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We consider the steady flow of a viscous compressible gas through an axisymmetric
or two-dimensional porous medium whose properties in the direction of the flow are
sufficiently slowly varying. The study is partly motivated by a number of different
applications in the Earth sciences, including the release of magmatic volatiles from
a magma chamber beneath an active volcano and the discharge of geothermal fluids.
The results are also relevant to evaluating the consequences of an accidental release of
carbon dioxide from a storage reservoir within the Earth, as might happen at a carbon
capture and storage (CCS) site. We consider both slow, thermally equilibrated, flows
and fast, adiabatic flows. Because the flow is compressible, it is the mass (and not
the volume) flux which is conserved along the flow. We determine this constant mass
flux and the velocity and pressure fields, both of which vary with position along the
flow, as a function of all the physical parameters. We find that the resultant pressure
gradient in the medium is largest at the far, low-pressure end of the conduit because
the velocity is largest at that end due to the smallest density being associated with the
smallest pressures. This means that the pressure in the permeable conduit is always
larger than the linear pressure distribution which joins the given pressures at depth
and at the surface, as would be the situation if the flow were incompressible. The
detailed pressure distribution is shown to depend on the variation with depth of the
quantity µT/(ka2), where µ is the dynamic viscosity of the vapour, T is the external
temperature, k the permeability and πa2 the cross-sectional area of the conduit. The
resultant mass flux is determined to be proportional to the mean along the flow of
µT/(ka2). We present two numerical illustrations of the results.

Key words: compressible flows, gas dynamics, geophysical and geological flows

1. Introduction

There are many circumstances where fluids flow to the Earth’s surface from
depth through regions of high permeability. This paper analyses the situation wherein
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Conpressible vapour flow 751
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FIGURE 1. (Colour online) A sketch of the flow domain showing the vertical velocity,
w(z), in a permeable medium bounded by an exterior solid with temperature T(z).

compressible fluids discharge steadily through a permeable conduit from a pressurized
reservoir. Examples include: magmatic volatiles being released from a magma chamber
beneath an active volcano; discharges of geothermal fluids; and escape of natural gas
and carbon dioxide (CO2) from natural or man-made sources. The volcanic case is
relevant to understanding gas emissions at volcanoes, while the CO2 case is of great
concern to carbon capture and storage (CCS) where an uncontrolled gas escape would
pose a significant hazard.

Flows of effectively incompressible fluids (such as magma and water) have been
much studied. In steady state, the flow is driven by the pressure difference between
that at depth and that at the surface and there is no difference between volume and
mass conservation. Compressible flows are quite different; in particular the mass
flux will be constant but the volume flux will vary strongly with pressure and hence
depth. The relatively low pressure and density at the surface then indicate that the exit
velocity is very much larger than that at depth. In fluid systems of geological interest,
notably water and CO2, there may also be important changes in physical properties as
the pressure changes from more liquid-like behaviour at high pressure to behaviour
as a gas at low pressure below the supercritical point. There are also regions of
two-phase flow for water, such as in geothermal systems (Woods & Fitzgerald 1993;
Pinder & Gray 2008).

Here we investigate the case of fluids at high temperature, which are strongly
compressible at pressures in the upper crust. Our models are concerned with one-phase
systems which are always at high enough temperature to avoid two-phase systems
(water–vapour). Such situations will be considered in a later paper. A major, but
not the only, motivation of the present study is degassing of volcanoes and flows of
magmatic fluids during formation of metalliferous ore deposits. However, the theory
developed, with some modifications, can be applied more widely.

The details are presented for a circular conduit of radius a which may vary with
the vertical coordinate z. The results obtained can be taken over to flow in a two-
dimensional permeable zone of width W if the cross-sectional area πa2 is replaced
by W throughout (figure 1).
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752 H. E. Huppert and R. S. J. Sparks

The time-independent vertical velocity w in a porous medium is described by
Darcy’s law (Bear 1972; Phillips 1991; Woods 2015) which is valid when the
Reynolds number based on a representative pore size is less than approximately 10.
For larger Reynolds numbers, inertial terms can be important and the flow is described
by a nonlinear equation known as the Darcy–Forchheimer law (Bear 1972; Dullien
1991). In our case, we consider here the locally low Reynolds number situation and
write

w=−(k/µ)dp
dz
, (1.1)

where k, the permeability, and µ, the dynamic viscosity, may be considered constant or
may vary with depth (and possibly in some cases with pressure, p) and gravitational
effects may be neglected due to the relatively low density of the gas – the flow is
mainly driven by the pressure gradient, which is large compared to the gravitational
contribution. In addition, we investigate effects due to change in conduit radius with
depth. The initiation of the flow is at z= 0, at which point variables are designated by
a subscript D (for depth), and the vapour reaches the surface at z= L, at which point
variables are designated by a subscript S (for surface). The analysis consists of finding
an expression for the mass flux, which, while initially unknown in the calculation, is
constant across each horizontal plane. This allows the determination of the governing
differential equation for the pressure, which can be integrated to obey the conditions

p= pD (z= 0) and p= pS (z= L), (1.2a,b)

and yields the necessary value of the mass flux M and corresponding w(z). As
indicated physically above, w(L) ≡ wS can be much larger than wD. We give some
numerical values and graphical curves to illustrate this in § 3 after developing the
general relationships in the next section.

Having evaluated the mass flux, we then determine the pressure field and finally
an expression for the vertical velocity through the conduit. These relationships can
then be used to determine various unknowns in real geological systems. For example,
there are some measurements and estimates of mass flux at several volcanoes such as
Montserrat in the Caribbean (Edmonds 2008) and from models of magma chambers
connected by conduits to volcanic craters (Christopher et al. 2014). From these
measurements and estimates and the theory developed here we can say more about
variables such as permeability and conduit radius. We do so, in part, in § 4. Further
analysis will be presented in a journal more devoted to the Earth sciences.

The ideas also have relevance to the sequestration of carbon dioxide, of great
societal concern at the moment. Currently 37 billion tonnes of carbon dioxide are
input annually into the atmosphere by mankind. This is believed to be gradually
increasing the world-wide average global temperature at ground level, leading to
increased droughts, flooding and deaths. One solution is to store the carbon dioxide
at depth, at least until well past the fossil fuel era. Very roughly, some 10 million
tonnes are being sequestered this way each year at the moment. One of the concerns
is potential leakage of the carbon dioxide (Pritchard 2007; Preuss 2008; Neufeld,
Vella & Huppert 2009; Huppert & Neufeld 2014). If the leakage results in the
supercritical carbon dioxide rising above its supercritical level some of the effects
described in this paper could occur. Several natural events have shown that dense
CO2 discharges on the Earth’s surface can be highly hazardous (Kling et al. 1987).
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Conpressible vapour flow 753

2. Flow through a porous conduit
The constant mass flux M across any horizontal surface is given by

M =πa2ρw, (2.1)

where ρ is the vapour density. Inserting (1.1) into (2.1), we see that

M =−πa2(k/µ)ρ
dp
dz
, (2.2)

which in steady state must be independent of z.

2.1. Incompressible comparison
By way of contrast, consider, for this subsection only, that ρ, k, µ and a are all
constant (as for an incompressible liquid flowing in a conduit of constant radius).
Then integration of (2.2) with (1.2) indicates that the pressure p is given by the linear
relationship

p= pD

(
1− 1p

pD
· z

L

)
≈ pD

(
1− z

L

)
, (2.3a,b)

where 1p≡ pD − pS and (2.3b) is valid under the approximation that

pD� pS. (2.4)

In this case, the vertical velocity

w=−(k/µ)(1p/L)≈ (k/µ)pD/L (2.5a,b)

and the constant mass flux

M =πa2(k/µ)ρ1p/L≈πa2(k/µ)ρpD/L. (2.6a,b)

Non-dimensionalised graphs of p/pD and µLw/(kpD) are shown in figure 2.

2.2. Slow ascent; isothermal flow
If the ascent is sufficiently slow that the gas can thermally equilibrate to the
surrounding temperature, T(z), which requires the ascent velocity to be much less
than the speed of sound in the gas, the relationship between density and pressure is
given by

ρ = βp/T, (2.7)

where β is the molar mass divided by R, the universal gas constant.
Inserting (2.7) into (2.2), assuming a, k and µ are given functions of z and

integrating, we obtain the expression for the pressure p, after use of (1.2a) and
rearrangement, of

p= [p2
D − 2MF(z)]1/2, (2.8)

where, as a function of distance up the conduit,

f (z)=
(

1
πβ

)(
µT
ka2

)
and F(z)=

∫ z

0
f (z′) dz′. (2.9a,b)
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FIGURE 2. (Colour online) (a) The non-dimensionalised pressure as a function of
non-dimensionalised position along the conduit for: (i) an incompressible gas; (ii) a
compressible gas with all quantities specifying it and the medium constant; (iii) a
compressible gas satisfying (2.15) with b=−1, 3 and 5; (iv) (2.16) with c=−1 and 1;
and (v) an adiabatic rise with constant h(z) in (2.21) for γ = 5/3 and 7/5. (b) The
non-dimensionalised velocity as a function of non-dimensionalised position for the same
parameter values as in (a).

The functional form of f (z) indicates how the possibly variable values of k, µ, T
and a are reflected in the evaluation of the mass flux, vertical velocity and pressure
distribution and that it is the combination µT/ka2 that is important.

Using (1.2b), we determine that

M = 1
2F(L)

(p2
D − p2

S)≈
p2

D

2F(L)
. (2.10a,b)

It is thus the mean value of µT/(ka2) that determines the resultant flux throughout the
conduit and not the detailed distribution of any of these quantities. Inserting (2.10b)
into (2.8), we determine that

p/pD ≈ [1− F(z)/F(L)]1/2 (2.11)
= (1− z/L)1/2 (2.12)

if f (z) is constant. A formula relating pressure to the square root of distance, similar
to (2.12), was previously obtained by Mueller et al. (2005), as their equation (2.8), to
describe some high-pressure shock tube experiments with all parameters held constant.
The relationship (2.12) is displayed in figure 2(a), which demonstrates graphically how
different the result is from that for an incompressible liquid given by (2.3b). The
comparison between the pressure curves of figure 2(a) for the incompressible (liquid-
like) and compressible (vapour-like) cases is due to the Darcy flow law expressed by
(1.1). As compressible fluid rises, its vertical velocity increases (to conserve mass)
and by (1.1) so must the pressure gradient. This indicates that, because the pressure
is pinned to pD at z=D and pS at z=L, the only possible form for the pressure curve
is the one shown, which is concave downwards. This must also be the situation for
variable f (z), as demonstrated further below for some specific f (z).

Differentiating (2.8) and placing the result into (1.1), we find that

w ≈ kpD

2µ
f (z)
F(L)

(
1−

(
1− p2

S

p2
D

)
F(z)
F(L)

)−1/2

(2.13)

= kpD

2µL

(
1−

(
1− p2

S

p2
D

)
z
L

)−1/2

, (2.14)
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Conpressible vapour flow 755

where (2.14) follows from (2.13) if f (z) is constant, as shown in figure 2(b). The
velocity of the vapour becomes very large as the surface is approached because of
the low pressure there.

In general circumstances, or in particular in the Earth, the four parameters k, µ, T
and a could be individually constant or vary with depth. A linear representation of
a and T with depth pertains to many geological situations, while as a generalisation
k varies exponentially in the Earth’s upper crust (Kuang & Jiao 2014). All four
parameters, especially k, may also be functions of the pressure p, as considered
further below.

Suppose then, by way of illustration, the parameters in (2.9a), and in particular the
combination µT/ka2, vary with distance in such a way that there is a linear change
in f with distance. Then we can write

f (z)= fD(1+ bz/L) and F(z)= fD
(
z+ 1

2 bz2/L
)

(2.15a,b)

for some b with −1< b (because f must be always positive).
Figure 2 includes corresponding curves for p and w for various values of b. Note

that if b = −1 ( f decreases, linearly, to zero at the surface), the results for the
incompressible, constant radius case are retrieved. Thus if there is a linear decrease
to zero in the quotient µT/(ka2), no matter how the individual parameters vary,
the pressure field compensates to be linear and the density of the vapour remains
constant.

Alternatively, if

f (z)= fDe−cz/L then F(z)= L
fD

c
(1− e−c/L). (2.16a,b)

Solution curves for various values of c are also presented in figure 2. The differences
for various values of b and c are topologically relatively small compared with the
result for an incompressible gas.

As indicated above some of the parameters, particularly the permeability k, could
be functions of pressure, as well as possibly z. The first-order nonlinear eigenvalue
equations (2.2), (2.7) with boundary conditions (1.2) are still solvable analytically.
Since, alternatively, an iterative scheme, with functions of pressure being written in
terms of the previously obtained function of pressure in terms of z, could be pursued,
the overall result is that the shape of the pressure as a function of depth must be the
same.

2.3. Rapid ascent; adiabatic flow
In the extreme case where the ascent is adiabatic because there is not sufficient time
for there to be appreciable heat transfer from the gas to the surroundings, which will
occur if the flow speed is not small compared to the speed of sound in the gas, the
relationship between density and pressure is given by

ρ =Cp1/γ , (2.17)

where γ is the ratio of the specific heat at constant pressure to that at constant volume
(typically 5/3≈ 1.67 for a monotonic gas and 7/5≈ 1.4 for a diatomic gas) and

C= ρD/p
1/γ
D = βp1−1/γ

D /TD. (2.18)
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756 H. E. Huppert and R. S. J. Sparks

Proceeding as before, on the assumption that Darcy’s flow law is still valid for such
large velocities (Bear 1972), we find that

M =πa2C1/γ · p1/γ u=−πa2C1/γ

(
k
µ

)
p1/γ dp

dz
. (2.19a,b)

Thus

p/pD ≈ [1−H(z)/H(L)]γ /(1+γ ) (2.20)
= (1− z/L)γ /(1+γ ) (2.21)

if h(z) is constant, as shown in figure 2(a), where

h(z)= µ

πa2kC
and H(z)=

∫ z

0
h(z′) dz′ (2.22a,b)

and hence

M =
(

γ

1+ γ
)

1
H(L)

(
p1+1/γ

D − p1+1/γ
S

)
(2.23)

≈
(

γ

1+ γ
)

1
H(L)

p1+1/γ
D . (2.24)

Also

w ≈ γK
(1+ γ )µpD

h(z)
H(L)

[
1−

(
1− p2

S

p2
D

)
H(z)
H(L)

]
(2.25)

= γKpD

(1+ γ )µ
[

1−
(

1− p2
S

P2
D

)
z
L

]−1/(1+γ )
(2.26)

if h(z) is constant, which is shown in figure 2(b).
When the flow is slow the temperature taken by the gas in determined by the

external temperature, cf. (2.9a). When the expansion is adiabatic there is no cross-
stream thermal transfer and the temperature is given, from (2.7), (2.17) and (2.23)
by

T ≈ TD

[
1−

(
1− p2

S

P2
D

)
H(z)/H(L)

]
(2.27)

= TD(1− z/L)(γ−1)/(γ+1) (2.28)

if h(z) is constant and pS� pD.
Since for all our calculations, except the incompressible case (2.3), the pressure

gradient is very large near z= 0, the pressure must be always larger for some range
0< z< zD than any linear external pressure gradient with the same value, pS, at z= 0.
This leads to a key issue in considering flows of a compressible fluid to the Earth’s
surface, which is the contrast between the pressure in the vapour and the pressure in
rocks surrounding the permeable pathway. In the case of impermeable, zero porosity
surroundings the only relevant pressure contrast is between the fluid pressure and the
lithostatic pressure (the pressure in the external rocks). The most straightforward case
is when pD, the fluid pressure at the source (z = 0) equals the external lithostatic

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.298
Downloaded from https:/www.cambridge.org/core. Pendlebury Library of Music, on 18 May 2017 at 11:12:43, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.298
https:/www.cambridge.org/core


Conpressible vapour flow 757

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 0

 –0.2

 –0.4

0.2

 0.4
(a) (b)

FIGURE 3. (Colour online) (a) Schematic plot of the typical variation of pressure with
depth for the pressure in the conduit, pD, at z = 0: (1) equal to; (2) greater than;
and (3) less than, the external, lithostatic pressure pL there. (b) The difference between
internal and external pressures (fluid and lithostatic) for the three cases in (a). The
overpressure reaches a maximum at intermediate depths in all cases. For p0 6 pL the fluid
is overpressured at all depths. If pD < pL (as in a hydrostatic compressible fluid reservoir)
the fluid is underpressured at depth but will become overpressured at shallower depths.
The dashed line presents a possible variation of rock strength with depth and indicates the
possibility of a fracture zone being developed when fluid pressure exceeds the strength of
the surrounding rocks.

pressure, say pL, there. The case of pD greater than pL is geologically important, with
overpressures limited by rock strength and the state of deviatoric stress. In some
geological situations, in contrast, pD < pL. In this case there will be underpressures at
depth and overpressures at shallower levels with a crossover point.

Suppose, for simplicity and means of illustration, we consider the (isothermal,
constant parameters) pressure given by (2.12) and compare it with an external linear
pressure field, given by

pe = pL − (pL − pS)(z/L). (2.29)

Then p > pe for z/L < 1 − (pD/pL)
2 = 0.84 if pD/pL = 0.4 (and pS � pL), as might

be for a geological situation. The difference between the fluid and lithostatic pressure
reaches a maximum at some intermediate depth which for our simple illustrative case
occurs at z/L= 1− (1/4)(pD/pL)

2= 0.96 (figure 3). Since rock strength increases with
depth we can also predict a zone of rock failure where the overpressure exceeds the
strength (figure 3).

In geological environments a fast high permeability pathway will be embedded in
lower permeability and typically lower porosity host rock. In this case the ambient
fluid in the host rock may be at hydrostatic pressure, which is typically approximately
30–40 % of the lithostatic pressure. The high fluid pressures in the flow along the
high permeability pathway can therefore greatly exceed the hydrostatic pressure and
as a consequence the fluid will move laterally into the low permeability host rock.
Alternatively, there may be a region at depth where the pressure in the fluid is less
than that externally at the same depth. In the lower region, fluid from the external
interstices will be sucked into the flow, as envisaged necessary for the new theory of
porphyry copper formation (Blundy et al. 2015).

We now consider two different geological situations to illustrate some of the
implications of these pressure differences.
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3. Numerical values
The curves in figure 2 give some indication of some of the quantitative effects

of compressibility. We now present two quantitative indications. First, we consider
discharge of magmatic fluids released from the top of a magma chamber. Applications
of this case pertain to both degassing of volcanoes and formation of porphyry copper
deposits. A widely invoked scenario is a magma chamber at approximately 5 km
depth releasing magmatic fluid that has a pressure equal to or slightly above lithostatic
pressure, in which case tensile fractures need to form to provide the route to escape.
Assuming, for the sake of this illustration, that all quantities are constant and given
by: k = 10−14 m2; µ = 2 × 10−5 Pa s; pD = 108 Pa; pS = 105 Pa; a = 100 m; T =
850 ◦C; β = 2.17 × 10−3 kg K Pa−1 m−3; and L = 5 × 103 m, we find from (2.10b)
that M = 30 kg s−1 ≈ 2.6× 106 kg day−1 and from (2.14) wS = 5× 10−3 m s−1 and
wD= 5× 10−6 m s−1. This evaluated flux is within the range of measurements of gas
flux from many volcanoes (Edmonds 2008).

As a second numerical example, we consider the possible leak from a carbon
dioxide (CO2) storage reservoir. So far no such leaks have been reported, but it is
conceivable, and needs to be understood for safety purposes, what would happen
if there was an accidental leak through the (supposed to be) containing cap rock
(see Huppert & Neufeld (2014) and references therein for further background). The
CO2 is compressed before storage beyond the supercritical point so it behaves
like a liquid (with relatively small specific volume). A leak from the confining
reservoir of the relatively light CO2 could result in it rising through the overlying
porous medium to be confined by another cap rock. The worst scenario is that
it rises above the supercritical point and then, as a gas, rises all the way to
the surface through a relatively permeable medium, such as a fault or fracture.
For illustrative purposes, assume again that all quantities are constant and given
by: k = 10−12 m2; µ = 10−5 Pa s; pD = 2 × 107 Pa; pS = 105 Pa; a = 1 m;
T = 50 ◦C; β = 2.17 × 10−3 kg K Pa−1 m−3; and L = 103 m. Then from (2.10b)
M = 0.4 kg s−1 ≈ 3.7 × 104 kg day−1 (very roughly 1 % of the current input rate at
Sleipner, wD= 10−3 m s−1 and wS= 0.2 m s−1. If instead, a is taken to be 100 m and
all other parameter values kept the same, M = 4 × 103 kg s−1 ≈ 3.7 × 107 kg day−1

(∼ two orders of magnitude larger than the current input rate at Sleipner), while
neither wD nor wS is altered.

4. Summary
We have analysed the steady motion of a compressible gas, flowing either

isothermally or adiabatically through a porous conduit allowing for parameters
to vary along the flow. The results indicate that whatever the form of f (z), as
defined by (2.29), the pressure at any point within the flow exceeds that if the flow
was incompressible. Because the mass (and not volume flux) is constant along the
conduit, the gas velocity increases along the flow. Our model will find application
to various areas of concern in the Earth sciences. These include: the release of
volcanic volatiles into a conduit connecting a magma chamber to the volcano above
it; the discharge of geothermal fluids within the Earth’s crust, which lead to many
ore deposits, such as porphyry copper; and the accidental release of carbon dioxide
from a CCS reservoir. We presented two numerical examples to give some feeling
for the magnitude of the various effects. A characteristic of our general results in
that either large overpressures or underpressures can develop between the ascending
fluid and the confining rocks dependent on explicit parameter values. These over- or
underpressures are a consequence of the nonlinear pressure gradient which can arise
in compressible fluids, as described in part by Melnik & Sparks (1999).
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