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Cracks filled with fluid propagation when the pressurized fluid is injected into the crack. Subsequently,
when the fluid inlet is exposed to a lower pressure, the fluid flows backwards (backflow) and the crack
closes due to the elastic relaxation of the solid. Here we study the dynamics of the crack closure during the
backflow. We find that the crack radius remains constant and the fluid volume in the crack decreases with
time in a power-law manner at late times. The balance between the viscous stresses in the fluid and elastic
stresses in the fluid and the elastic stresses in the solid yields a scaling law that agrees with the experimental
results for different fluid viscosities, Young’s moduli of the solid, and initial radii of the cracks.
Furthermore, we visualize the time-dependent crack shapes, and the convergence to a universal
dimensionless shape demonstrates the self-similarity of the crack shapes during the backflow process.
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The interplay of fluids and cracks is ubiquitous in nature
and industry, and includes dynamics such as magma
intrusion into Earth’s crust [1,2], cracks opening at cell-
cell contacts [3,4], and hydraulic fracturing of shale
formations for oil and gas extraction [5,6]. The injection
of pressurized fluid into cracks in a brittle solid causes
crack propagation (fluid-driven cracks), and has been
previously investigated [6–10]. However, the closure of
fluid-filled cracks due to elastic relaxation has not been
systematically studied. For example, this topic is closely
related to the environmental issue of flowback in hydraulic
fracturing and also arises in the trapping of fluids due to
geophysical processes involving release of elastic stresses.
In this Letter, we study the dynamics of the elastic

relaxation of a liquid-filled crack, once an outlet at the
center of the crack is exposed to atmospheric pressure
[Fig. 1(a)]. The resulting pressure gradient within the crack
causes the fluid to drain out through the outlet. This setup
serves as a laboratory-scale model of practical flowback
processes in industrial oil and gas extraction from hydro-
fractured reservoirs. For the model material that we use
here, i.e. gelatin, we report that the shapes of the crack
during closure are self-similar and our experimental mea-
surements agree with our scaling arguments at late times.
To study the effect of different experimental parameters,

we changed the gelatin Young’s modulus E by varying
the concentration of gelatin powder (gelatin type A,
ThermoFisher Scientific, U.S.) in tap water. The mixture
of water and gelatin powder was then refrigerated for
approximately 10 h and solidified so as to be ready for
the experiments. Young’s moduli E ranging from 66� 6.6

to 104� 10.4 kPa, as measured via indentation tests [11],
were used in our experiments. Mineral oils (Sigma-Aldrich,
U.S.) with viscosities μ ¼ 11.5� 0.2 and 26.9� 0.1 mPa s,
and a polymeric fluid (VeroBlue RGD840, Stratasys, U.S.)
with viscosity μ ¼ 149� 3.2 mPa s, as measured with a
rheometer (Physica MCR 301), were used to generate the
liquid-filled crack in the gelatin. Both themineral oils and the
polymeric fluid we used were Newtonian at the typical shear
rates of the experiments. Note that water is miscible with
gelatin at the time scale of the experiments and hence would
not be a proper choice of liquid for our experiments.
We conducted a series of experiments to first generate

a fluid-driven crack [9,10]. Then, we measured the liquid
volume remaining in the crack as a function of time as
the stress in the system relaxes. In the setup, a long tube
of inner radius 1.59 mm filled with a liquid (dyed red)
is connected to a needle with inner radius 1.08 mm.
The needle is inserted into a tank of solid gelatin
(width× length×height¼ 150 mm× 150mm× 113 mm),
as shown schematically in Fig. 1. A disk-shaped liquid-filled
crack is generated in the gelatin, in a plane perpendicular to
the tip of the needle due to the pressure increase from liquid
injection through the tube [9]. We can control the crack
radius, the fluid viscosity, and the elasticity of the matrix.
After the tube is exposed to the atmospheric pressure,

the liquid flows back towards the open end of the tube,
which we refer to as backflow [see Fig. 1(c)], and the
liquid-filled crack slowly closes due to the elastic relaxation
of the solid gelatin [see Fig. 1(b)]. A USB camera
(1280 × 1024 pixels, frame rate ¼ 10 fps) is placed above
the experimental system to record the shape evolution of
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the crack, and a Nikon D7100 camera (1920 × 1080 pixels,
frame rate ¼ 24 fps) is placed on the side to record the
backflow dynamics.
An important observation for the backflow experiments

is that when the liquid-filled crack closes, only the thick-
ness of the crack decreases, as the radius R of the crack
remains nearly unchanged, as evident in Fig. 1(b). Note that
in other parameter regimes a decrease in crack radius
during crack closure has been reported in gels [12].
The liquid volume in the crack V at different times can

be calculated by subtracting the fluid volume in the tube
from the total amount of liquid injected into the gelatin.
The results vary significantly when either E or μ changes.
Representative results for VðtÞ with different experimental
parameters are shown in Fig. 3(a), which will be discussed
shortly.
To understand how the elastic relaxation of a liquid-

filled crack causes the liquid to drain out of the crack,
we use scaling arguments. We consider the model of an
axisymmetric fluid-driven crack confined in an infinite
elastic medium, which is commonly modeled as a
penny-shaped crack [7–9], as shown schematically in
Fig. 2. The geometry of the crack sets the typical elastic
pressure PðtÞ,

P ≈
W
R

E
2ð1 − ν2Þ ; ð1Þ

where ν is Poisson’s ratio, and R and W are, respectively,
the crack radius and maximum half crack thickness. At the
crack surface the fluid pressure is the same as the local
elastic pressure pðr; tÞ. In a narrow crack where W ≪ R,
the lubrication approximation is applicable for the fluid
flow and the fluid pressure is assumed to only vary along
the crack. The radial pressure gradient drives the fluid to
flow inward radially, with a parabolic velocity profile
urðr; z; tÞ ¼ ð1=2μÞð∂p=∂rÞ½wðr; tÞ2 − z2�, where wðr; tÞ
is the crack half thickness. Combining the continuity
equation with the velocity profile integrated between the
crack surfaces, we find the time rate of change of the crack
thickness to be the order of magnitude

W
t
≈

1

3μ

W3P
R2

: ð2Þ

The liquid volume in the crack is estimated as

V ≈ 4πR2W: ð3Þ

Combining Eqs. (1)–(3) and assuming R is constant
(consistent with the experiments), we obtain

V
R3

≈
�
t
T

�
−1=3

; ð4Þ

where the time scale T is defined as

T ≡ 384π3μð1 − ν2Þ
E

: ð5Þ

The scaling arguments predict that the liquid volume in
the crack decays with time according to t−1=3.
After rescaling the experimental data for V and t in

Fig. 3(a) using R and T, respectively, the data for different
E, μ, and R collapse, as shown in Fig. 3(b). Also, V at late
times exhibits a t−1=3 dependence, which is consistent with

(a)

(b)

(c)

FIG. 1. (a) Schematic of the experimental setup. Representative
experimental views from the (b) top and (c) side are shown.
Experimental parameters: mineral oil (dye in red) viscosity
μ ¼ 26.9 mPa s, gelatin Young’s modulus E ¼ 79 kPa, and the
initial crack radius R ¼ 21 mm. (b) The shape of the liquid-filled
crack at different times as the elastic solid relaxes. (c) The
propagation of liquid (dyed red) from the crack toward the open
end of the tube (backflow), with the red arrows above the liquid
fronts indicating the flow direction.

FIG. 2. Schematic of the fluid flow in a crack of radius R and
half maximum thickness WðtÞ in an elastic reservoir during the
backflow process. The elastic pressure pðr; tÞ surrounding the
crack drives the fluid to flow towards the center and drain out of
the crack with a volumetric flow rate QðtÞ.
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our scaling law. The prefactor k ¼ 1.46 for the t−1=3 power
law in Eq. (4), shown as the dark line in Fig. 3(b), is found
by fitting all experimental data at the late times. The error
bars in Fig. 3 are estimated based on the measurement
uncertainties, such as the Young’s modulus of the solid
gelatin E (�10 kPa), the liquid viscosity μ (�3.2 mPa s),
the crack radius R (�2.6 mm), the liquid volume in the
crack V (�16 mm3), and time t (�0.042 s).
To check our assumptions, we estimate the effective

Reynolds number Reeff of the fluid flow in the crack, and
the viscous resistance in the tube and the needle compared
with that in the crack. For a liquid of density ρ ≈
850 kg=m3 and viscosity μ ¼ 26.9 mPa s, a crack of typical

radius R ≈ 20 mm, half thickness W ≈ 0.04 mm, and a
typical time scale halfway through an experiment t ≈ 100 s,
the effective Reynolds number in the crack is Reeff ≈
ρurW2μ−1R−1 ≈ ρW2μ−1t−1 ≈ 5 × 10−7. Thus, the lubrica-
tion approximation applies and the inertial effects are
negligible. The typical viscous stresses in the crack are
estimated to be μR2W−2t−1 ≈ 67 Pa, whereas the viscous
stresses in the long tube are μULa−2 ≈ 0.6 Pa, for a typical
velocity U ≈ 10−4 m=s, length of liquid L ≈ 0.58 m in the
tube, and the inner radius of the tube a ≈ 1.59 mm.
Similarly, midway through the experiments the viscous
stresses in the needle are estimated to be 0.4 Pa. Since the
viscous stresses in the tube and the needle are much
smaller than the typical stresses in the crack, we only
consider the viscous resistance in the crack in our scaling
arguments for the late-time dynamics. Next, we discuss the
importance of these channel flow effects at early times.
We have shown that at late times the volume of the crack

V exhibits a power-law dependence with time. At early
times, however, the backflow dynamics does not obey
Eq. (4), as shown in Fig. 3(b). It can be shown (see
Supplemental Material [13]) that the viscous pressure drop
in the tube and the needle ΔPt at early times is not
negligible compared to the viscous pressure drop in the
crack ΔPc. Thus, we developed a model of pressure drops
in series, which are balanced by the elastic pressure PðtÞ,
ΔPtðtÞ þ ΔPcðtÞ ¼ PðtÞ. The pressure drop along the flow
path is linked to flow speed by the Poiseuille law. Carrying
out these steps and using volume conservation, we obtain
an ordinary differential equation, which in dimensionless
form can be written as (see Supplemental Material [13])

dV̂
dt̂

�
BðV̂0 − V̂ þ AÞ

V̂
þ α3β

2V̂4

�
þ 1

α
¼ 0; ð6Þ

where V̂ ≡ V=R3 and t̂≡ t=T are, respectively, the dimen-
sionless crack volume and time introduced earlier [see
Eqs. (4) and (5)]; B≡ ðR=aÞ6=6π4, where a is the radius of
the tube. The constant A is dependent on R, a, and the
radius and length of the needle. Also, V̂0 ≡ V̂ðt ¼ 0Þ and
α and β are fitting parameters (dimensionless). The term
BðV̂0 − V̂ þ AÞ=V̂ in Eq. (6) arises from the viscous
resistance from the tube and needle, whereas the
α3β=2V̂4 term comes from the viscous resistance in the
crack, which dominates at late times and results in the t−1=3

scaling law consistent with Eq. (4). The numerical solutions
to Eq. (6) for different A and B depend on R at early times
but approach a universal (R-independent) solution at late
times (see Supplemental Material for details [13]). The
agreement between the solution to Eq. (6) and the experi-
ment of R ¼ 15 mm is shown in Fig. 3(b) by the dashed
curve (A ≈ 1 and B ≈ 1206).
In addition, we developed an imaging technique to

visualize the shape of the crack as a function of time.

FIG. 3. (a) The dependence of the liquid volume in the crack V
on time t for different liquid viscosities μ, Young’s moduli E,
and crack radii R. (b) The dimensionless liquid volume in the
crack versus time rescaled with R3 and T, respectively, based on
Eqs. (4) and (5). The error bars are estimated according to the
measurement uncertainties. The t−1=3 power law at late times is
shown as the dark line with a prefactor k ¼ 1.46 for Eq. (4) from
fitting all data at late times. The dashed curve is the solution to
Eq. (6) fitted to the purple circles (A ≈ 1 and B ≈ 1206 calculated
using R ¼ 15 mm), with α ¼ 5, β ¼ 0.03 (see Supplemental
Material [13]). (c) Definitions of the parameters.
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We set a light-emitting diode panel with a peak wavelength
at 525 mm parallel to the surface of the crack filled with
fluorescent dye, and then measured the fluorescent light
intensity to determine the crack thickness wðr; tÞ based on a
separate calibration experiment. In Fig. 4, the polymeric
fluid in the crack is mixed with Nile red (Sigma-Aldrich),
which absorbs green light and emits red light (the con-
centration of the mixture is 30 μg Nile red per mL liquid).
A Nikon D5100 camera (4928 × 3264 pixels) attached to a
long pass filter (O-54 (540 nm), Edmund Optics, U.S.) was
used to record the light intensity distribution of the crack.
The thicker the dye-filled crack, the stronger the fluorescent
light intensity captured by the camera. A UV protection
film was used to prevent UV light from the light-emitting
diode changing the rheology of the polymeric fluid. Also,
during the image analysis, we only use information from
the red channel. We can thus calibrate the light intensity
(only due to the fluorescence) with the thickness of the
crack.
The time evolution of the crack profile is shown in

Fig. 4(a). The crack thickness was measured across a fixed
cross section every 180 s. We assume the crack to be
axisymmetric with respect to the z axis and divide the
measured crack thickness by a factor of 2 to get wðr; tÞ, the

half crack thickness profile. Data points of the same color
were taken at the same time.
To nondimensionalize the crack profiles wðr; tÞ, we

obtain a scaling law for the typical crack thickness W
using Eqs. (3) and (4):

W ≈
R
4π

�
t
T

�
−1=3

; ð7Þ

where T is defined in Eq. (5), and R is the constant radius
during backflow. After we rescale the crack profiles in
Fig. 4(a), we obtain a collapse of the dimensionless crack
profiles at the late times, as shown in Fig. 4(b). The collapse
of the dimensionless liquid volume VðtÞ in Fig. 3(b) and the
dimensionless wðr; tÞ at the late times in Fig. 4(b) show that
the crack profiles are self-similar and the data at the late
times agree with our scaling arguments.
In summary, we studied the dynamics of the elastic

relaxation of a fluid-driven crack during the crack closure.
In our experiments we observed that the crack radius
remains a constant during the closure process. The
experiments show that the fluid volume V in the crack
decays with time as t−1=3 at late times, and is affected by
the viscosity of fluid in the crack μ, elasticity of the solid
E, and the crack radius R. We also reported the time
evolution of the crack shapes wðr; tÞ and the universal
dimensionless crack shapes. At late times, the results
agree with the scaling arguments balancing the viscous
stresses in the fluid flow along the crack and the elastic
stresses applied on the crack surfaces. At early times, the
result can be explained by the non-negligible viscous
resistance in the outlet channels. While numerous studies
focused on the propagation of fluid-driven cracks, we
examined the backflow dynamics caused by the elastic
relaxation and the closure of the crack. Our results may
relate to environmental issues such as the pollution of
the water flowing back from the wells in hydraulic
fracturing and other subsurface engineering and geophysi-
cal processes.
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