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Summary

In a recent article, Ball and Huppert (J. Fluid Mech., 874, 2019) introduced a novel method
for ascertaining the characteristic timescale over which the similarity solution to a given time-
dependent nonlinear differential equation converges to the actual solution, obtained by numerical
integration, starting from given initial conditions. In this article, we apply this method to a range
of different partial differential equations describing propagating gravity currents of fixed volume
as well as modifying the techniques to apply to situations for which convergence to the numerical
solution is oscillatory, as appropriate for gravity currents propagating at large Reynolds numbers.
We investigate properties of convergence in all of these cases, including how different initial
geometries affect the rate at which the two solutions agree. It is noted that geometries where the
flow is no longer unidirectional take longer to converge. A method of time-shifting the similarity
solution is introduced to improve the accuracy of the approximation given by the similarity solution,
and also provide an upper bound on the percentage disagreement over all time.

1. Introduction

A large number of problems in the physical sciences require the solution of time-dependent nonlinear
partial differential equations. A prime example in fluid mechanics is gravity currents, where fluids
of different densities flow, primarily horizontally, into each other. This behaviour is important to
understand in many different circumstances—Huppert (1) lists applications as varied as atmospheric
flows, lava flows, the spreading of honey on toast and oceanic flows. However, all too often, numerical
solutions to the governing nonlinear equations must be sought, because there are no analytical
solutions.

In spite of this, in many cases a similarity solution can be found to the nonlinear equations, and
the flow will tend towards the behaviour described by this solution for very large times. These
solutions do not take into account the initial conditions, and there is no trivial manner of deciding
when this similarity solution behaviour applies well to the flow (behaviour may agree with the
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2 J. J. WEBBER AND H. E. HUPPERT

similarity solution to a high degree only after milliseconds or years, dependent on the situation
and physical parameters). Therefore, a method of calculating how much time needs to pass until
certain properties of real-life flows agree to within a given percentage with those of the similarity
solution—an equilibration time—is sought.

A recent article by Ball and Huppert (2) presents a method for ascertaining the equilibration time
for an axisymmetric viscous gravity current flowing above a rigid, horizontal boundary with given
initial conditions. Considering a relatively long and thin viscous gravity current comprising two
fluids with density difference �ρ, with the more viscous fluid having dynamic viscosity μ, Huppert
(3) derives,

∂h

∂t
− β

r

∂

∂r

(
rh3 ∂h

∂r

)
= 0, (1.1a)

to describe the height h (r, t) of the intruding flow, subject to the volume remaining constant,

2π

∫ rN (t)

0
rh (r, t) dr = V (1.1b)

and

h (rN ) = 0, (1.1c)

where β = g�ρ/ (3μ), and rN (t) is the maximum radial extent of the intruding flow. A similarity
solution for rN was first presented in (3). We now seek an equilibration time τ , which is a characteristic
timescale for the actual value of rN and the similarity solution rs to agree to some fixed degree.

In (2), this agreement is measured by percentage difference relative to the similarity solution, p,
a convention we will adopt here. Specifically,

p = 100 |rs (t) − rN (t)|
rs (t)

. (1.2)

To derive their result, the hypothesis that τ is infinite for zero p (that is to say, the similarity solution
never exactly reaches the numerical solution) and τ is a monotonically decreasing function of p (it
takes more time to reach the result to a closer degree) are made, and then confirmed by numerical
results for the problem (1.1).

The only parameters involved in the problem which could contribute to the equilibration time are
β and V , where the dimensions of β are (LT)−1, and those of V L3, so it is reasonable to assume the
equilibration time τ ∝ 1/(βV1/3)—as is shown to be the case by (2).

In this article, we will continue this approach and verify its use for finding equilibration times for
other kinds of gravity currents, starting with those posed by (2). We note that equilibration times
τ are approximately proportional to p−1 in all three of these canonical cases. The dependence of
the equilibration time on the geometry of the initial problem, and how this changes based on the
problem itself, will be discussed, with the strength of this dependence shown to differ greatly between
different flows. We will then move on to consider similarity solutions of the shallow-water equations,
much-discussed by others, including Hoult (4), Huppert and Simpson (5) and Grundy and Rottman
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(6), and seek expressions for equilibration times in spite, in some cases, of the oscillatory nature of
convergence to the similarity solution.

As well as investigating the characteristic times for convergence to the similarity solution in this
oscillatory case, we will consider the nature of convergence in more depth here. We find that p can
be zero for a series of finite times, as well as when t → ∞. We investigate the minimum percentage
differences at various stages of the oscillatory convergence, and how these relate to the parameters
of the flow, and show that a modified form of the analysis detailed above can still be applied in this
case, in spite of the large differences in the nature of convergence. It is also seen that the timescale
for convergence depends on the specific initial dimensions of the flow, and not just on the initial
aspect ratio, as was the case for monotonic convergence.

Furthermore, it is noted that the equilibration time no longer grows as p−1 in this non-monotonic
case—by comparison with the analytic approach detailed by Grundy and Rottman (6), an approximate
expression for the equilibration time as a function of p is derived for early times (which only holds
for small times).

We also show that a simple modification of the similarity solutions for rN , time-shifting them
such that they match the initial value of rN for the problem in question, generally provides a better
approximation to the actual behaviour of the flow in cases where convergence is monotonic, therefore
reducing the equilibration time. Furthermore, we investigate the maximum percentage difference over
all time between this shifted similarity solution and the actual solution of the nonlinear equations,
again for monotonic convergence.

2. Some canonical problems

In the Appendix of (2), three canonical problems are presented and general suppositions made as to the
relationship between τ and the parameters of the problems. These problems are: two-dimensional
(2D) viscous gravity currents; 2D gravity currents in a porous medium; and then axisymmetric
currents in a porous medium. We solve all of these cases numerically, using a Crank–Nicolson
predictor–corrector method with variable step sizes, to show that the suggested relationships do
indeed hold.

We also find approximations to the relation between equilibration time τ and percentage difference
p between the similarity solution and numerical solution. In all of the cases here, we show that τ

is approximately proportional to 1/p for small p. Unless otherwise stated, we will be concentrating
on τ5%, that is to say, the time taken for the percentage difference p to be equal to five per cent. A
difference of five per cent was chosen as a value close enough to zero to likely model behaviour for
small p well, without having to perform the numerical integration for too long and risk introducing
round-off errors.

2.1 2D viscous gravity currents

The governing equations in this case, denoting the maximum extent of the flow in the x-direction by
xN (t) (and therefore introducing a similarity solution xs (t), instead of rs (t)), are, from (3),

ht − β
(

h3hx

)
x

= 0 (2.1a)
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and

∫ xN (t)

0
h dx = A, (2.1b)

indicating that there is a constant total area A associated with the flow. By definition, xN also clearly
satisfies the condition that h (xN ) = 0. We solve this with similarity variables as in (3). Start by
taking

η =
(
βA3

)−1/5
xt1/5. (2.2)

Then, letting ηN be the value of η at xN , with y = η/ηN , postulate a solution of the form

h (y, t) = η
2/3
N

(
A2/β

)1/5
t−1/5φ (y), (2.3)

for some function φ that must satisfy

∂

∂y

(
φ3 ∂φ

∂y
+ 1

5
yφ

)
= 0. (2.4)

Noting also that
∫ 1

0 φ dy = 1, we can solve for the constant ηN , and this leads to the similarity
solution

xs = ηN

(
βA3

)1/5
t1/5, (2.5)

resulting in a suggested equilibration time τ satisfying

A1/2βτγ
5/2
0 = p−1fa (p, shape), (2.6)

as derived by (2), where fa is some function of p, to be determined, relating equilibration time
to percentage difference. For reasons that will become clear later, we take a factor of p−1 out
in this case. Here, γ0 is the aspect ratio of the initial shape, h0/x0. We plot numerical values of
xN (t) and the similarity solution (2.5) above to first show the convergence of xs (t) to xN (t). In
this case, we take the initial shape of fluid to be a square of side length 1, with vertices (x, h) =
(0, 0), (1, 0), (1, 1), (0, 1) (thus giving γ0 = 1), with the results shown in Fig. 1. Equation (2.6)
suggests that plots of ln τ5% against ln β should give a straight line of gradient −1, and we can
therefore confirm that τ ∝ 1/β, as well as confirming the numerical reliability of our program, as
shown in Fig. 2. A similar approach holds to show the stated power-law dependence on γ0 and
A. Finally, it remains to seek a form for fa (p, rectangle). Postulating a form fa (p, rectangle) =
B
[
1 − εp + O (p2)], and plotting pβτp% (A and γ0 are held constant at 1) against p in each case

gives the same curve, which, for sufficiently small p, is approximately linear, giving

fa (p, rectangle) ≈ 5.9
[
1 − 0.017p + O

(
p2
)]

, (2.7)

as evidenced in Fig. 3. Therefore, we argue that, for sufficiently small p, the behaviour of τ is
dominated by the 1/p term.
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(a) (b)

(c) (d)

Fig. 1 Plots of the numerical solutions for xN (dotted line) against time and the similarity solution xs (solid
line) for (2.1) with initial shape of a square of unit side length. Note the difference in timescales in each case.

Fig. 2 A plot of ln τ5% against ln β for the case described by (2.1). The numerically calculated best-fit line
has a gradient of −0.9992.

It remains to determine expansions of fa (p, shape) in the form B
[
1 − εp + O (p2)] for other

shapes, the results of which are summarised in Table 1. We note that the values for ε here are
mostly comparable to those found for (1.1) by (2) (with the corresponding three-dimensional (3D)
axisymmetric shapes found by rotating these shapes around the axis, such that a square becomes a
cylinder, etc.), and the values of B are around twice as large as in the aforementioned case, except
for the case of the inverted triangle geometry, which appears to converge considerably more slowly,
leading to a far greater value of B.

Investigating this further by introducing a new geometry, a ‘boxcar’ shape—as defined in Table 1—
it can be seen that convergence is also slower in this case, and it becomes clear that under both this
initial shape, and the inverted triangle geometry, there are significant amounts of ‘backwards’ flow (in
the negative x direction). This greatly increases the amount of time taken to agree with the similarity
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6 J. J. WEBBER AND H. E. HUPPERT

Fig. 3 A plot of βpτp% against p to illustrate a first-order expansion for fa (p, rectangle)—first-order
approximation is shown by the dashed line. Note that the anomalous curvature of the line for very small p
is due to round-off error in the numerical integration.

Table 1 A table of values of B and ε for solutions to (2.1) with different initial shapes

Initial shape B ε

Rectangle 5.9 0.017
Quarter-ellipse (x2/x2

0 + h2/h2
0 = 1) 5.2 0.016

Inverted triangle (initial height zero for all x > x0, otherwise h0r/x0) 116.0 0.023
Boxcar (initial height zero for all 0 < x < 1 and x > x0, otherwise h0) 44.7 0.014

Fig. 4 A height profile for a boxcar shape, displaced from the origin, with x0 = 2 and h0 = 1, β = 1, showing
how flow is not entirely unidirectional.

solution, and results in a larger overall magnitude of fa. Observing a height plot of this boxcar shape
(Fig. 4), shows this behaviour clearly - for early times in the flow considered here, there are equal
amounts of flow in both directions, until the impenetrable barrier at x = 0 is reached. Therefore, for
the early behaviour of the flow, the similarity solution best describing the radial extent of the flow
would be that for a cylinder of initial radius 1/2, offset by a radial distance of 3/2, explaining why
convergence to the actual similarity solution is considerably slower.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/73/1/1/5585569 by U

niversity of C
am

bridge user on 23 D
ecem

ber 2021



Copyedited by: ES MANUSCRIPT CATEGORY: Research article

[16:01 11/2/2020 OP-QJMA190019.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 7 1–23

TIME TO APPROACH SIMILARITY 7

Fig. 5 A plot of ln τ5% against ln α for the case described by (2.8), with best-fit line of gradient −1.0000.

2.2 A 2D gravity current in a porous medium

In this case, from Phillips (7), the governing equation is

ht − α (hhx)x = 0; (2.8)

for α a parameter dependent on permeability, porosity, viscosity and gravity (subject to certain
assumptions on the properties of the porous medium, detailed in Huppert & Woods (8)), again
subject to the constraint of a constant total area. The similarity solution, derived by (8), is

xs (t) = (9Aαt)1/3. (2.9)

A similar analysis as before to find an equilibration time leads to the postulated result

αA−1/2γ
3/2
0 τ = p−1fb (p, shape). (2.10)

As previously, taking the same initial square shape with unit side length at time t = 0, we verify this
by plotting ln τ5% against ln α for values α = 0.5, 1, 10, 100, which should again take a gradient
of −1, as is shown in Fig. 5. We can similarly check dependence on the other parameters of the
problem. Again, we seek a first-order approximation to fb (p, rectangle). Using the same method as
shown in Fig. 3, we deduce that

fb (p, rectangle) ≈ 8.0
[
1 − 0.011p + O

(
p2
)]

. (2.11)

which also shows that τ ∼ 1/p for sufficiently small p. As before, we determine B and ε for different
initial geometries, as shown in Table 2. We again note in this case the greater values of B in the
inverted triangle and boxcar geometries, but remark that this specific problem is affected much less
strongly by such changes in geometry, with equilibration times only increasing by a factor of less
than 10.

2.3 An axisymmetric gravity current in a porous medium

This flow is governed by

ht − α

r
(rhhr)r = 0 (2.12a)
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8 J. J. WEBBER AND H. E. HUPPERT

Table 2 A table of values of B and ε for solutions to (2.8) with different initial shapes

Initial shape B ε

Rectangle 8.0 0.011
Quarter-ellipse 7.4 0.010
Inverted triangle 44.7 0.014
Boxcar 60.0 0.016

Fig. 6 A plot of ln τ5% against ln α for (2.12). The best-fit line has gradient −1.0005.

as derived by Lyle et al. (9), where α here again depends on the porosity, permeability, viscosity and
gravity. Also,

2π

∫ rN (t)

0
rh dr = V , (2.12b)

where V is the total volume. Again, we introduce similarity variables to find the form of rs (t), as
derived in (9)

rs (t) = 2 (αV/π)1/4 t1/4 (2.13)

and then, in the same way as above, solve for the purported relation

τ =
(

V/γ 4
0

)1/3
(αp)−1 fc (p, shape). (2.14)

We take initial conditions of a solid cylinder of radius 1 and height 1, and plot, in Fig. 6, ln τ5% against
ln α with α = 0.5, 1, 10, 100. This again confirms a dependence on α−1. Finally, we determine an
approximate form for fc (p, cylinder), the axisymmetric 3D analogue of the rectangle used in sections
2.1 and 2.2. Again using the same technique, plotting π−1/3αpτp% against p (because γ0 = 1 and
V = π in this specific case), we determine that

fc (p, cylinder) ≈ 2.5
[
1 − 0.018p + O

(
p2
)]

. (2.15)

Changing the geometry of the problem, by choosing the solids of revolution formed by the examples
in sections 2.1 and 2.2, we find the results in Table 3. This table again shows slower equilibration for
the final two geometries, when compared with the first two, but with a weaker effect than in sections
2.1 or 2.2 (equilibration times only increase by a factor of approximately 2.5 in this case).
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Table 3 A table of values of B and ε for solutions to (2.12) with different initial shapes

Initial shape B ε

Circular cylinder 2.5 0.018
Ellipsoid 2.6 0.014
Inverted cone 6.5 0.024
Cylindrical ring (initial height h0 for 1 < r < r0, and otherwise zero) 6.3 0.026

3. The shallow-water equations

Having discussed the above cases, where convergence to the similarity solution was strictly
monotonic, and thus the suppositions of (2) could be applied directly to the problem, we now
investigate these suppositions in cases where the convergence to the similarity solution may not
be as straightforward. We do this by considering the (one-layer) shallow-water equations, which
describe the dynamics of high-Reynolds-number gravity currents in cases where either a thin and
relatively light fluid layer intrudes above a heavier fluid layer, or a thin and relatively heavy fluid
layer intrudes underneath a lighter fluid layer. In either case, the layer in question needs to have a
thickness small compared with both its length (xN or rN in earlier sections) and the thickness of the
other fluid comprising the system – more details are discussed in Simpson (10) and Ungarish (11).
In the context of this article, we will only consider currents obeying the Boussinesq approximation.

For our purposes, we begin by considering a relatively heavy 2D current intruding above an
impenetrable base under a lighter fluid (discussion of an axisymmetric current is reserved for section
3.3). We also take the height of our gravity current to be negligible compared with the height of the
lighter fluid layer. As stated in (6), and elsewhere, the equations governing such a current are

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0 (3.1a)

and

∂u

∂t
+ u

∂u

∂x
+ g′ ∂h

∂x
= 0, (3.1b)

where u (x, t) is the speed of the flow parallel to its base, and

g′ = g
(
ρheavier − ρlighter

)
/ρheavier. (3.2)

Additionally, we impose the boundary and initial conditions

u (0, t) = 0, (3.3a)

u (xN , t) = ẋN , (3.3b)

u (x, 0) = 0, (3.3c)

ẋ2
N = Fr2 g′h (xN , t), (3.3d)

h (x, 0) =
{

h0 0 ≤ x ≤ x0

0 x0 < x
(3.3e)
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10 J. J. WEBBER AND H. E. HUPPERT

for constants h0, x0 and Fr—see Appendix A for more details on the value of Fr, the Froude number.
We also impose the condition that the volume per unit width of the denser fluid is conserved, with a
constant value V [just as in (2.1)]. Grundy and Rottman, in (6), repeat the similarity solution

xs (t) = A0
(
g′V
)1/3 t2/3, (3.4)

originally derived in (4). In our case, the constant A0 ≈ 1.39 (more detail on this derivation is
presented in Appendix A).

3.1 Comparing xN (t) to xs (t)

3.1.1 Numerical solution. To solve this system numerically, we use an approach based on that
posed by the authors of Bonnecaze et al. (12) and (11). Letting y = x/xN and T = t, the shallow-water
equations (3.1) become

∂h

∂T
= 1

xN

{
(yẋN − u)

∂h

∂y
− h

∂u

∂y

}
, (3.5a)

∂u

∂T
= 1

xN

{
(yẋN − u)

∂u

∂y
− g′ ∂h

∂y

}
. (3.5b)

We then transform the boundary and initial conditions of (3.3) into this new system, detailed in (3.6).
Unlike in (12), which uses a two-step Lax–Wendroff approach, we solve these equations numerically
with a Lax–Friedrichs approach, for a y-domain of [0, 1]. Values at the endpoints y = 0 and y = 1 are
determined through the boundary conditions and through finite-difference representations of (3.5).

u (0, T) = 0, (3.6a)

u (1, T) = ẋN , (3.6b)

u (y, 0) = 0, (3.6c)

ẋ2
N = Fr2 g′h (1, T), (3.6d)

h (y, 0) = h0. (3.6e)

3.1.2 Convergence to the similarity solution. Grundy and Rottman (6) indicate that convergence
of the numerical solution of the shallow-water equations to the similarity solution stated as (3.4) is
oscillatory in nature. Producing a plot of p against ln t (to better show the long timescales involved),
we confirm that this is indeed the case. The plot in Fig. 7 clearly shows that the percentage difference
between xN and xs is monotonically decreasing up to some time t = t∗, before increasing again. The
similarity solution xs then goes on to converge in an oscillatory manner, with properties described
in more detail by (6). We will show that the methods of (2) apply in the initial period 0 ≤ t < t∗,
when convergence is still monotonic.

3.1.3 Dependence of τ on the parameters of the problem. Noting that the only dimensional
quantities on which this system depends are V and g′, with dimensions L2 and LT−2, respectively,

we could postulate that τ ∝ (
V/g′2)1/4

, using the same approach as the problems in section 2.
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Fig. 7 A plot of the percentage difference p between xN and xs over time – note the local minimum at t∗, and
the subsequent extrema, marked by asterisks on the plot. This plot is smoothed to remove slight oscillations as
time increases and rounding errors begin to affect the results. The shaded region shows where convergence is
monotonic.

Fig. 8 A plot of ln τ5% against ln g′ for the shallow-water equations (3.1). The calculated best-fit line (shown
as a dashed line) has a gradient −0.5099 ≈ −1/2.

However, our initial numerical results indicated that this was not the case, and a different approach
was sought.

To show why this is, consider the only timescale of the equation, up to a multiplicative constant,

σ = x0
(
h0g′)−1/2 (3.7)

and note that we cannot eliminate x0 and h0 through combinations of V = x0h0 and γ0 = h0/x0, so
τ must depend explicitly on x0 and h0 separately, completely unlike the cases in section 2.

We plot values of ln τ5% against ln g′ (Fig. 8), ln x0 (Fig. 9) and ln h0 (Fig. 10) to confirm the
conclusions implicit from (3.7).

Naturally, errors propagating in the numerical solutions mean that the gradients inferred
numerically from the graphs do not match the theoretical values exactly. The deviation is greater
than that for the cases in section 2 due to a combination of factors, not least shocks arising in the
solution of (3.1) [discussed by (12) in more depth] and the fact that our choice of Fr is merely an
approximation.
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Fig. 9 A plot of ln τ5% against ln x0 for the shallow-water equations (3.1). The calculated best-fit line has a
gradient of 1.0533 ≈ 1.

Fig. 10 A plot of ln τ5% against ln h0 for the shallow-water equations (3.1). The best-fit line has a gradient
of −0.4955 ≈ −1/2. This behaviour is only shown for a relatively narrow range of h0 – it was found that for
values of γ0 = h0/x0 much greater than 1, the relationship no longer holds, probably because the problem is
not well-modelled by the shallow-water equations.

A similar analysis to the above shows that τ is proportional to (Fr)−3, shown in Fig. 11. However,
for most purposes, we will simply take Fr = 1 – this is not a parameter to vary in the same way
that the other involved parameters are, because it is instead a property of the flow itself. As stated in
Appendix A, the authors of (6) take Fr = 1 in their analysis of the problem.

Therefore, we know that τ is proportional to x0
(
g′h0

)−1/2 Fr−3 in this 2D case, with some other
dependence, to be determined, on the shape and percentage difference p. Note here that we are no
longer making the supposition that this relationship is dominated by a p−1 term, as was the case
beforehand.

τp% = x0
(
g′h0

)−1/2 Fr−3 f (p, shape). (3.8)

3.1.4 Seeking the form of f (p, shape). Again, working only for times 0 ≤ t < t∗, we seek a
form of the function f (p, shape), and start by considering whether τ decreases as 1/p (as was the
case for the problems in section 2), or in some other manner.

It is important to remark that we are restricting our attention to the first phase of (monotonic)
convergence here, the shaded region on Fig. 7—τp% represents the time at which the solutions first
agree to within p%, for p > pmin, the value of p at time t∗.
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Fig. 11 A plot of ln τ5% against ln Fr for the shallow-water equations (3.1). The best-fit line has gradient
−3.0042.

Fig. 12 A plot of ln τp% against ln p demonstrating that, for many values of p, τ is approximately proportional
to p−2/3 – the best-fit line here has gradient −0.6538 ≈ −2/3.

A plot of ln τp% against ln p (Fig. 12) shows that, unlike the cases in section 2, convergence time
is dominated by a p−2/3 term, but that, in general, we can’t apply a power law relationship in this
case. This is perhaps illustrated more strongly if, for 0 ≤ t < t∗, we postulate that f (p, shape) =
p−2/3fd (p, shape) for some function fd , dependent on the initial shape and p. We then remark that

fd (p, shape) = p2/3τp%
(
g′h0

)1/2
/x0, and so seek a linear approximation to fd for small p, as we

did in section 2. This plot in Fig. 13 shows that we cannot apply the same reasoning as before—there
is no linear behaviour for small p, suggesting that f (p, shape) can’t have an analogous form to the
cases in section 2. The approximation by a power of p is seen to break down close to the local
minimum at t∗.

If we interpret to the analysis of the authors of (6), it is seen that

xN (t) =A0
(
g′V
)1/3 t2/3

⎡
⎣1+

∑
j

exp
[
Re
(
γj
)

A0T
] {

aj cos
[
Im
(
γj
)

A0T
]+bj sin

[
Im
(
γj
)

A0T
]}⎤⎦,

(3.9)

where T = ln
[(

g′V
)1/2 x−3/2

0 t
]
/A0 and γj are eigenvalues to be determined. The constants aj and

bj also remain undetermined, but this form alone shows that convergence should be oscillatory in
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Fig. 13 A plot of fd (p, cylinder) against p.

nature. From (3.9), it can also be seen that

p = 100
∑

j

exp
[
Re
(
γj
)

A0T
] {

aj cos
[
Im
(
γj
)

A0T
]+ bj sin

[
Im
(
γj
)

A0T
]}

. (3.10)

It is shown in (6) that one of the eigenvalues, which we will call γ0, is always equal to −1, and that
all of the other eigenvalues have real part −1/2. Therefore, we rewrite our expression as

p = 100a0
(
g′V
)−1/2 x3/2

0 t−1

+ 100
(
g′V
)−1/4 x3/4

0 t−1/2
∑
j 
=0

{
aj cos

[
Im
(
γj
)

A0T
]+ bj sin

[
Im
(
γj
)

A0T
]}

︸ ︷︷ ︸
W(T)

. (3.11)

Letting q = (g′V
)−1/4 x3/4

0 t−1/2 = (g′h0
)−1/4 x1/2

0 t−1/2, it is seen that

a0q2 + W (T) q − p

100
= 0. (3.12)

However, (3.8) suggests that q has no time-dependence, at least in the region of convergence we are
considering. Therefore, assuming that W (T) is approximately equal to some constant W0, we can
solve to find that

τp% = x0
(
g′h0

)−1/2 Fr−3

⎛
⎜⎝ 2 Fr3/2 a0

−W0 ±
√

W2
0 + a0p

25

⎞
⎟⎠

2

. (3.13)

As we expect τp% → ∞ as p → 0, we must pick the + in ±, and are therefore left with the postulated
expression

f (p, shape) =
⎛
⎜⎝ 2 Fr3/2 a0

−W0 +
√

W2
0 + a0p

25

⎞
⎟⎠

2

. (3.14)

This prediction can be matched with our numerical results, finding that, in the case of initially
rectangular geometry, a0 ≈ 0.375 and W0 ≈ −0.175—Fig. 14 shows very strong agreement of this
postulated form in the early period of convergence.
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Fig. 14 A plot comparing the postulated form of f (p, cylinder) from (3.14) with numerical results from
solving the shallow-water equations, showing very strong agreement.

Fig. 15 A plot of pmin against γ0, showing little variation (note the scale on the vertical axis).

3.1.5 Values of p at t = t∗. It is a natural development to consider the local minimum percentage
difference at t∗, pmin, and how this is affected by the problem in question. The only factors which
could affect it are g′, x0 and h0, as well as the Froude number Fr, but pmin is dimensionless, so
it can only depend on γ0 = h0/x0 and Fr – we can make no dimensionless group including other
parameters.

Varying γ0 in different cases, rather surprisingly, has very little effect on the value of pmin, as shown
in Fig. 15, and therefore this can be considered constant for any given initial shape, independent of
dimensions, volume or g′.

Changing the value of Fr, however, including to the values suggested by other authors, shows a
strong linear correlation. Numerical results suggest that pmin ≈ 40 (1 − 0.9 Fr), as evidenced by the
plot in Fig. 16, indicating that pmin ≶ 0 for Fr ≷ 1.095. We illustrate a case where pmin < 0, with
for Fr = 1.19, in Fig. 17.

3.2 Convergence for t > t∗
We now move on to consider the pattern of convergence for times beyond the local minimum at t = t∗,
and seek to determine whether the approach of (2) can still be successfully applied. We consider

values of τ0%, the first time at which xN (t) is equal to xs (t), and postulate that τ0% ∝ x0
(
g′h0

)−1/2,
as we would conclude from dimensional analysis. Plots for ln τ0% against ln g′, ln x0 and ln h0 show
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Fig. 16 A plot of pmin against Fr, showing an approximately linear relationship.

Fig. 17 A plot of p against ln t with Fr = 1.19 to show a negative value of pmin. This plot is smoothed to
remove slight oscillations as time increases and rounding errors affect results.

that this is the case, as shown in Figs. 18–20. There are some deviations from the predicted values,
because timescales are far larger, providing a greater opportunity for error in the numerical solution
to affect the results.

Thus we can state that, taking rounding error into account, for the 2D shallow-water equations,

τp% = x0
(
g′h0

)−1/2 Fr−3 f (p, shape), (3.15)

where f (p, shape) is a potentially discontinuous function. This is to account for the discontinuity
arising in τp% at p = pmin. For example, in the case illustrated in Fig. 7, τpmin% = t∗ < 2 but
τ(pmin−ε)% > 8 for all ε > 0, by inspection.

3.3 Axisymmetric case

The governing equations for the axisymmetric analogue of the problem discussed in section 3 are,
from (6),

∂h

∂t
+ u

∂h

∂r
+ h

∂u

∂r
+ uh

r
= 0 (3.16a)
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Fig. 18 A plot of ln τ0% against ln g′ for the shallow-water equations (3.1). The calculated best-fit line (shown
as a dashed line) has a gradient −0.4617. There is some deviation from the theoretical value of −1/2 due to
the long timescales involved.

Fig. 19 A plot of ln τ0% against ln x0 for the shallow-water equations (3.1). The calculated best-fit line has a
gradient of 1.0210 ≈ 1, again with some deviation due to rounding error over time.

Fig. 20 A plot of ln τ0% against ln h0 for the shallow-water equations (3.1). The best-fit line here has gradient
−0.4973 ≈ −1/2.

and

∂u

∂t
+ u

∂u

∂r
+ g′ ∂h

∂r
= 0, (3.16b)
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subject to

u (0, t) = 0, (3.17a)

u (rN , t) = ṙN , (3.17b)

u (r, 0) = 0, (3.17c)

ṙ2
N = Fr2 g′h (rN , t), (3.17d)

h (r, 0) =
{

h0 0 ≤ r ≤ r0

0 r0 < r
(3.17e)

Here, the similarity solution is

rs (t) = A0
(
g′V
)1/4 t1/2, (3.18)

for V the total fluid volume and, in this case, A0 ≈ 1.14 (see Appendix A).

Identical analysis to the above shows that τp% = (
g′3γ 4

0 /V
)−1/6

f (p, shape), for V the total
volume of the current and γ0 = h0/r0. Unlike the 2D case, this only depends on the aspect ratio of
the original shape and not on its specific dimensions r0 and h0. This might be unsurprising given
the different shape of the current; specifically that the current head, in the axisymmetric case (3), is
very different to that in two dimensions.

4. Time-shifted similarity solutions

In all of the cases described above, it is clear that the similarity solutions xs (t) (or rs in axisymmetric
cases) all have xs (0) = 0, and so the percentage disagreement with xN is initially boundlessly large.
The authors of (2) introduce a method for ‘time-shifting’ the similarity solution such that we instead
consider xs (t + t0) or rs (t + t0) where t0 is some time such that xs (t0) = x0 or rs (t0) = r0.

4.1 Time-shifting in a monotonic case

Considering (2.1) above, we seek a time t0 where xs (t0) = x0. Taking x0 = 1, this can be seen to be
given by

t0 =
(
βA3η5

N

)−1
. (4.1)

Then, taking the similarity solution xs = ηN (βA3)1/5 (t + t0)1/5, we have a solution which agrees
with the numerical result faster. This is evidenced by the plots in Fig. 21—the percentage difference
appears less in this shifted case at all observed times.

Analogous forms of t0 for all of the other canonical cases described in section 2 are listed in
Table 4.

4.1.1 Maximum percentage difference. The plots in Fig. 21 clearly show that the percentage
difference between xs (t + t0) and xN (t) reaches a maximum value—as was the case with the
minimum value pmin at t∗ for the shallow-water equations. Indeed, this would be expected, as
the initial percentage difference is zero, and the percentage difference tends to zero as t → ∞, and
thus we seek an expression for pmax. This could depend on any of the parameters of the problem,
but again, a dimensional argument rules out all of them but γ0.
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(b)

(a)

Fig. 21 Revisiting the case of (2.1) with β = 1, showing that the time-shifted similarity solution is a better
approximator of xN (t).

Table 4 Values of t0 for different problems outlined in section 2

Case Form of t0

2D viscous (section 2.1)
(
βA3)−1

(x0/ηN )5

2D in porous medium (section 2.2) x3
0/ (9Aα)

Axisymmetric in porous medium (section 2.3) πr4
0/ (16αW)

Again we find that changing γ0 makes no difference to the value of this maximum, which
remains constant at around 5.9%. This maximum percentage difference is found to be independent
of parameters and initial dimensions, but a function only of the initial shape. These values are shown
for different problems and geometries in Table 5.

It is also instructive to consider the amount of time taken to reach this maximum value—naturally,
by a dimensional argument, we can argue, via a similar approach to that used to derive (2.6), that
this should take the form

tmax = T1β
−1A−1/2γ

−5/2
0 , (4.2)

for T1 a dimensionless constant to be determined. This can easily be verified numerically by
considering the plots in Fig. 22, and the value of T1, which is postulated to depend on initial geometry,
can also be found by a similar approach, as in Table 6.
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Table 5 Maximum percentage differences between rs (t + t0) and rN (t) for the problems
discussed in section 2, with different initial geometries

2D in porous Axisymmetric in porous
Shape 2D viscous (%) medium (%) medium (%)

Rectangle/cylinder 5.94 13.00 9.76
Quarter-ellipse/ellipsoid 2.42 5.58 4.32
Inverted triangle/cone 17.59 21.15 12.92
Boxcar/ring 23.06 23.99 12.83

Fig. 22 Log–log plots showing the validity of the model in (4.2) for the time taken to approach maximum
percentage difference from the time-shifted similarity solution in the case of an initially rectangular geometry,
for a 2D viscous gravity current.

Table 6 Values of T1 for different initial geometries and for the different problems in section 2,
where T1 is defined analogously to its definition in (4.2) in all cases

2D in porous Axisymmetric in
Shape 2D viscous medium porous medium

Rectangle/cylinder 0.07823 0.05911 0.03374
Quarter-ellipse/ellipsoid 0.09735 0.06584 0.04773
Inverted triangle/cone 0.00001 0.09971 0.09978
Boxcar/ring 0.09962 0.09976 0.09970
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(a)

(b)

Fig. 23 Plots for the similarity solution (dashed line) and time-shifted similarity solution (solid line) with the
shallow-water equations (3.1), using initial conditions of a circular cylinder, x0 = 20, h0 = 10 and g′ = 1.

4.2 Time-shifting for the shallow-water equations

We proceed initially in the same manner as for the canonical cases above, seeking some t0 such that

A0
(
g′V
)1/3 t2/3

0 = x0; (4.3)

so we take t0 = x3/2
0 /

(
A3

0g′V
)1/2

. Plotting both the original similarity solution and this new, shifted,

solution on the same graph shows that, in this case, the shifted solution very quickly becomes a
worse approximation to the actual behaviour. This is not unexpected; the work of (6) and our own
confirmation of these results shows that there is some time at which the percentage difference between
xs (t) and xN (t) is zero, where clearly the percentage difference between xs (t + t0) and xN (t) is
greater in magnitude than this.

Thus there is no discernible benefit in choosing the time-shifted solution in non-monotonic cases
like this, at least beyond the initial time period of monotonic convergence (0 < t < t∗), where the
reasoning in section 4.1.1 can be applied.

5. Conclusions

We have shown that equilibration times for various gravity currents—the timescales over which the
furthest radial extent of the current agrees with a similarity solution—can be found by dimensional
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analysis of the parameters involved in the current. This approach has been shown to apply equally
well if we allow the expressions for equilibration time to be discontinuous in p, where predictions
for equilibration times can be extended to any period of monotonic convergence for high-Reynolds-
number flows, even after periods during which the similarity solution grows away from the numerical
solution.

This shows that the methods outlined in (2) can be applied to a wide variety of situations where the
radial (or, in the 2D case, horizontal) extent of a gravity current approaches a similarity solution over
time both monotonically and non-monotonically. With appropriate modifications for the situation in
hand, the predictions given by this approach agree very closely with solutions obtained via a numerical
approach. However, unlike in (2), and the current described by (1.1), it is seen that equilibration time
depends explicitly on the dimensions of the initial mass of fluid, and not simply on the shape of
the initial fluid. We are also able to reconcile the analytical discussion of convergence by Grundy
and Rottman (6) with our numerical results, noting that convergence to the similarity solution no
longer occurs on a timescale approximately proportional to a power of the percentage difference p.
It remains an open question as to whether these methods can be applied to gravity currents where
the Boussinesq approximation is not made—Ungarish and Zemach (13) detail an example where a
similarity solution exists, but the gravity current propagates axisymmetrically in a ring shape after
some time.

Furthermore, we note that, by considering different cases as in section 2, the dependence of
equilibration times on different initial geometries is somewhat different—the effect of backflow on
how quickly we approach the similarity solution differs greatly when considering different equations;
the reasons behind this are a potential source of further research.

We have also detailed an approach for time-shifting similarity solutions such that their initial value
agrees with the initial radial extent of a gravity current, and shown that this time-shifted case has
certain properties making it more desirable for use than the normal similarity solution. It is seen that
the percentage difference between the numerical solution and the time-shifted similarity solution is
bounded above by a value dependent only on the initial shape, and we note that the time taken to
reach this maximum has the same dependence on the parameters of the problem as the equilibration
time. Such time-shifting, however, is shown to be undesirable in cases where the convergence to the
similarity solution is not monotonic, such as high-Reynolds-number flow.
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Appendix A. The value of A0

The constant A0 as stated, but not derived, in (6), is given by

A0 =
(

27 Fr2

12 − 2 Fr2

)1/3

, (A.1)

in the 2D case we are considering, where Fr is the Froude number, a parameter satisfying, when the Boussinesq
approximation is made, [via von Kármán (14)]

Fr2 g′h (xN , t) = ẋ2
N . (A.2)

Grundy and Rottman, in (6), state that Fr ≈ 1 [meaning that A0 = (27/10)1/3, which is approximately 1.39] for
small enough values of

(
ρheavier − ρlighter

)
/ρheavier, but there is no general agreement on this value. References

(14) and (15) derive a theoretical value of
√

2, albeit using different methods of solving the same inviscid Euler
equation, and (5) suggests a value of 1.19, from experimental observations, which include, naturally, turbulent
entrainment into the gravity current (16). We follow the convention of (6) in this article, taking Fr = 1, unless
otherwise stated.

In the axisymmetric case, we instead take

A0 =
(

16 Fr2

π
(
4 − Fr2)

)1/4

. (A.3)
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