c)=1ρcV ′(c). The functions M(c) and V(c) are therefore related
via

M(c)=1ρ
∫ c

0
c̃V ′(c̃) dc̃ and V(c)= 1

1ρ

∫ c

0

M′(c̃)
c̃

dc̃. (2.20a,b)

The advantage of M(c) over V(c) is that it is more natural to keep the total mass of
the current M(1) fixed in comparing the results of different density distributions. The
advantage of specifying V(c) is that it is more readily imposed mathematically.

In the context of a finite release of fluid, it is necessary to specify an initial
condition on the density field. Physically, a flow of this kind can be initialized by
release of a lock gate, as illustrated in figure 3(a) (and experimentally in § 5). Let
c0(z) denote the vertical density field of a stratified fluid layer lying stationary behind
a lock. The mass and volume distribution functions V(c) and M(c) in this situation
can be constructed from the initial stratification c0(z) according to

V[c0(z)] = l(h0 − z) and M[c0(z)] = l1ρ
∫ h0

z
c0(z̃) dz̃, (2.21a,b)

where l is the length of the lock and h0 is the height of the fluid layer (see figure 3(b)).
Once the lock is released, the density field c(x, t) will evolve from c0(z) in accord
with (2.9). However, the density distribution V(c) remains conserved and therefore
retains information associated with the initial stratification for all time. In our later
analysis of similarity solutions, the similarity solutions themselves will not depend on
any of the details of how fluid is introduced other than V(c).
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0

FIGURE 4. Schematic of a gravity current composed of a discrete density distribution. An
example with five layers (N = 5) is shown.

2.3. Discrete distributions
A different mathematical formulation arises in situations where the density field
occupies a series of N discrete, piecewise-uniform layers. Such cases are prescribed
by

ρ = ρi in hi−1(x, t) < z< hi(x, t), i= 1, 2, . . .N, (2.22)

where ρi is the density of the ith isopycnal layer and hi(x, t) is the height of its upper
surface (with i= 1 denoting the highest layer and i=N the lowest; see figure 4). This
would arise physically when a gravity current of two or more fluid species interact
without significant mixing (considered in the case of two layers, N = 2, by Woods &
Mason (2000)). Our primary motivation for considering this case is that it provides
a set of model equations different to (2.9), but with solutions that are asymptotically
equivalent in the limit of small density steps but nevertheless lend themselves more
conveniently to numerical solution.

Substitution of (2.22) into the horizontal component of (2.1a) determines the
pressure field of the ith layer as

pi(x, t)= p∞ − ρag(z−H )+ g

[
(z− hi)ρi +

i−1∑
k=1

Hkρk

]
. (2.23)

Using (2.23) to evaluate the pressure p in the horizontal component of the Darcy
equation (2.1a), we determine the horizontal velocity of the ith layer as

ui(x, t) = − k
φµ

∂pi

∂x
= gk
φµ

[
−ρi

∂hi

∂x
+

i−1∑
k=1

ρk
∂Hk

∂x

]
(2.24a)

≡ −U
N∑

k=1

cik
∂Hk

∂x
, where cik ≡

{
ci if i 6 k,
ck if i> k, (2.24b)
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and Hi(x, t)≡ hi− hi−1 is the thickness of the ith layer. The more compact expression
(2.24b) follows from (2.24a) on substitution of hi=∑N

k=i Hk. Equation (2.24a) shows
that the flow rate ui of the ith layer is driven by both the pressure gradient arising
from variations in the thickness of higher layers, represented by the second term,
and by the gradient of its own upper interface hi, represented by the first. Uniform-
density gravity currents are driven solely by the former (see (2.11a)) since there is no
other way to generate a horizontal gradient in hydrostatic pressure in that case. Here,
internal variations in density above a point also perturb the hydrostatic pressure, and
therefore introduce a dependence of ui on the density fields of higher layers. This is
consistent with the result (2.5) that the horizontal flow rate at a point is proportional
to the gradient in the weight of fluid columns above it. Note that (2.24) implies that
ui is independent of z in the interior of each isopycnal layer, hi−1 < z< hi.

Integrating the mass continuity equation (2.1b) vertically over each layer, we obtain
the set of depth-integrated continuity equations

∂Hi

∂t
+ ∂qi

∂x
= 0, where qi(x, t)≡

∫ hi

hi−1

ui dz=Hiui. (2.25a,b)

is the horizontal fluid flux per unit width of layer i, and we have used the fact that the
flow is independent of the vertical coordinate z in the interior of each layer, ∂ui/∂z=0,
as implied by (2.24). Combining (2.24b) and (2.25a,b), we obtain

∂Hi

∂t
=U

∂

∂x

[
Hi

N∑
k=1

cik
∂Hk

∂x

]
, (2.26)

which represents a system of N coupled nonlinear diffusion equations describing
the evolutions of the thickness profiles Hi. The mathematical character of (2.26) is
parabolic. This may appear to contrast with the integro–hyperbolic character of (2.9)
but is not inconsistent; it reflects the fact that a nonlinear diffusion equation can
arise as a special case of a transport equation in which the coefficients are functions
of the dependent variable. In the limit of small density steps 1ci ≡ (ci+1 − ci)→ 0
(and N→∞), a discretized distribution is asymptotically equivalent to a continuous
distribution. Therefore, despite their differing mathematical character, either (2.9) or
(2.26) can in principle be used to describe the same flows.

We assume that each isopycnal layer occupies a continuous horizontal interval
between the boundary x = 0 on which conditions of the form (2.12) are to be
specified and the individual layer front x= xi(t). In principle, it is possible for layers
to instead occupy intervals beginning at a non-zero value of x, or to lie disconnected
between two or more disjoint intervals. However, it will be confirmed a posteriori
that these situations do not apply to the asymptotic similarity solutions we seek.

At each layer front x= xi(t), we assume that the flux and thickness of layer i both
vanish, so that

qi(xi, t)= 0, and Hi(xi, t)= 0. (2.27a,b)

By suitably combining (2.27a,b) (see appendix B), we can obtain the set of evolution
equations for the layer fronts given by

ẋi = ui(xi, t)=−U
n∑

k=1

cik
∂Hk

∂x
. (2.28)
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Analogously to the specification of the distribution function V(c), we impose the
volume constraints

φ

∫ xi(t)

0
Hi(x, t) dx= Vi(t), (2.29)

where Vi is the total volume per unit width of layer i. For a finite-volume release, Vi
are constant. For a continuous input at constant flux, Vi(t)=Qit are each proportional
to time t, where Qi is the volumetric flux of input of fluid of density ci.

3. Release of constant mass
We begin by considering the release of a finite volume of fluid of fixed total relative

mass per unit width M0. In this case, we prescribe the density distribution (2.17) as

M(c)=M0M̂(c), (3.1)

where M̂(c) is a dimensionless, increasing function of density c satisfying M̂(0)= 0
and M̂(1)= 1. For now, we keep the dimensionless distribution function M̃(c) general
and consider the implications of scaling alone.

A scaling analysis of the system given by (2.9), (2.16), (2.20) and (3.1) shows that a
horizontal length scale cannot be formed from the parameters without incorporating a
dependence on time t. This indicates a mode of self-similar propagation independent
of the initial release conditions. The relevant similarity forms of the horizontal and
vertical coordinates x and z can be determined from the scaling analysis as

ξ = (φ/V Ut)1/3x and ζ = (φ2Ut/V 2
)1/3

z, (3.2a,b)

respectively, where V ≡ M0/1ρ represents the hypothetical volume that the current
would occupy were its mass M0 concentrated into the maximum density alone.
Consistent with (3.2a,b), we define the similarity forms of the horizontal extent ξN ,
vertical height f (ξ) and horizontal velocity s(ξ), given by

xN = (V U/φ)1/3t1/3ξN, (3.3)

h= (V 2/φ2U
)1/3

t−1/3f (ξ), (3.4)

u= (V U/φ)1/3t−2/3s(ξ), (3.5)

respectively (Woods & Mason 2000). Equations (3.3) and (3.4) imply that the
horizontal and vertical extents evolve in proportion to t1/3 and t−1/3, respectively.
These exponents are equivalent to those found for a uniform-density gravity current
(Barenblatt 1952) because the specification of a density distribution (2.20) does not
introduce any new dimensional parameters from which a different scaling law might
be developed.

In order to explore a variety of density distributions, we specify mass distributions
of the general power-law form

M̂(c)= cn+1, (3.6)

where n>0 is called the distribution parameter. Note that the total dimensionless mass
M̂(1) = 1 is independent of the parameter n, so that the total mass of the current
is kept fixed across the range of distributions we consider. By substituting (3.1)
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FIGURE 5. (Colour online) (a) Distributions of relative density c for the cumulative
mass–density functions given by (3.7a) for illustrative distribution parameters n= 0.25, 1, 4
and 20, shown in their horizontally stratified states. Darker blue indicates heavier fluid.
(b) The corresponding volume–density functions V(c) given by (3.7b), illustrating a linear
distribution for n= 1, more diffuse distributions for n< 1 and less variable distributions
for n> 1. Each distribution has the equivalent total mass in accord with (3.6).

with (3.6) into (2.20b), the corresponding cumulative volume–density function is
determined as

V(c)= V0V̂(c)= V0cn, where V0 ≡ V(1)= n+ 1
n

V (3.7a,b)

is the total volume of the current. The distributions defined by (3.6), or equivalently
(3.7), are illustrated as functions of z and c for a selection of distribution parameters
n in figures 5(a,b). With n= 1, the cumulative volume V(c)= 2c is linear, implying
equal volumes per unit density. When n< 1, there is a greater volume of lighter fluid
relative to heavier fluid, corresponding to a more diffuse current. When n> 1, more
mass is concentrated towards the value c= 1. The case n=∞ recovers the case of
uniform density (c= 1). Note that, having fixed the total mass in prescribing (3.6), the
total volume V0 given by (3.7b) increases with n because the mass in those cases is
spread over a larger volume.

The similarity solutions were calculated numerically using a method of discretizing
the continuous distribution (2.9) into a large collection of piecewise-constant densities
and then solving the model equations applicable to a discrete density distribution
developed in § 2.3. Details of the numerical method are given in appendix C. A suite
of solutions is shown in figure 6 for a selection of distribution parameters n= 4, 2, 1
and 0.25. Remarkably, in all cases it is found that the density field varies only
vertically: the isopycnal surfaces (of constant density) form perfectly horizontal
stratifications. The height profile and vertical density profiles c(ζ ) for a selection
of cases are shown together in figure 7(a,b). The prefactor to the horizontal extent,
ξN ≈ 2.08, is found to be identical in all cases of n, indicating that the rate of
horizontal propagation is independent of how the mass of the current is distributed.

The height profile in the case n= 4 is qualitatively similar to the uniform-density
case n = ∞, which likewise contains a horizontal top at ξ = 0 (Barenblatt 1952).
As illustrated in figure 7(a), the case n = 4 is slightly taller, owing to the relatively
larger volume of lighter fluid it contains compared to the uniform-density case. As n
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FIGURE 6. (Colour online) Numerically determined similarity solutions describing a
release of constant mass for distribution parameters (a) n= 4, (b) n= 2, (c) n= 1 and (d)
n= 0.25 used to specify the distribution (3.6). The outline of the current is shown as a
thick black curve. The normalized density field c(ξ , ζ ) is shown as a colour plot, with
10th percentile contours shown as thin black lines. Darker shading indicates denser fluid.
All (isopycnal) contours of constant density are found to align horizontally.
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FIGURE 7. (Colour online) (a) The height profiles f (η) of the similarity solutions
describing a release of constant mass for distribution parameters n = 0, 0.25, 0.5, 1, 2, 4
and ∞, and (b) the vertical dependence of the density c(ζ ) for n = 0.25, 1 and 4. The
analytical solution (3.15) is shown as a blue, solid curve for n= 0 and ∞ and as a blue
dashed curve for n= 0.25 and 4.
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is reduced, there is a qualitative change in the height profile from a convex shape for
n> 2 to a linear shape for n= 2. In this case, the density profile c(ζ ) is also linear
(see figure 7b). As n is reduced further to n = 1, the profile turns concave, with a
considerable increase in height for ξ . 0.5. With n= 0.25, the current appears to be
infinitely tall, with the height accumulating above ξ = 0 without limit. The results
indicate that lighter fluid in a gravity current has a strong tendency to accumulate
vertically above the region of input, rather than contribute to horizontal propagation.
An important physical conclusion is that there is no apparent limit to the vertical
extent of trace fluids remaining on top of a gravity current to long times.

3.1. Analytical results
The numerical solutions all show that the density contours align horizontally, so
c = c(z, t) only. Assuming that this is a generic feature of the similarity solutions
relevant to a finite release, not only applicable to the power-law distributions
(2.20), we revert to a general density distribution Ṽ(c) and consider the dynamical
simplifications arising from the assumption that c= c(z, t).

First, we note that (2.5) simplifies to

u=−Uc(h, t)
∂h
∂x
, (3.8)

which shows that the horizontal velocity is proportional only to the product of the
interface height and the density on the interface. This reduction occurs because, with
no internal variations in pressure possible if ∂c/∂x = 0, the only means to generate
a horizontal gradient in pressure is from a gradient in the interface ∂h/∂x. In this
situation, (3.8) further implies that ∂u/∂z= 0 and hence that the horizontal velocity is
independent of the vertical coordinate z. This property is shared with uniform-density
gravity currents, which likewise contain no horizontal gradients in density, ∂c/∂x= 0.
However, it is not generally true of variable-density flows for which ∂c/∂x 6= 0, with
the case of a continuous input considered later in § 4 proving to be one such example.

Substitution of (3.8) into (2.8) determines the evolution equation

∂h
∂t
=U

∂

∂x

[
c(h, t) h

∂h
∂x

]
. (3.9)

This generalizes the nonlinear diffusion equation applicable to a uniform-density
gravity current in a porous medium to allow for the more general case of a purely
vertically variant density (cf. Woods & Mason 2000). The new mathematical feature
is the normalized density c(h, t) appearing in the effective diffusivity. Recasting (3.9)
in terms of the similarity variables (3.2) and writing c= c(ζ ), we obtain

1
3(ξ f )′ = ( fs)′, where s=−c[ f (ξ)]f ′ (3.10)

is the scaled velocity and a prime denotes differentiation with respect to the argument.
Integration of (3.10) subject to the condition of a vanishing frontal flux, limξ→ξN ( fs)=
0, yields

s= 1
3ξ =−f ′(ξ)c[ f (ξ)], (3.11)

which shows that the scaled velocity s increases linearly from zero at ξ = 0 to the
maximum s= ξN/3 at the front of the current.

As highlighted in § 2, a direct imposition of the density distribution V̂(c) cannot
generally be achieved using a simple volume constraint. However, in the special
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0

FIGURE 8. (Colour online) Schematic showing how the shaded volume relates to the
height f (ξ̃ ) in situations where the density contours are horizontal, giving rise to the
relationship (3.12).

situations in which ∂c/∂x= 0 considered here, it can be done as follows. Let the line
ζ = f (ξ̃ ) represent the horizontal isopycnal c̃ = c[ f (ξ̃ )] shown as a thick horizontal
line in figure 8. Since the fluid above that line has density less than c̃, the shaded
area in figure 8 is by definition equal to V̂{c[ f (ξ̃ )]}. Therefore,∫ ξ

0
f (ξ̃ ) dξ̃ − ξ f (ξ)= V̂{c[ f (ξ)]}, (3.12)

which imposes the distribution constraint. Differentiating (3.12) with respect to ξ and
cancelling a factor of f ′(ξ), we obtain

−ξ = c′[ f (ξ)] V̂{c[ f (ξ)]}. (3.13)

Using (3.11) to evaluate the density c in (3.13), we obtain finally the differential
equation (

ξ

3f ′

)′
V̂ ′
(
− ξ

3f ′

)
= ξ, (3.14)

the solution of which provides the height profile f (ξ) given any specified distribution
function Ṽ(c). With f (ξ) in hand, we can use (3.11) to determine the density field
via c[ f (ξ)] = −ξ/(3f ′). With the power law (3.7a) as a concrete example, we can
integrate (3.14) with n 6= 1/2 to give the analytical solutions

f (ξ)
f0
= 1−

(
ξ

ξN

)(2n−1)/(n+1)

and c(ζ )=
(

1− ζ
f0

)3/(2n−1)

, (3.15a,b)

where f0 ≡ 31/3(n+ 1)/(2n− 1) and ξN = 91/3. The integration of (3.14) with n= 1/2
involves a logarithm and is omitted here for brevity. The solutions (3.15a) are plotted
as blue curves in figure 7(a) (solid for n= 0 and ∞ and dashed for n= 0.25 and 4),
providing validation of our numerical solutions. In the uniform-density case n =∞,
(3.15a,b) yield the height profile f = (ξ 2

N − ξ 2)/6 and density field c = 1, obtained
previously by Barenblatt (1952). The case n = 1 was obtained previously by Woods
& Mason (2000). It is found that the qualitative transitions in shape indicated from our
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earlier numerical solutions shown in figures 6 and 7(a) correspond to critical switches
in the form of the exponent in (3.15a). For n> 2, the exponent is greater than unity
and the current is convex. For n=2, the exponent is unity and the profile is completely
linear, consistent with our numerical solution shown in figure 6(b). For 1/2< n< 2,
the height profile becomes concave with a singular gradient at ξ = 0. The transition
to an infinitely tall current occurs for n 6 1/2.

The analytical solutions obtained above also confirm that the frontal position
ξN = 91/3 is independent of the distribution parameter n, as was indicated earlier by
our numerical solutions. It is natural now to conjecture that the horizontal extent ξN

is completely independent of the specified distribution V̂(c), not only applying to
density distributions of the power-law forms (2.9). To prove this, we first use the
chain rule to change the integration variable in (2.20) from c to ξ to give∫ ξN

0
{c′[ f (ξ)]V ′{c[ f (ξ)]}}{c[ f (ξ)]f ′(ξ)} dξ = 1. (3.16)

Now using (3.10) and (3.13) to evaluate the braced factors, we obtain∫ ξN

0

1
3
ξ 2 dξ = 1 and hence ξN = 91/3 (3.17)

on integration. The rate of horizontal propagation of the gravity current therefore
depends only on its total relative mass, despite the specific density distribution having
a significant effect on its vertical structure.

4. Continuous input
We now consider a current resulting from a source producing fluid over a

distribution of densities. In order to specify a source of this kind, we use the source
distribution function Q(c), defined as the volumetric flux per unit width at which
fluid of densities c or less is input. Assuming that the source begins to introduce
fluid at t= 0, the volumetric distribution function defined by (3.7) satisfies

V(c, t)=Q(c)t. (4.1)

The specification of (4.1) provides the global volume constraints relevant to the case
of a continuous input. While these constraints will be sufficient for the purpose of
determining asymptotic similarity solutions, it is insightful to consider first how the
specification of a variable-density input flux results in local conditions on the density
gradient ∂c/∂x near the source.

Since the density is stably stratified (∂c/∂z < 0), a condition of continuous input
along x= 0 can be specified by the integral equation∫ h(0,t)

z
u(0, z̃, t) dz̃=Q[c(0, z, t)], (4.2)

which implies that fluid of density c or less is input at the rate Q(c). Differentiating
(4.2) with respect to z, we obtain the direct, local condition on the horizontal velocity,

u(0, z, t)= u0(z, t)=− ∂
∂z

Q[c(0, z, t)] =−∂c
∂z

Q′[c(0, z, t)], (4.3)
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which shows that the flux distribution Q′(c) determines u0(z, t) along x=0 in a manner
that depends implicitly on ∂c/∂z. Combining (4.3) with (2.13), we obtain

U
∂c
∂x
(0, z, t)= ∂2

∂z2
Q[c(0, z, t)] = ∂

2c
∂z2

Q′(c)+
(
∂c
∂z

)2

Q′′(c), (4.4)

which shows that the flux condition specifies the horizontal density gradient ∂c/∂x
along x= 0. In the illustrative example Q(c)= Q0c, we can evaluate Q′(c)= Q0 and
Q′′(c)= 0 in (4.4) to obtain

U
∂c
∂x
=Q0

∂2c
∂z2

on x= 0, (4.5)

which illustrates how the condition on ∂c/∂x is dependent on the vertical density
profile along x = 0. This is analogous to the manner in which the condition on the
interfacial gradient of a sourced gravity current of uniform density depends on the
instantaneous height of the current at the point of input (see (3.2) of Pegler, Huppert
& Neufeld 2013a, for example). Note that (4.4) differs from a diffusive flux condition,
where the condition is imposed directly on the compositional gradient, rather than in
an implicit manner.

To specify a fixed total mass flux, we set

M(c)= J(c)t≡ J0Ĵ(c)t, (4.6)

where J0≡ J(1) is the total (relative) mass flux and Ĵ(c) is a dimensionless, increasing
function that satisfies Ĵ(0)=0 and Ĵ(1)=1. By substituting (4.6) and (4.1) into (2.20b)
and cancelling the factor of t, we relate J(c) to the volumetric source distribution
function Q(c) according to

Q(c)= 1
1ρ

∫ c

0

J′(c̃)
c̃

dc̃. (4.7)

Conducting a similar scaling analysis to that performed in § 3 but with (4.6) in
place of (3.6), we obtain the similarity variables for horizontal dimensions, height and
velocity relevant to a continuous input as

(x, xN)= (QU/φ)1/3 t2/3(ξ , ξN), (4.8)

(z, h)= (Q2/φ2U
)1/3

t1/3(ζ , f (ξ)), (4.9)

u= (QU/φ)1/3 t−1/3s(ξ , ζ ), (4.10)

where Q ≡ J0/1ρ. These scales show that the current extends horizontally in
proportion to t2/3 and vertically in proportion to t1/3, analogously to the uniform-
density case (Huppert & Woods 1995).

Let us now explore the effect of a variable-density input by specifying the
illustrative power-law distribution

Ĵ(c)= cn+1, and Q̂(c)≡ Q(c)
Q
= (n+ 1)

n
cn, (4.11a,b)

where the latter follows from substitution of (4.6) with (4.11a) into (4.7). Were
fluid introduced by a source with these distribution functions into the confined
region behind a lock gate, the resulting stratifications would be represented by
those illustrated earlier in figure 5(a). To determine the similarity solutions, we
apply the same numerical approach used to solve the case of a finite release in § 3.
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FIGURE 9. (Colour online) Similarity solutions describing a gravity current fed at a
constant mass flux for distribution parameters (a) n = 4, (b) n = 2, (c) n = 1 and (d)
n = 0.25. The outline of the current is shown as a thick black curve. The normalized
density field c(ξ , η) is shown as a colour plot, with 10th percentile contours shown as
thin black curves. Darker shading indicates denser fluid.
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FIGURE 10. (Colour online) (a) The height f (η) of the similarity solutions for distribution
exponents n= 0.25, 0.5, 1, 2, 4 and ∞. (b) The vertical density profile c(0, ζ ) along ξ = 0
for n= 0.25, 0.5, 1 and 4.
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FIGURE 11. (Colour online) Horizontal velocity profiles s(ξ , ζ ) at a selection of horizontal
positions ξ = 0, 0.4, 0.8 and 1.2, illustrating their dependence on vertical position ζ . The
height profile f (ξ) is shown as a blue curve.

As discussed at the end of appendix C, the only adaptation to the numerical scheme
was to accommodate the different differential system (C 5)–(C 6) that arises when
(2.26) and (2.28) are recast in terms of (4.8) instead of (3.2).

The solutions for a range of distribution parameters n from 0.25 to 4 are shown in
figure 9. The solutions show that the surfaces of constant density slope downwards
in the direction of the flow. This is different to the situation found for a constant-
volume release in § 3, where isopycnals are universally horizontal. Only the isopycnal
along the base is horizontal in the present situation. The heaviest fluid therefore lines
the base of the current. Note that this property does not necessarily apply to gravity
currents with variations in viscosity, as has been illustrated by Woods & Mason (2000)
for certain two-layer currents.

The case n = 4 has a broadly linear, slightly convex shape similar to that which
applies to a continuously injected gravity current of uniform density (Huppert &
Woods 1995). As n is reduced further, the current becomes fully concave once
n 6 2.8. The numerical solutions indicate that a transition to a slope of infinite
gradient near the input occurs at n≈ 1 and to an infinite height for n≈ 0.5 (precise
estimates of these transitional values of n were difficult to ascertain numerically
because of the singularity in the height profile at ξ = 0).

A selection of horizontal velocity profiles s(ξ , ζ ) for the illustrative case n = 1
are plotted in figure 11. It is found that the horizontal velocity varies with vertical
position z. This contrasts with all uniform-density gravity currents in porous media,
which have vertically invariant velocity fields. These properties are consistent with the
result (2.7), which implies that vertical variations in horizontal velocity occur only if
there are horizontal gradients in density present. At the input ξ = 0, we see that the
velocity profile varies significantly from a maximal value at the base to a value of
zero at the top. This is expected because the fluid at the top of the current has zero
relative density [c(0, f (0))= 0] and is therefore stagnant. The vertical gradient of the
horizontal velocity ∂u/∂ζ = 0 along the base ζ = 0, which is consistent with (2.9) and
the fact that c= 1 along ζ = 0.

Interestingly, there is some variation in the rate of horizontal propagation for
different values of n, contrasting with the result that the rate of horizontal propagation
is independent of distribution for a fixed release, found earlier in § 3.1. This variation
is illustrated by the inset of figure 10(a), which shows an enlargement of the frontal
positions. We see that the case n = ∞ maximizes the value of ξN and hence the
rate of horizontal propagation. Possible variation in ξN is remarkably small, with a
difference of just 3 % between the cases n = ∞ and n = 0.1. (Calculations for a
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FIGURE 12. (Colour online) Cross-sectional schematic of our experimental Hele-Shaw cell.

selection of distributions not of the power-law form (4.11) were also found to lie
within this range of ξN .) The conclusion that horizontal propagation is independent
of distribution thus holds to good approximation, if not exactly, for the case of a
continuous input.

5. Experimental study
We conducted a laboratory experiment to compare with our theoretical predictions

in the case of a constant-volume release. This was performed in a Hele-Shaw cell
made of two polycarbonate sheets of length 100 cm and height 50 cm, forming a
porous medium of porosity φ= 1 and permeability k= b2/12= 7.8× 10−4 cm2, where
b≈ 0.097 cm is the gap width (see figure 12). As working fluids, we used fresh water
of density ρ0 ≈ 0.999 g cm−3, dyed using blue food colouring to a concentration of
4 vol%, and slightly salty water (saline) of density ρa ≈ 1.023 g cm−3, creating
a maximum density difference of 1ρ ≡ ρa − ρ0 = 0.024 g cm−3. The densities
were measured using an oscillating U-tube densitometer to an accuracy of within
10−5 g cm−3. The viscosity of the dyed water and saline were measured as
µ = 0.998 × 10−2 P and µa = 1.045 × 10−2 P using a U-tube viscometer, and
thus equal to within 5 %. The current was prepared from an equal mixture of fresh
water and saline (see below) and hence the mean value µ̄ = 1.022 × 10−2 P was
taken as the representative viscosity of the current.

To initialize a release of fluid, we formed a lock of horizontal length 10 cm
between the left-hand edge of the cell and a thin strip of polycarbonate (the gate).
The rest of the cell was filled with the clear saline solution. A series of eight layers
of piecewise-uniform density were used to form the current behind the gate (N = 8),
varying linearly in composition from the dyed fresh water to the clear saline solution.
Beginning with the heaviest, the mixtures were injected sequentially behind the gate
using a micropipette connected to a needle. This created the floating stratified fluid
layer shown schematically in figure 12 and in the photograph of figure 13(a). With
Vi = VL = 10 cm representing the volume per unit width of each layer, and assuming
an approximately linear relationship between composition and density, ci = i/N, the
total relative mass per unit width of the current was evaluated as

M0 =
N∑

i=1

ciVi1ρ =1ρVL

N∑
i=1

i
N

(5.1)

= 1
2
(N + 1)1ρVL ≈ 1.08 g cm−1. (5.2)
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FIGURE 13. Photographs showing the evolution of the experiment from (a) its initial state,
(b) after 50 s and (c) after 500 s.

The experiment was initiated by removal of the gate, which released the region
of buoyant stratified fluid. The buoyant current flowed along the top surface of the
ambient fluid, differing slightly from the situation of a current flowing along a rigid
boundary assumed in our theoretical development. By making the minor alteration of
replacing the reduced gravity 1ρg/ρ0 with the reduced gravity relevant to a floating
fluid layer 1ρg/ρa (e.g. Pegler et al. 2013b), the relevant value of U is found to be

U ≡ ρ0

(
1ρ

ρa
g
)

k
µ
≈ 1.80 cm s−1, (5.3)

where the factor in parentheses represents the replaced form of the reduced gravity.
A sequence of three recorded photographs is shown in figure 13 (the full sequence

forms supplementary movie 1 available at http://dx.doi.org/10.1017/jfm.2015.733). The
measured experimental frontal position is compared with the theoretical prediction
(3.3), given dimensionally by

xN(t)= (9V Ut)1/3 where V ≡ M0

1ρ
≈ 45 cm2, (5.4)

in figure 14. A comparison between the vertical thickness of the current, obtained by
digitally detecting the outline of the current in the photographs, and the theoretical
prediction of (3.15) with n = 1 is shown in figure 15. There is generally excellent
agreement with the data. From the images, it is evident that the isopycnals sustain a
horizontal alignment, which is consistent with the prediction from § 3. The profiles
are seen to approach the similarity solution gradually over time. The region of least
buoyant fluid at the back of the current is observed to approach the similarity solution
more gradually than elsewhere. The experimental frontal position xN initially lies
ahead of the theoretical prediction because the current is released from an advanced
state of finite horizontal length xN(0)= 10 cm, while the time origin of the similarity
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t (s)

FIGURE 14. Comparison between the measured frontal positions (black circles) and the
theoretically predicted position (line) given by (5.4) on a log–log scale.
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Theory

FIGURE 15. Comparison between the experimental thickness profile H(x, t) (solid curves)
and the theoretical prediction (dashed curve), plotted in terms of the similarity variables
defined by (3.3) and (3.4). The experimental thickness H(x, t) was measured by digitally
detecting the outline of the current from the experimental photographs. The theoretical
prediction (dashed) is given by (3.15) with n= 1. No fitting parameters are used.

solution (5.4) has the front of the current starting at the left wall (xN(0)= 0). Based
on the data of figure 14, the transition to the self-similar regime occurs over a time
scale of approximately 10 s. The experimental flow front lies slightly less advanced
than predicted by the theory. This may be attributed to the viscous drag caused by
vertical shear between the current and the ambient fluid, which is neglected in our
idealized theory. The need to drive a large-scale return flow of the ambient fluid
underneath the current may have further contributed to the slight reduction in frontal
speed compared to the prediction.

6. Discussion

An application of the fluid mechanical regime considered in this paper relates
to gravity currents fed from a source of convective plumes. Recent interest in this
problem has been generated by the process of geological CO2 storage, in which
the convection of dissolved CO2 produces a dense gravity current of CO2–water
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solution propagating along the base of an aquifer (MacMinn et al. 2012; Szulczewski
et al. 2013). Gravity currents fed by localized vertical plumes also arise during
processes of horizontal convection, which to date have focused primarily on the
diffusion-dominated final states that arise at long times in a confined cavity (e.g.
Daniels & Punpocha 2005). In these situations, diffusion may be locally significant in
regions of vertical convection but less significant, or negligible, in regions of stably
stratified horizontal flow.

To explore the situations for which a regime of purely advective gravity-driven flow
arises, let us include diffusion in the density evolution equation (2.2),

∂ρ

∂t
+ u · ∇ρ =D

∂2ρ

∂z2
, (6.1)

where D is the effective molecular diffusivity of the species producing density
changes (e.g. salt or CO2) and we have neglected horizontal diffusion on account of
the vertical scale being assumed much smaller than the horizontal. In simple terms,
diffusion intervenes only once the vertical scale of the current h becomes comparable
to the diffusive length scale z ∼ (Dt)1/2 that arises from a scaling analysis of (6.1).
To explore this transition in the context of our similarity solutions, we recast (6.1) in
terms of the similarity variables relevant to a finite release (3.2) or those relevant to
a continuous release (4.8), to obtain (in either case),

s · ∇ξc= [Pe(t)]−1 ∂
2c
∂ζ 2

, where Pe(t)= h̄(t)2

Dt
(6.2a,b)

can be interpreted as a time-dependent Péclet number, s · ∇ξ ≡ t u · ∇ is the similarity
form of the advective derivative and h̄(t)≡ h(xN/2, t) is a representative height of the
current. The Péclet number Pe(t) measures the ratio of advective transport to diffusive
transport, with the solutions obtained in this paper applicable only while Pe(t)� 1.
A characteristic time on which diffusion intervenes τ can be defined by Pe(τ ) = 1,
resulting in the implicit equation

Dτ = h̄(τ )2. (6.3)

Using the similarity solutions given by (3.2) and (4.8) to evaluate h̄ in (6.2b) and
(6.3), we obtain the expressions for the Péclet numbers and diffusion time scales,

Pe(t)= 1
D

(
V 2

φ2U

)2/3

t−5/3, τ =
[

1
D

(
V 2

φ2U

)2/3
]3/5

(finite release), (6.4a)

Pe(t)= 1
D

(
Q2

φ2U

)2/3

t−1/3, τ =
[

1
D

(
Q2

φ2U

)2/3
]3

(continuous release), (6.4b)

respectively. In both cases, Pe(t)→ 0 with time, implying that diffusion is initially
irrelevant but becomes important once t & τ . Note that the temporal exponent of time
t in Pe(t) is five times larger in the case of a continuous release than in the case of a
finite release. This reflects the fact that, with a finite release, the decrease in vertical
extent of the current over time (h̄∼ t−1/3) increases the vertical density gradients that
drive diffusion. By contrast, the increase in vertical scale (h̄ ∼ t1/3) for the case of
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a continuous input significantly decreases the vertical gradients in concentration that
drive diffusion.

To illustrate the significant differences in time scales on which diffusion can arise
physically, we evaluate τ for values representative of our laboratory set-up. With
reference to § 5, we set the velocity U = 1.8 cm s−1, effective volume V = 45 cm2,
and porosity φ = 1. We also choose the characteristic diffusivity D = 10−6 cm2 s−1.
Using these values, (6.4a) yields the time scale τ = 18 h. This is significantly greater
than the running time of our experiment (τ � 500 s), confirming that diffusion was
negligible. For a hypothetical experiment involving a continuous input, we use an
illustrative effective volume flux per unit width Q= 1 cm2 s−1. The time scale given
by (6.4b) is found to be τ = 1010 yr. The reduction in vertical concentration gradients
arising from vertical growth of the current therefore significantly delay the onset of
diffusion.

We now consider the migration of dissolved CO2 through porous rock. Using the
parameter settings suggested by Szulczewski et al. (2013), we set 1ρ = 10 kg m−3,
µ = 10−3 Pa s and allow for a range of permeabilities k = 10−14–10−12 m2 to
accommodate different aquifers. With these values, the speed scale U =1ρgk/φµ=
10−9–10−7 m s−1. To estimate the total relative mass flux J0 feeding the gravity
current from downwelling plumes, we evaluate the relative mass flux per unit width
for a convective boundary of length L using

J0 = 0.017 rUL≈ 10−4–10−2 kg s−1 m−1 (6.5)

(see (3.2) of Szulczewski et al. 2013), where r= 50 kg m−3 is the mass concentration
of CO2 in fully saturated water and L= 20 km is a representative horizontal length of
a region of trapped CO2. The corresponding scale of volumetric input Q = J0/1ρ =
10−5–10−3 m2 s−1. A characteristic effective diffusivity, based on an approximation of
negligible dispersion, is D ≈ 10−9 m2 s−1 (Szulczewski & Juanes 2013). With these
estimates, the diffusion time scale given by (6.4b) is τ = 1018–1022 yr. This estimate
indicates that molecular diffusion is essentially negligible in this context.

The calculation of τ above assumes that the current continues to be fed at the rate
(6.5) and is unconstrained to accumulate vertically. In reality, aquifers have a finite
depth H . As demonstrated by the simulations of Szulczewski et al. (2013), vertical
accumulation of the gravity current below the convection zone reduces (or partially
shuts down) the rate of convection from the maximum value (6.5) to a residual that
simply keeps the depth of the gravity current under the convection zone approximately
equal to that of the aquifer h(0, t)≈H . Fixing the depth of the current at a constant
is equivalent to the imposition of an input flux that decays asymptotically as t−1/2,
which is an intermediate situation to the cases of a finite and continuous release on
which we have focused thus far. With h̄∼H , the relevant forms of the Péclet number
(6.2b) and diffusion time scale (6.3) are given by

Pe(t)= H 2

Dt
τ = H 2

D
. (6.6a,b)

Notably, these expressions are completely independent of any parameters associated
with both the dynamics of the current and those of the convection zone. Equation
(6.6a) implies that Pe(t) decreases with the reciprocal of time, consistent with it
being intermediate to the two cases in (6.4). Given illustrative aquifer thicknesses of
20–200 m, we obtain τ = 104–106 yr. These time scales are consistent with the
transition times indicated by the simulations of Szulczewski et al. (2013). The regime
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of an advective gravity current of the kind considered in this paper is therefore
likely to represent the dominant regime of flow for dissolved CO2 on time scales of
thousands to hundreds of thousands of years.

7. Conclusions
We have explored the dynamics of gravity currents containing a stably stratified

density field controlled by advection. A variable-density field was found to introduce
new dynamical considerations to the flow of gravity currents. Generally, distributing
the mass of a gravity current into a stratification significantly alters its vertical shape
and structure but, with the total mass fixed, has little to no effect on its overall rate
of horizontal propagation.

The evolution of a continuously stratified gravity current was found to depend
explicitly on the details of its two-dimensional density field, contrasting with the
one-dimensional depth-integrated equations that can be used to describe uniform-
density gravity currents. A numerical approach for solving continuously stratified
gravity currents was developed based on discretizing the current into a large set
of isopycnal layers. With a finite release of dense fluid, similarity solutions were
obtained, showing that the density distribution can change the profile from a convex
shape for concentrated distributions, familiar from studies of uniform-density currents,
to a concave shape for more diffuse distributions. All isopycnal surfaces were found
to form perfectly horizontal stratifications. Analytical solutions resulting from this
simplification were used to validate our numerical predictions, as well as to classify
the possible shapes of the current in terms of the density distribution. Remarkably,
despite significant effects on vertical structure, the distribution of the density field
has no effect whatsoever on the horizontal extent of the current.

The flow resulting from a continuous input at a constant rate was found to exhibit
several qualitative differences compared to a finite release. One is that the isopycnal
surfaces slope downwards in the direction of the flow, a property which creates
internal variations in the horizontal gradient in hydrostatic pressure that drives the
flow. In contrast to a fixed release, as well as all gravity currents of uniform density
in porous media, the horizontal velocity was found to depend on vertical position.
Another difference is that the density distribution has some, if slight, control of the
rate of horizontal propagation.

The predictions compared well with data from a laboratory experiment involving
the lock release of a region of linearly stratified fluid into a uniform ambient fluid.
Digital extraction of the thickness profiles of the current over time showed that the
region of lightest fluid retains its initial shape for longer. The rate of approach towards
the self-similar mode of propagation therefore varies spatially along the length of the
current.

Parameter estimates indicate that a regime of purely advective gravity-driven flow
is likely to dominate the dynamics of dissolved CO2 in saline aquifers for up to
thousands to tens of thousands of years after the initiation of geological carbon
storage. Regimes of the kind explored here may therefore play an important role in
understanding how CO2-saturated water is mobilized in underground aquifers. This
may be a central consideration because, as indicated by recent numerical simulations,
the rate at which CO2 dissolves can be controlled entirely by the rate at which the
gravity current of CO2–water flows from the region of convection.
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Appendix A. Interfacial evolution derived from density advection

This appendix confirms that (2.10) follows from (2.9). The outline of the current
generally separates its interior from the ambient at a step in density. To separate
contributions to (2.9) due to the step from those due to the smooth variation of density
in the interior, we write

c(x, t)≡Θ[z− h(x, t)]c̃(x, t), (A 1)

where Θ is the unit step function and c̃(x, t) is a smooth field equal to c in the interior
of the current. Substituting (A 1) into (2.9) and simplifying, we obtain

δ(z− h)
[
φ
∂h
∂t
+ u

∂h
∂x
−w

]
+Θ(z− h)

[
φ
∂ c̃
∂t
+ u

∂ c̃
∂x
+w

∂ c̃
∂z

]
= 0, (A 2)

where δ is the Dirac delta function. Integrating (A 2) over the depth of the fluid
domain 0 6 z 6H , noting that (2.9) implies that the second term vanishes for z 6 h
and using the sampling property of the δ function, we obtain (2.10).

Appendix B. Evolution of an isopycnal layer front

This appendix derives the evolution equation for the layer fronts (2.28) from the
frontal conditions (2.27). Differentiating (2.27a) with respect to t, rearranging for ẋi

and using (2.25) to substitute for ∂Hi/∂t in favour of the flux gradient ∂qi/∂x, we
obtain

ẋi =− ∂Hi/∂t
∂Hi/∂x

= ∂qi/∂x
∂Hi/∂x

= lim
x→xi

(
qi

Hi

)
= ui, (B 1)

where all quantities are evaluated at x = xi(t). The third equality follows from
l’Hôpital’s rule, which is applicable because the flux qi and thickness Hi both vanish
in the limit x→ xi in accord with (2.27a,b).

Appendix C. Numerical solution of the discretized equations

This appendix details the numerical method used to solve the similarity equations
associated with a discrete distribution. We begin by choosing a suitably dense
distribution of discrete densities ci ranging from 0 to 1 (about one hundred values
were used). In the case of a finite-volume release, the equations describing a discrete
distribution are given by (2.26)–(3.6). In obtaining similarity solutions, we specify
the individual volumes of each isopycnal layer (3.7) as constants Vi.

With reference to (3.2), we define the similarity forms of the isopycnal layer
thicknesses Fi by Hi = (V 2/φU)1/3t−1/3Fi(ξ). When recast in terms of the similarity
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FIGURE 16. (Colour online) An illustrative cumulative mass–density function M̂(c) and
its discretized form M̂D(c), resulting from the specification of volumes per layer V̂i using
(C 3). The plot illustrates how the centralization of the steps in density on mid-values
between consecutive density steps ci, produce residuals between M̂(c) and M̂D(c) of
O(1ci), where 1ci = ci+1 − ci is the difference between consecutive densities.

variable ξ given by (3.2) and Fi(ξ), the governing discretized equations (2.26) become

−1
3
(ξFi)

′ =
(

Fi

N∑
k=1

cikF′k

)′
. (C 1)

The boundary conditions (2.27b), (2.28) and volume constraint (2.29) become

Fi(ξi)= 0, ciF′i(ξi)=−1
3
ξi,

∫ ξi

0
Fi dξ = V̂i, (C 2a−c)

where V̂i ≡ Vi/V is the dimensionless volume per unit width assigned to each layer.
Our numerical method was designed to yield a discretized solution to a continuously
specified distribution function. To accurately match the mass–density function arising
from the discretization MD(c) to the exact version M(c) specified by (3.6), we
prescribed the volume V̂i of each layer using

V̂i = V̂[ 12(ci + ci+1)] − V̂[ 12(ci−1 + ci)]. (C 3)

The comparison between the discretized cumulative volume–density function V̂D(c)
(black) resulting from (C 3) and the exact continuous version V̂(c) (blue) are illustrated
for an example distribution in figure 16. By conducting Taylor expansions of the two
terms on the right-hand side of (C 3) in the limit of small density steps 1c≡ ci− cc−1,
it is confirmed that the total mass implied by the discretized form of the mass–density
function satisfies

M̂D(1)≡
N∑
1

ciV̂i = 1+O(1c2) (C 4)

and is therefore equal to the total dimensionless mass M̂(1) = 1 to second-order
accuracy in the density step 1c.

Equations (C 1) and (C 2) form a system of ordinary differential equations, which
can be solved for the thickness profiles Fi(ξ) and frontal positions ξi. To accommodate
the fact that the frontal positions ξi must be determined as part of the solution, we
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used a Newton–Raphson iteration scheme in which ξi are treated as free variables
and the volume constraints (C 2c) as objective functions. Beginning with a trial set
ξi, the thickness profiles Fi(ξ) were constructed by performing a succession of N
fourth-order Runge–Kutta integrations of (C 1) over the intervals [ξj−1, ξj] ‘initialized’
using the conditions (C 2a,b) imposed at the front ξ = ξN and marching backwards
in ξ . Between each interval, continuity conditions on Fi and qi were imposed and
the thickness and slope of each new layer Fj(ξj) and F′j(ξj) initialized using (C 2a,b).
With Fi(ξ) obtained, the volumes of each layer were calculated and used to formulate
the next trial set ξi using a Newton–Raphson iterate. This process was continued until
quadratic convergence towards a solution satisfying the specified volumes (C 2c) was
obtained.

For the case of a continuous input considered in § 4, we used the same numerical
method but with the alternative system of similarity equations relevant to that case.
These are obtained by recasting (2.26) in terms of the relevant similarity variables for
the horizontal position (4.8) and of the layer thicknesses Hi= (Q2/φU)1/3t1/3Fi(ξ) to
obtain

− 2
3
ξF′i +

1
3

Fi =
(

Fi

n∑
k=1

cikF′k

)′
. (C 5)

Conditions (2.27b), (2.28) and (2.29) become

Fi(ξi)= 0, ciF′i(ξi)=−2
3
ξi,

∫ ξi

0
Fi dξ = Q̂i. (C 6a−c)

The values of Q̂i in (C 6c) were specified in an analogous manner to V̂i in (C 3)
above, except with the dimensionless source distribution function Q̂(c) given by
(4.11b) in place of V̂(c). The only quantitative differences compared to (C 1)–(C 2)
are that the left-hand side of (C 5) and the right-hand side of (C 6b) are different.
This was accommodated straightforwardly by a minor alteration of our Runge–Kutta
integrator.
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