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Experimental exploration of fluid-driven cracks
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Hydraulic fracturing is a procedure by which a fracture is initiated and propagates
due to pressure (hydraulic loading) applied by a fluid introduced inside the fracture.
In this study, we focus on a crack driven by an incompressible Newtonian fluid,
injected at a constant rate into an elastic matrix. The injected fluid creates a radial
fracture that propagates along a plane. We investigate this type of fracture both
theoretically and experimentally. Our experimental apparatus uses a brittle and
transparent polyacrylamide hydrogel matrix. Using this medium, we examine the
rate of radial crack growth, fracture aperture, shape of the crack tip and internal fluid
flow field. Our range of experimental parameters allows us to exhibit two distinct
fracturing regimes, and the transition between these, in which the rate of radial crack
propagation is dominated by either viscous flow within the fracture or the material
toughness. Measurements of the profiles near the crack tip provide additional evidence
of the viscosity-dominated and toughness-dominated regimes, and allow us to observe
the transition from the viscous to the toughness regime as the crack propagates.
Particle image velocimetry measurements show that the flow in the crack is radial,
as expected in the viscous regime and in the early stages of the toughness regime.
However, at later times in the toughness regime, circulation cells are observed in the
flow within the crack that destroy the radial symmetry of the flow field.

Key words: geophysical and geological flows, low-Reynolds-number flows

1. Introduction
The technique of hydraulic fracturing is mainly used as a well stimulation technique

in unconventional reservoirs, which have relatively low permeability and porosity,
making it difficult to extract oil and gas (Economides & Nolte 2000). The creation
of fractures in rock formations increases the surface area connected to the wellbore,
allowing larger amounts of hydrocarbons to be released. Other applications include
measurement of existing (in situ) stresses (Fairhurst 1964), carbon sequestration
(Rudnicki 2000; Huppert & Neufeld 2014), geothermal energy reservoirs (Murphy
et al. 1981), compensation grouting (Mair & Hight 1994) and disposal of toxic liquid
waste deep underground. Fluid-driven fracturing is also encountered in nature when
studying magma transport (Lister & Kerr 1991). In this last case, the mechanism

† Email address for correspondence: okeeffen@damtp.cam.ac.uk
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Q

FIGURE 1. Schematic diagram showing the radial fracture geometry.

for crack propagation of magma-driven dykes is the pressure caused by density
differences between the fluid and the surrounding rock formation.

Hydraulic fracturing in its most simple form, a single crack, is still very complicated
to model, as it involves the coupling of at least three processes, namely (i) mechanical
deformation of the fracture surfaces by fluid pressure, (ii) fluid flow in the fracture
and (iii) fracture propagation. These processes are usually modelled by (i) the theory
of linear elasticity, (ii) lubrication theory and (iii) linear elastic fracture mechanics
(LEFM), respectively.

The radial fracture geometry that we discuss here applies to homogeneous formation
conditions, where the injection region is modelled as a point source (figure 1). This
occurs when the wellbore from which fluid is injected is orientated perpendicular to
the direction of maximum confining stress, or when fluid is injected radially into a
medium that can be considered homogeneous and infinite in comparison with the size
of the fracture.

The radial model, or penny-crack problem, has been studied extensively since the
work of Sneddon (1946). Initially, a theory was developed for hydraulic fractures in an
infinite medium assuming that viscous dissipation within the fluid was the dominant
mechanism for energy dissipation (Spence & Sharp 1985). Since then, Garagash and
others have focused on the crack tip region (Garagash & Detournay 2000; Garagash,
Detournay & Adachi 2011). They have also shown that two dissipative processes,
fracturing of the rock (toughness) and viscous flow in the fracture, along with two
fluid balance mechanisms, leak-off and storage of fracturing fluid in the fracture,
significantly affect the fracture propagation behaviour (Savitski & Detournay 2002;
Detournay & Garagash 2003).

Experiments that have tried to capture these dynamics have involved materials
such as gelatin and polymethyl methacrylate (PMMA), which have been widely used
to model geological mechanics because they exhibit elastic and brittle behaviour
similar to that seen in rocks (Takada 1990; Alpern et al. 2012). Hubbert & Willis
(1957) investigated the elastic field around an injection point and its influence on
fracture orientation using gelatin and focusing on early fracture formation, finding
that fractures should be perpendicular to the axis of least stress. Bunger & Detournay
(2008) developed a novel experiment to measure the aperture of a fluid-driven fracture
between two PMMA plates glued together with an adhesive. This experiment validated
theoretical expectations for the crack tip region when the dominant mechanism for
energy dissipation was either toughness (crack tip extension) or viscous flow. Recently,
Lai et al. (2015) and Lai et al. (2016) conducted experiments using gelatin, which
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validated scaling laws of the time dependence of crack growth and aperture in the
viscous and toughness regimes.

Our study follows a similar experimental set-up to that reported in the papers of
Lai et al. (2015, 2016). The work described here was conducted concurrently with
those studies and not inspired as a result of their work. However, the dynamic scaling
results produced here do serve as an exploration and confirmation of their results in
another medium, cross-linked hydrogel. Moreover, our study focuses on the transition
between the viscous and toughness regimes identified by Bunger & Detournay (2008)
and Lai et al. (2015, 2016). Here, we report a better experimental agreement with
the toughness scaling prediction, and also rule out possible experimental reasons for
the underprediction of the fracture growth in the viscosity regime compared with
theory, which has also been seen in gelatin. Using novel particle image velocimetry
(PIV) measurements of the flow inside the fracture, we also observe the evolving flow
structure. These velocity measurements may provide new insights into the transport
of proppants within fractures.

In this paper, we set out to verify the time-dependent radial and aperture fracture
scalings outlined in Savitski & Detournay (2002) for an impermeable medium. We
will also analyse the time-dependent crack tip behaviour of these fractures to further
characterise the two dominant regimes, toughness or viscous, and the transition
between them. Finally, we report on the fluid flow within these fractures and the
differences in the flow structure in the two regimes of propagation. In § 2, we
introduce this model; § 3 describes the hydrogel properties and § 4 the experimental
set-up. The experimental results are presented and compared with the theoretical
models in § 5 and our conclusions are given in § 6.

2. The model

In this section, we review and discuss the existing mathematical models in order to
motivate our experimental approach and illustrate the important physical mechanisms
involved. This theoretical framework was first introduced by Spence & Sharp (1985)
and Savitski & Detournay (2002).

We consider a radial fracture propagating into an impermeable elastic solid
(figure 1), in which the leak-off of the fracturing fluid into the medium is considered
to be negligible. The fracture is driven by a constant volumetric injection rate Q of an
incompressible fluid with dynamic viscosity µ. The elastic medium is characterised by
Young’s modulus E, Poisson’s ratio ν and toughness KIC. The following assumptions
are then used to simplify the problem: (i) there is no fluid lag (i.e. the fluid front
coincides with the fracture front); (ii) LEFM and lubrication theory for the fluid flow
are applicable; (iii) the wellbore (injection) radius is negligible compared with the
radius of the fracture (i.e. it can be modelled as a point source); (iv) the fracture
propagates continuously in a mobile equilibrium.

2.1. Mathematical formulation
By applying these assumptions we can formulate the problem to find the crack
aperture width w(r, t), the fracture radius R(t) and the net pressure p(r, t).

2.1.1. Linear elasticity
We define the net pressure p(r, t)=−σzz through the stress tensor σ , i.e. the normal

traction. Based on linear elasticity, the mechanical deformation of the elastic matrix
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is given by the integral relation, which relates the net pressure p(r, t) and the crack
aperture w(r, t) (Sneddon 1951; Spence & Sharp 1985),

p(r, t)=−E′
∫ R(t)

0

∂w(s, t)
∂s

M
(r

s

) ds
s
, (2.1)

where E′ is the plane strain modulus, which can be expressed in terms of E and ν as
E′ = E/(1− ν2), and M(·) is the elasticity kernel,

M
(r

s

)
=


2s2

π(s2 − r2)
E
(r

s

)
, r< s,

2rs
π(s2 − r2)

E
( s

r

)
+

s
r

K
( s

r

)
, s< r,

(2.2)

where E(·) and K(·) are elliptic integrals of the first and second kind. Inversion of
(2.1) gives rise to the following double integral expression for the elastic response to
pressure (Sneddon & Lowengrub 1969),

w(r, t)=
8R
πE′

∫ 1

r/R

ξ√
ξ 2 − (r/R)2

∫ 1

0

xp(xξR, t)
√

1− x2
dx dξ . (2.3)

2.1.2. Lubrication theory
The flow of fluid in the crack is modelled using lubrication theory under the

assumption that
w(r, t)� R(t), (2.4)

which is clearly evident in our experiments, except at the initiation of the crack. For
this theory to be valid, it is also required that

Re= α
ρUw
µ
=

w
R
ρUw
µ
=

ρQw
2πR2µ

� 1, (2.5)

where Re is the Reynolds number, α is the aspect ratio of the fracture and U is the
velocity scale of the fluid of density ρ and dynamic viscosity µ.

A fluid mass balance gives

∂w(r, t)
∂t

+
1
r
∂

∂r
(rq(r, t))= 0, (2.6)

where q(r, t) is the radial flow rate, and using the Poiseuille law, we obtain

q(r, t)=−
w3

12µ
∂p(r, t)
∂r

. (2.7)

By combining (2.6) and (2.7), we obtain a second nonlinear differential equation
(Batchelor 1967), known as Reynolds equation, which relates the aperture width to
the pressure,

∂w(r, t)
∂t

=
1

12µ
1
r
∂

∂r

(
rw3(r, t)

∂p
∂r

)
. (2.8)
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2.1.3. Linear elastic fracture mechanics
The fracture propagation criterion is based on LEFM. The main assumption of

LEFM is that the region near the fracture tip where the behaviour of the medium is
not elastic, but undergoes plastic deformation or microcracking, is small compared
with the crack size. LEFM implies that a fracture will propagate if the mode I (tensile
crack) stress intensity factor KI exceeds the material toughness KIC. Therefore, the
fracture propagation criterion can be written as (Kanninen & Popelar 1985)

KI =KIC, (2.9)

where
KIC =

√
2γsE′. (2.10)

Here, KIC is a material property called the fracture toughness and γs is the fracture
surface energy of the elastic medium, which can be defined as the energy required to
create one unit of surface area. The stress intensity factor KI predicts the stress state
near the tip of a crack. For the penny-shaped fracture, this takes the form (Rice 1968)

KI =
2
√

πR

∫ R(t)

0

p(r, t)
√

R2 − r2
r dr. (2.11)

2.1.4. Boundary conditions
The tip boundary conditions are set by a zero-fracture aperture at the tip,

w= 0, r= R(t), (2.12a,b)

and a no flow condition, q(R)= 0. Then, using Poiseuille’s law (2.7), we derive

w3(r, t)
∂p(r, t)
∂r

= 0, r= R(t). (2.13)

Using mass balance, we obtain the following relationship between the flow rate q(r, t)
and the constant injection rate Q

2π lim
r→0

rq(r, t)=Q. (2.14)

Global mass balance is also used in the form

Qt= 2π

∫ R(t)

0
rw(r, t) dr. (2.15)

This set of equations, combining elasticity (2.3), lubrication theory (2.8), LEFM
(2.9), (2.11), inlet conditions (2.14) or (2.15) and tip boundary conditions (2.12) or
(2.13), forms a system that can be solved for w(r, t), p(r, t) and R(t).

From this system of equations, we can construct two distinct regimes of fracture
propagation using elasticity (2.3), lubrication theory (2.8), LEFM (2.11) and global
mass balance (2.15). The viscosity- and toughness-dominated regimes will arise from
neglecting material toughness (LEFM) (2.11) and viscous fluid flow (2.8), respectively.
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2.2. Scaling

We non-dimensionalise these equations using R = R0R̂, t = t0 t̂, etc., where R0, t0, . . .
are characteristic scales. The material parameters of viscosity µ′ and toughness K ′ are
defined in order to simplify the process (Savitski & Detournay 2002), as

µ′ = 12µ, K ′ = 4
(

2
π

)1/2

KIc. (2.16a,b)

The system of equations is then transformed as follows.

(i) Linear elasticity, (2.3)

ŵ=
8
π

p0R0R̂
w0E′

∫ 1

r̂/R̂

ξ√
ξ 2 − (r̂/R̂)2

∫ 1

0

xp̂
√

1− x2
dx dξ . (2.17)

(ii) Lubrication theory, (2.8)

∂ŵ
∂ t̂
=

t0w2
0p0

µ′R2
0

1
r̂
∂

∂ r̂

(
r̂ŵ3 ∂ p̂

∂ r̂

)
. (2.18)

(iii) LEFM (2.9) and (2.11)

K ′

p0R1/2
0

=
27/2

π
√

R̂

∫ R̂

0

p̂√
R̂2 − r̂2

r̂ dr̂. (2.19)

(iv) Global mass balance, (2.15)

Q̂t̂= 2π
R2

0w0

Q0t0

∫ R̂

0
r̂ŵ dr̂. (2.20)

We then set the dimensionless groups in (2.17), (2.18), (2.19) and (2.20) to one
respectively,

R0p0

w0E′
= 1, (2.21)

t0w2
0p0

µ′R2
0
= 1, (2.22)

K ′

p0R1/2
0

= 1, (2.23)

R2
0w0

Q0t0
= 1. (2.24)

Using these dimensionless groups, we introduce the viscosity- and toughness-
dominated scalings, denoting them with subscripts m and k, respectively. From
this, we can also identify the values of the scales,

R0 =
µ′Q0E′3

K ′2
, w0 =

(
µ′Q0E′

K ′2

)1/2

, p0 =

(
K ′6

µ′Q0E′3

)1/2

, t0 =

(
µ′

5Q3
0E′13

K ′18

)1/2

.

(2.25a−d)
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Physical parameter Viscosity (m) Toughness (k)

Fracture radius Rm(t)≈
(

E′Q3

µ′

)1/9

t4/9 Rk(t)≈

(
E′2Q2

K ′2

)1/5

t2/5

Fracture aperture wm(r, t)≈

(
Q3µ′

2

E′2

)1/9

t1/9 wk(r, t)≈

(
K ′4Q
E′4

)1/5

t1/5

Net pressure pm(r, t)≈ (µ′E′2)1/3t−1/3 pk(r, t)≈

(
K ′6

E′Q

)1/5

t−1/5

TABLE 1. Scaling relations for the time dependence of the toughness- and
viscosity-dominated regimes.

2.2.1. Viscosity scaling
By combining groups from elasticity (2.21), lubrication theory (2.22) and mass

balance (2.24), we arrive at the radial viscosity scaling, where

Rm =

(
Q3E′t4

µ′

)1/9

, (2.26)

upon dropping the non-dimensionalisation notation. From this scaling, we deduce the
other viscosity-dominated scalings. For the fracture aperture it is

wm =

(
Q3µ′

2t
E′2

)1/9

(2.27)

and for the net pressure it is

pm =

(
µ′E′2

t

)1/3

, (2.28)

all of which are given in table 1.
Further, we define a dimensionless toughness K as in Savitski & Detournay (2002),

K=K ′
(

t2
0

µ′5Q3
0E′13

)1/18

, (2.29)

so that the dimensionless propagation criterion (2.19) can be written as

K=
27/2

π
√

R̂

∫ R̂

0

p̂√
R̂2 − r̂2

r̂ dr̂. (2.30)

Thus, in the viscosity scaling, the toughness K is the only parameter in the governing
equations. In the viscosity-dominated regime, K is small, and, since K increases with
time, the viscous regime will ultimately transition to the toughness regime.
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2.2.2. Toughness scaling
For the toughness scaling, we combine elasticity (2.21), LEFM (2.23) and mass

balance (2.24) to obtain the radial scaling,

Rk =

(
Q2E′2t2

K ′2

)1/5

. (2.31)

Once again, this enables us to deduce the other toughness scalings for the fracture
aperture,

wk =

(
K ′4Qt

E′4

)1/5

, (2.32)

and the net pressure,

pk =

(
K ′6

E′Qt

)1/5

, (2.33)

as can be found in table 1.
Similarly, we define a natural choice for a dimensionless viscosity M,

M=µ′
(

Q3
0E′13

K ′18t2
0

)1/5

, (2.34)

giving a lubrication equation (2.18) of the form

M
∂ŵ
∂ t̂
=

1
r̂
∂

∂ r̂

(
r̂ŵ3 ∂

ˆp(r, t)
∂ r̂

)
. (2.35)

For the toughness-dominated regime, M is small, and, again, the fracture will be
increasingly dominated by toughness at late times.

2.2.3. Transition
Noticing that the dimensionless viscosity M and toughness K are related by a

simple power law,
K=M−5/18, (2.36)

the transition between the two regimes can be understood using a single parameter,
which is chosen to be K. It is estimated from asymptotics and numerical simulations
that a fracture propagates in the viscous regime when K . 1 and in the toughness
regime when K& 3.5 (Savitski & Detournay 2002).

The transition and distinction between the two regimes can perhaps be more
easily understood by the characteristic time scale t0 from (2.25). This can also be
constructed by equating the viscous and toughness length scales, Rm = Rk. Solving
for t, we evaluate the characteristic time tmk it takes to transition from a viscous- to
a toughness-dominated regime, where

tmk =

(
µ′

5Q3E′13

K ′18

)1/2

∼

(
µ5Q3E′13

KIC
18

)1/2

. (2.37)
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Therefore, for t� tmk, viscosity is the main source of energy dissipation, and for t�
tmk, material toughness dominates.

Finally, this time scale conveniently relates back to the dimensionless toughness and
viscosity parameters,

K=M−5/18
=

(
t

tmk

)1/9

. (2.38)

From the dimensionless parameters M and K, we can deduce that the fracture
only transitions from a viscosity- to a toughness-dominated regime. This is due
to the fact that as time evolves, the dimensionless viscosity M decreases and the
dimensionless toughness K increases, because they are inversely related. Therefore,
material toughness becomes increasingly significant as the fracture propagates.

2.3. Crack tip asymptotes
The solution near the crack tip is known to be characterised by a multiscale behaviour,
which is related to the dominant energy dissipative processes that determine the length
scales of the various tip asymptotes.

Linear elastic fracture mechanics provides the asymptotic condition on the crack
aperture w (Rice 1968). This can be deduced from (2.3) by assuming that the pressure
p(r, t)= ps(t) is only time-dependent in the toughness regime because the fluid flow
within the crack is quasisteady, which gives the profile of the crack shape,

w(r, t)=
8R
πE′

ps(t)

√
1−

( r
R

)2
. (2.39)

Using the stress intensity factor (2.11), we can relate the pressure ps(t) to the material
toughness,

KIC =
2ps(t)

√
R

√
π

. (2.40)

By combining (2.39) and (2.40), we obtain

wk ∼
K ′

E′
x1/2, as r→ R, (2.41)

where x= R− r is the distance from the crack tip.
In a Newtonian-fluid-driven fracture, the coupling between linear elasticity and

lubrication theory can produce an intermediate asymptote, (Spence & Sharp 1985)

wm ∼ 2 37/6
(µ

E′

)1/3
V1/3x2/3,

x
R
� 1, (2.42a,b)

where V is the mean fluid velocity at the tip, which is equal to the fracture tip velocity
in a system with no fluid lag.

Thus, it needs to be determined at what length scale each asymptote dominates.
Previous studies have found that the intermediate asymptote (2.42) emerges with
the existence of a boundary layer of thickness l = l3

k/l
2
m, where lk = (KIC/E′)2 and

lm = µV/E′ are the length scales associated with LEFM and viscous dissipation,
respectively (Garagash & Detournay 2005). The boundary layer is characterised by
the toughness asymptote (2.41) at the tip and by the viscous dissipation asymptote
(2.42) far from the tip. The existence of the boundary layer signifies the dominance
of an intermediate asymptote in the tip region on the scale of the fracture in the
viscosity-dominated regime. This is the same as zero toughness, where (2.42) can be
considered as the tip asymptote.
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2.4. Fluid lag
In this model, it is assumed that there is no lag between the fluid and the advancing
crack tip. Garagash & Detournay (2000) found that the lag is negligible if

κ =

(
σ0K ′2

µ′VE′

)1/2

& 1, (2.43)

where σ0 is the far-field compressive stress in the z-direction (figure 1). In our
experiments, the typical value is σ0≈ 101 kPa, which comes from hydrostatic pressure.
We consider the following typical parameters which match our most viscously
dominated experiment: µ = 10 Pa s, E = 367 kPa, γs = 3.6 and V = 10−2 m s−1.
This produces a value of κ ≈ 3.6, which corresponds to a predicted fluid lag of
λ ≈ 8 nm. This is negligible compared with the fracture extent of O(10−2) m. The
value was calculated using the equation λ=ΛLµ, where Lµ=µ′VE′2/σ 3

0 is a viscous
dissipation length scale and Λ is a dimensionless lag length dependent on κ (Garagash
& Detournay 2000).

2.5. Discussion
In this section, we have reviewed the mathematical formulation of a penny-shaped
fracture, in particular establishing the existence of two regimes of propagation,
where the dominant energy dissipation mechanism is either material toughness or
viscous flow (Spence & Sharp 1985; Savitski & Detournay 2002). Table 1 shows
that the fracture radius power laws are very similar, with exponents of 4/9 and 2/5
for viscosity and toughness respectively. Of course, these time-dependent power
laws include a prefactor on the right-hand side which will help to distinguish
between regimes. The aperture scaling provides more clarity, with the time-dependent
power laws for viscosity and toughness varying between exponents of 1/9 and 1/5
respectively. Perhaps the best method of distinguishing regimes is the crack tip
behaviour introduced in § 2.3. Here, we have outlined how the crack tip shape should
respond under corresponding limiting regimes. The toughness and viscous asymptotes
vary with distance from the fracture propagation edge, with exponents of 1/2 and 2/3
respectively. We explore these theoretical predictions through the use of laboratory
experiments which allow us to clearly identify fracture propagation regimes in both
time dependence and fracture shape.

3. Hydrogel
We model the mechanics of hydraulic fracturing through the use of brittle

cross-linked linearly elastic hydrogels, which have been shown to fracture similarly
to other amorphous materials (e.g. PMMA and glass) (Livne, Cohen & Fineberg
2005). Hydrogels consist of cross-linked polymer chains. Their elastic properties
are determined by the concentration of monomers, acrylamide and cross-linking
molecules, bis-acrylamide.

These transparent gels allow fracturing to occur at lower pressures and over slower
time scales, and their rheological properties can be easily altered. We are able to
achieve a wide range of Young’s modulus values of ∼50–700 kPa and fracture energy
values in the range ∼3.6–10.8 J m−2. Moreover, the Poisson’s ratio is ν ≈ 0.5. This
permits us to explore both the viscosity and the toughness regimes. More information
on the production and analysis of the properties of these gels can be found in
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(a) (b)77 mm

High-speed
camera50 mm

Fluid from
syringe pump

100 mm

100 mm

42 mm
100 mm

100 mm

Plates of width 1 mm

FIGURE 2. (Colour online) Schematic diagrams of the experimental set-up. (a) Elevation
view and (b) plan view.

O’Keeffe & Linden (2017). In that study, the fracture energy values were obtained by
fitting the toughness asymptote (2.41) and crack aperture measurements to calculate
the stress intensity factors KI of various gels.

4. Experiments
4.1. Set-up

Hydrogel of dimensions 100 mm × 100 mm × 77 mm was set around an injection
needle of radius 0.81 mm, as shown in figure 2. The gel matrix was sufficiently large
that the free surface and boundaries had a negligible effect on the stress state near
the injection point at the bottom of the needle. The fracturing fluid was pumped at a
constant volumetric rate using a syringe pump (WPI AL6000).

In order for the fracture to propagate radially and perpendicularly to the injection
needle, we must orientate the needle parallel to the minimum confining stress, as the
fracture will propagate perpendicular to this direction. This is due to the fact that
the radial crack is a tensile fracture (mode I) and opens in the direction of least
resistance. To achieve this, we inserted four rectangular plates of width 1 mm parallel
to the needle, on each side of the gel, as shown in figure 2(b). A high-speed camera
(Dalsa Falcon 2 4MP) was used to capture the fracture growth. The incompressible
Newtonian fracturing fluids used included water, glycerin, silicone and golden syrup,
with viscosities in the range µ∼ 10−3–101 Pa s. A list of the experiments and their
physical parameters is given in table 2, along with the corresponding characteristic
time scales.

The propagation of these fluid fractures was clearly observed due to the transparent
nature of the gels. The radial fracture profile was found by dyeing the fluid so that it
could be easily distinguished from the surrounding medium. The radius measurements
at each time step were then taken from light intensity values. We constructed 20
lines with equally spaced angles between 0 and 2π radians, which radiated from
the injection source, and the average of these was chosen as the radius. Digiflow
software was used extensively in processing the videos and taking measurements
(Dalziel 2006). The resolution we were able to achieve with these measurements was
1 pixel ≈0.04 mm.

The experimental errors were calculated by estimating uncertainties in the physical
parameters of the hydrogel Young’s modulus E (±10 %) and fracture energy γs
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Exp No. Fluid E′ (kPa) µ (Pa s) Q (ml min−1) γs (J m−2) tmk (s)

exp1 Glycerin 165 0.1 15 4.4 5× 10−7

exp2 Glycerin 129 0.1 20 5.6 2× 10−7

exp3 Glycerin 209 0.28 20 5.2 5× 10−6

exp4 Glycerin 200 0.08 35 5.6 1× 10−7

exp5 Glycerin 207 0.08 10 3.6 6× 10−8

exp6 Glycerin 129 0.08 10 5.6 6× 10−8

exp7 Water 207 0.001 15 3.6 2× 10−11

exp8 Glycerin 85 0.08 15 4.8 6× 10−8

exp9 Glycerin 347 0.08 15 10.8 3× 10−9

exp10 Glycerin 209 0.08 15 5.2 1× 10−7

exp11 Silicone 427 1 2 3.6 2× 10−4

exp12 Silicone 213 1 2 3.6 4× 10−4

exp13 Glycerin 213 1.2 10 3.6 6× 10−4

exp14 Glycerin 209 1.13 20 5.2 2× 10−4

exp15 Glycerin 425 1.13 23 3.6 8× 10−3

exp16 Glycerin 489 1.13 23 3.6 1× 10−2

exp17 Syrup 415 3.4 23 3.6 1× 10−1

exp18 Syrup 489 10 20 3.6 2× 100

piv1 Water 85 0.001 11 4.8 7× 10−13

piv2 Water 129 0.001 20 5.6 2× 10−12

piv3 Glycerin 415 1.13 23 3.6 8× 10−3

piv4 Syrup 427 7 20 3.6 1× 100

TABLE 2. Experiments conducted with particular values of the physical parameters.

(±10 %), experimental uncertainties in the injection rate Q (±10 %) and viscosity µ
(±10 %) of the injected fluid, and measurement errors in the time t (±0.2 s) and
radius R (±0.5 mm).

4.2. Aperture measurement
A dye attenuation method was used to measure the fracture aperture. This is a process
where the absorption of light is used to relate to aperture measurements (Bunger 2006).
A red LED light sheet with a diffuser was used as background lighting to provide a
uniform monochromatic light source. The injected fluid was dyed with methylene blue,
which strongly absorbs at the wavelength of the red light source. The absorption of
this background light is then directly related to the amount of fluid through which it
passes.

4.2.1. Calibration
Before the fracture aperture was measured, a calibration experiment was conducted.

This experiment involved constructing a glass wedge with a linearly increasing
aperture from 0 to 8 mm. This wedge was then filled with dyed fluid (figure 3b),
which was the same fluid as used in the fracturing experiment. The wedge was then
placed in our acrylic container (figure 2) and a polyacrylamide gel formed around
it, in order to take into account the absorption of light by the gel matrix itself. We
denote the intensity of the uniform background light that has travelled through the
polyacrylamide gel only by I0, and the intensity distribution of light that has passed
through the fluid-filled region by I. By normalising the fluid-filled light intensity with
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1.0

0.2

0.4

0.6

0.8

10 2 3 4 5
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Fit

w (mm)

(a) (b)

FIGURE 3. (Colour online) (a) The normalised light intensity I/I0 versus the
corresponding aperture of the fluid-filled region for a given dye concentration.
(b) Experimental image of a calibration using glycerin.

the background intensity through the gel, the absorption of the light due to the matrix
alone can be excluded. We plot this normalisation I/I0 versus the aperture of the
wedge in figure 3(a). A polynomial fit to the calibration data was then determined
and used to relate the light intensity data to aperture measurements for fluid-filled
fractures, under the assumption that the fracture is symmetric about its midplane.

Due to the particular concentration of dye added to the fluid, measurements above
certain thresholds are not very accurate, for example above 2 mm in figure 3(a),
where the calibration curve begins to flatten. This sample concentration of 0.05 g l−1

of methylene blue was chosen so that the crack tip profile could be accurately
determined.

4.3. Particle image velocimetry
In order to capture and explore the fluid flow within the fracture, we used the
optical method of PIV. This flow visualisation technique allows instantaneous velocity
measurements to be obtained. We created a 10 mm thick light sheet in the plane of
fracture growth within the hydrogel, using two arc lamps that penetrated through slits
on either side of the experimental apparatus. The fracturing fluid was then seeded
with tracer particles of 50 µm in diameter, which were large enough to track within
the fracture but had a negligible influence on the flow itself. When the fracture began
to propagate, the fracturing fluid with entrained particles was illuminated so that they
were visible relative to the ambient. The two-dimensional velocity data of the fluid
in the plane of fracture propagation were then determined by capturing images at
50 fps.

5. Results

In this section, we present the results of experiments in which we explore the radial
fracture growth and aperture scalings, outlined in table 1, for both the toughness- and
the viscosity-dominated regimes. The crack tip behaviour in each of these regimes is
displayed and shown to obey their respective asymptotic solutions, (2.41) and (2.42).
Finally, the flow within the fluid-driven fractures is investigated with the use of PIV
measurements.
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FIGURE 4. (Colour online) Experimental radial and aperture profiles of sample
experiments: (a,b) exp8 (t≈ 39.4 s); (c,d) exp15 (t≈ 40.6 s).

5.1. Radial crack growth
Once fluid is injected at a constant flux, a fracture propagates radially outwards
from the source, with no observable lag between the fluid-filled region and the crack
tip. We can see two examples of this type of fracture in figure 4. Initially, there
is a small fast fracture burst when the crack is first formed, due to the release of
elastic energy stored in the matrix. After this initial crack is created, the fracture then
propagates in the appropriate regime. Generally, toughness-dominated fractures were
observed to propagate with slightly more asymmetry than in the viscosity limiting
regime. This was mainly due to small heterogeneities in the gel matrix, which play a
much larger role when bond-breaking is the dominant energy dissipation mechanism.
This behaviour can be seen in figure 4(a,c), where the experiment further into the
toughness-dominated regime (exp8) is more asymmetric around the injection centre.
The ridges seen in figure 4 are due to the injection tube and the apparatus used to
hold the injection needle in place.

Once the fracturing process was complete, we examined the fracture surface created.
This was done by peeling open the gel along the plane of fracture. The fracture pattern
created showed evidence of step lines, which can be seen for a typical experiment
in figure 5. These patterns have been found in other configurations (Tanaka et al.
1996; Tanaka, Fukao & Miyamoto 2000), and we have discussed these phenomena
extensively elsewhere (O’Keeffe & Linden 2017).

In figure 6(a), we plot the radial extent versus time for experiments in the toughness
regime i.e. where t � tmk. These raw data allude to a linear progression on the
log–log scale for late times. By rescaling the radius using (2.31) and time with the
characteristic time scale (2.37), we produce figure 6(b). We observe that this scaling
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10 mm

FIGURE 5. (Colour online) A typical fracture surface post experiment exhibiting spiral
patterns (exp9).
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FIGURE 6. (Colour online) (a) The growing crack radius R versus time for a number of
experiments with varying injection rate Q, viscosity µ and elastic modulus E. (b) The
toughness rescaling Rk(t) of crack dependence versus rescaled time t/tmk.
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FIGURE 7. (Colour online) (a) The growing crack radius R versus time for a number of
experiments with varying injection rate Q, viscosity µ and elastic modulus E. (b) The
viscosity rescaling Rm(t) of crack dependence versus rescaled time t/tmk.

collapses all of the experimental curves onto a horizontal line which obeys the t2/5

power law, as expected for late times. The best fit line has a prefactor k= 0.86± 0.18
and exponent αk = 0.4± 0.04, where

Rk(t)= k

(
E′2Q2

K ′2

)1/5

tαk . (5.1)

This agrees well with the theoretical prefactor, which has a value of 0.85 from Savitski
& Detournay (2002). On accounting for the different constants used in the scaling of
Lai et al. (2016), the prefactor in that study would correspond to a value of k= 0.56.

Figure 7(a) plots the crack radius R versus time for experiments in the viscous
regime, in which t . tmk. Again, the raw data follow a power law, and, using the
radial viscosity-dominated scaling as in table 1, we find that the data collapse onto
the same horizontal line (figure 7b). The best fit line has a prefactor m= 0.28± 0.15
and exponent αm = 0.46± 0.04, where

Rm(t)=m
(

E′Q3

µ′

)1/9

tαm . (5.2)

The prefactor m differs significantly in the viscous regime from the theoretical value
of 0.7. To account for this discrepancy we examined some possibilities.
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100 105 1010

101

100

10–1

10–2

FIGURE 8. (Colour online) All experiments scaled using the radial toughness-dominated
power law (2.31).

(i) There may have been storage of fracturing fluid in the initial stages of the
experiment, leading to a different value of Q from the expected one. This was
explored using PIV measurements from § 5.4. The resulting flux estimates from
the velocity data match the syringe pump values to within approximately 10 %,
suggesting that storage effects were negligible and Q was accurately reported.

(ii) The parameter values were not as prescribed. However, we believe that
the experimental parameters are well characterised. Young’s modulus E
was calculated from two different methods, compression tests and spherical
indentation, and the fluid viscosity µ was measured using a u-tube viscometer
before every experiment. In order for our experimental viscous prefactor to match
the theoretical value of 0.7, the ratio of E′Q3/µ would have to be significantly
different as it is raised to a power of 1/9.

(iii) The viscosity regime does not start at time t = 0. This could be due to the
initial elastic response of the hydrogel. However, estimates for the maximum
value of this from tom=E′µ′/σ 3

0 ≈ 0.03 are not sufficient to explain the difference
(Bunger & Detournay 2007). We can fit the theoretical prefactor to the data,
where time is equal to (t − tom), to find a suitable tom after which the viscosity
regime propagates. We find that the tom value is in the range ≈5–25 s, which
seems to be an implausibly long time.

This analysis suggests that there may be some unidentified physical mechanisms that
were unaccounted for in the modelling, and that are responsible for this experimental
underprediction. A similar discrepancy can be found in the study by Lai et al. (2015),
where their scaling argument has an extra constant (1/32π3)1/9 when compared with
(5.2). The rescaled data in that study have a prefactor of 0.62, which would correspond
to a value of m = 0.29 here using (5.2). Therefore, both their and our independent
experimental studies exhibit similar underpredictions.

To distinguish between regimes, we plot all experiments scaled with the toughness-
dominated radial power law (2.31) in figure 8. The dashed line is fitted to experiments
where t/tmk . 102, and this has a prefactor of 0.42± 0.13 and exponent of 0.46± 0.04.
Likewise, the black line is fitted to experiments where t/tmk & 102, and this has
a prefactor and exponent as before of k = 0.86 ± 0.18 and αk = 0.4 ± 0.04.
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FIGURE 9. (Colour online) (a) The crack aperture profile of a cross-section, intersecting
the injection needle, of the radial fracture for experiment exp9 (table 2). Each set of data
points corresponds to the crack aperture at a certain time, with time evolving outwards
in increments of 1t= 4 s from the crack centre for each curve. (b) The rescaled fracture
aperture profile using the toughness-dominated radial and width power-law scalings from
table 1.

This large difference in the prefactors and exponents between the two groups of
experiments shows that it is possible to distinguish between the two different regimes.
One particular experiment, exp16, is known to transition from a viscous- to a
toughness-dominated regime, and will be discussed in detail in § 5.3. The raw data
for these experimental measurements are contained in the supplementary material,
available at https://doi.org/10.1017/jfm.2018.203.

5.2. Crack aperture
The crack aperture measurements obtained from dye attenuation provide us with the
full crack profile. In figures 9 and 10, we plot the cross-section, which intersects
the injection needle so we can properly analyse the crack aperture scalings. The
anomalous points observed in the data for both experiments, which occur around
R= 0, are due to the presence of the injection needle blocking measurements at this
point.

In figure 9(a), the width versus radius is plotted for a fracture in the toughness-
dominated regime. Each curve corresponds to the crack aperture at a certain time, with
the curves at the outer edges corresponding to the later times. Figure 9(b) shows that
scaling the cross-section data, with the radial and width toughness power laws from
table 1, results in collapse of the curves.

Results from an experiment near the viscosity regime are shown in figure 10. Once
again, the curves collapse under the appropriate scalings onto a single curve, as seen
in figure 10(b), thus behaving in the expected way as outlined in table 1. Although
figures 9 and 10 only correspond to two particular experiments (exp9 and exp15), this
behaviour is reproduced by other experiments (not shown). The scaled data produce
a very well-behaved radius collapse, while the error near the centre of the fracture is
related to the tuning of the calibration to capture the tip behaviour.

5.3. Crack tip behaviour
These aperture measurements also allow us to explore the tip behaviour of these
fractures. This method provides an extra validation of the toughness and viscous
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FIGURE 10. (Colour online) (a) The crack aperture profile of a cross-section, intersecting
the injection needle, of the radial fracture for experiment exp16 (table 2), with 1t= 4 s.
(b) The rescaled fracture aperture profile using the viscosity-dominated radial and width
power-law scalings from table 1.

Experiment
Toughness
Viscous

0

1

2

3
(a)

0.1 0.2 0.3

w
 (

m
)

0

1

2

3
(b)

0.1 0.2 0.3

FIGURE 11. (Colour online) The crack tip region for a toughness-dominated fracture
(exp10) that follows the LEFM toughness asymptote (2.41) denoted by the solid line for
(a) t/tmk = 1.4× 108 and (b) t/tmk = 4.8× 108.

regimes while also allowing us to observe the transition between regimes. Figure 11
shows the crack tip opening profile for a fracture propagating in the toughness-
dominated regime compared with the asymptotic forms for the toughness and viscous
regimes, (2.41) and (2.42) respectively. It is clearly seen that the LEFM asymptotic
behaviour in (2.41) is observed for different times throughout the experiment.

Figure 12 shows the transition from a viscous- to a toughness-dominated fracture.
Figure 12(a) shows that the tip region is governed by the viscous intermediate
asymptote (2.42) in the limiting case of the viscosity-dominated regime at t= 0.76 s.
As the fracture evolves, the crack tip then transitions to the toughness-dominated
regime at later times. Figure 12(b) shows the crack shape in this regime.

5.4. Fracture fluid flow
In modelling the radial fracture problem, we have assumed (see (2.6)) that lubrication
theory adequately captures the physical mechanisms of the flow, meaning that the flow
is laminar and radial in nature. The appropriate Reynolds number for the lubrication
fluid flow in the fracture is defined in (2.5).
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Experiment
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Viscous
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0
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0.1 0.2

FIGURE 12. (Colour online) The crack tip region for a fracture (exp16) that transitions
from the viscous dissipation (2.42) to the toughness asymptote (2.41), denoted by the
dashed and solid lines respectively, for (a) t/tmk = 76 and (b) t/tmk = 2.8× 103.

10 mm10 mm(a) (b)

FIGURE 13. (Colour online) Velocity fields for a fracture in the viscosity regime (piv4)
for (a) t/tmk ∼ 10 and (b) t/tmk ∼ 20.

If we first consider an example of a fracture near the viscosity-dominated
regime (piv3, table 2), where Q ≈ 23 ml min−1, µ ≈ 1130 mPa s, E ≈ 311 kPa,
γs≈ 3.6 J m−2, ρ≈ 1.26 g cm−3, w≈ 1.7 mm and R≈ 25 mm, then Rem≈ 1.9× 10−4

(tmk ∼ 0.008). In a toughness limiting regime (piv2, table 2), where µ ≈ 1 mPa s,
E = 97 kPa, Q = 20 ml min−1, γs = 5.6 J m−2, ρ ≈ 1 g cm−3, w ≈ 2 mm and
R≈ 25 mm, then Rek ≈ 1.7× 10−1 (tmk ∼ 10−12). This approximation suggests that the
range of Reynolds numbers involved is sufficiently small that inertial effects can be
neglected.

Examples of the velocity field in the viscosity regime (piv4, table 2) obtained from
the PIV measurements are shown in figure 13. The velocity fields exhibit laminar
radial flow emanating from the injection needle source in the centre of the fracture.
The magnitude of the velocity vectors diminishes with distance from the source, which
is consistent with a constant volume flux spreading radially outwards, where velocity
decays like r−1. This is observed in figure 14, where the azimuthal by-averaged radial
velocity is plotted versus distance from the source for the two times seen in figure 13.
This type of behaviour is expected and was assumed in our mathematical formulation,
which used lubrication theory to predict the flow.

The velocity fields in an experiment that transitions from a viscosity- to a
toughness-dominated fracture regime (piv3, table 2), are shown in figure 15. In
figure 15(a), the velocity field at early times when t/tmk ∼ 102 is similar to that
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0
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0.01 0.02 0.03

r (m)

FIGURE 14. (Colour online) Azimuthal velocity average of fluid versus distance from the
source r.

10 mm10 mm(a) (b)

(c) 10 mm

FIGURE 15. (Colour online) Average velocity fields at different stages for a fracture
transitioning between regimes (piv3) for (a) t/tmk ∼ 5 × 102, (b) t/tmk ∼ 5 × 103 and
(c) t/tmk ∼ 1× 104.

observed in the viscosity regime, as anticipated. However, at later times in the
experiment (figure 15b,c) when the fracture has transitioned fully into the toughness
regime, the fracturing fluid noticeably circulates around the fracture once it has
reached the tip. Two small circulations form at the top of the fracture and grow
in size as the crack propagates radially, until they finally encompass the whole
fluid-filled fracture.

For experiments that are toughness-dominated at all times, the flow within the
fracture can be very disordered. Figure 16 shows the average velocity fields for two
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10 mm10 mm(a) (b)

FIGURE 16. (Colour online) Average velocity fields at late times for fractures in the
toughness regime for (a) t/tmk ∼ 1012 (piv1) and (b) t/tmk ∼ 1011 (piv2).

such experiments at late times. Similarly to the late-time behaviour of the transitioning
fracture, the structure of the flow appears to be split into circulation cells within the
fracture, which are quite different from the assumed flow field under lubrication
theory. The number of cells that formed varied between experiments. So far, we have
observed a variation between 1 and 4 for the number of cells present in a single
fracture.

This behaviour is thought to be due to the extent of the departure of the crack
shape from a perfect circle around the injection needle. Initially, a small asymmetry
in the fracture shape usually occurs due to the experimental conditions, such as
small heterogeneities in the gel. The injected fluid is then drawn into the tip of the
quasistatically propagating fracture, which is not propagating at exactly the same rate
at every point of the fracture. Some preferential direction will be established at each
time step of propagation. This area will attract more fluid within the fracture. Then,
once this preferential direction has changed, the fluid present will circulate around to
the more dominant area of growth. This type of behaviour can be seen in figure 15,
where the fracture initially grows preferentially upwards and then the flow begins to
circulate around when more fracturing occurs downwards at later times.

6. Conclusions
This paper describes the properties of fluid-driven fractures in an elastic medium.

We first reviewed the existing theoretical framework for a fluid-driven penny-shaped
crack. This literature provided scaling relationships of fracture radius, aperture and
crack tip shape dependent on the dominant energy dissipation mechanism, viscosity
or material toughness. These relationships were then verified experimentally in
brittle hydrogels, with transitions between the two regimes also observed. It can be
difficult to distinguish between regimes due to the similarity of the respective power
laws describing the growth of the fracture radius with time. This motivated three
dynamic measurements, radius, aperture and velocity, to identify the presence of
limiting regimes and the possibility of experimentally observing the transition. The
toughness regime measurements for radius growth provide good agreement between
experimental and theoretical prefactor values. However, the discrepancy observed
between the prefactors in the viscous regime is significant, suggesting that some
unknown physical mechanism might be unaccounted for. It is extremely important
in industrial applications of hydraulic fracturing that the regime of propagation is
known. The injection time scales for these operations can sometimes be several days.
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Therefore, even though the power-law dependence for radial growth is similar, over
large time scales, fractures will propagate significantly further in the viscosity regime
compared with toughness-dominated cracks.

Finally, PIV analysis of fluid within these fractures revealed that two distinct types
of flow are also present. In the viscosity limiting case, the fluid travels radially
outwards from the source to the tip, as expected. However, in the toughness limiting
case, where the quasistatic propagation of the crack is not dependent on the flow,
the fracturing fluid travels in a more complex manner, circulating within the crack.
This type of flow will have a significant effect on the transport of proppants within
fractures, and ultimately on the success of a hydraulic fracturing operation. The flow
pattern may inhibit the ability of the proppants to travel to desired locations so that
fractures are propped open and gas extracted.
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