
J. Fluid Mech. (2022), vol. 931, A12, doi:10.1017/jfm.2021.944

Viscous gravity currents over flat inclined
surfaces

Herbert E. Huppert1, Vitaly A. Kuzkin2,3 and Svetlana O. Kraeva2,†
1Institute of Theoretical Geophysics, King’s College, Cambridge CB2 1ST, UK
2Department of Theoretical Mechanics, Peter the Great St Petersburg Polytechnic University,
St Petersburg 195251, Russia
3Laboratory for Discrete Models in Mechanics, Institute for Problems in Mechanical Engineering RAS,
St Petersburg 199178, Russia

(Received 12 July 2021; revised 2 October 2021; accepted 19 October 2021)

Previous analyses of the flow of low-Reynolds-number, viscous gravity currents down
inclined planes are investigated further and extended. Particular emphasis is on the motion
of the fluid front and tail, which previous analyses treated somewhat cavalierly. We obtain
reliable, approximate, analytic solutions in these regions, the accuracies of which are
satisfactorily tested against our numerical evaluations. The solutions show that the flow has
several time scales determined by the inclination angle, α. At short times, the influence of
initial and boundary conditions is important and the flow is governed by both the pressure
gradient and the direct action of gravity due to inclination. Later on, the areas where the
boundary conditions are important shrink. This fact explains why previous solutions, being
inaccurate near the front and the tail, described experimental data with high accuracy.
At larger times, of the order of α−5/2, the influence of the pressure gradient may be
neglected and the fluid profile converges to the square-root shape predicted in previous
works. Important extensions of our approach are also outlined.
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1. Introduction

The study of gravity currents was initiated by von Kármán (1940) in response to being
asked by the American military to predict the effects of wind on the propagation of
released, relatively heavy, poisonous gas into the atmosphere. Von Kármán developed the
famous condition at the front

U = Fr
√

g′h, (1.1)

relating the rate of propagation of the current, U, in terms of the height of the current,
h, the reduced gravity, g′, and the Froude number, Fr, evaluated to be

√
2 under
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perfect conditions. Since then, thousands of papers on gravity currents at high Reynolds
number have been published (see, for example, Ungarish (2020) for a summary).

The study of the propagation of viscous gravity currents at low Reynolds numbers
was initiated by Fay (1969) and Hoult (1972) who used order-of-magnitude analysis to
investigate the flow of a thin layer of oil on water. A more complete analysis of the problem,
developing the governing equations and presenting their (similarity) form of solution,
accurately compared with laboratory experimental measurements, for the propagation
above a rigid horizontal surface, was initiated by Huppert (1982), and immediately applied
to volcanic domes some ten thousand times larger in horizontal extent on Earth (Huppert
et al. 1982), some two million times larger on Venus (Head et al. 1991) and could no
doubt describe the largest volcanic dome in the solar system, Olympus Alba on Mars,
which is some 40 million times larger in horizontal extent. Huppert (1982) went on to
consider the low-Reynolds-number flow down an incline, again comparing simple theory
with laboratory experiments.

Despite the success of these models, each one has potential failings. Von Kármán’s
model assumes that there is a specific height of the advancing head and that the relevant
Froude number is independent of any turbulent motion of the current, which at high
Reynolds number there must be. Huppert and Simpson investigated this experimentally
and determined that

√
2 (≈1.41) should be replaced by 1.19 (Huppert & Simpson

1980). The low-Reynolds-number model assumed that the slope of the flow (i.e. spatial
derivative of the fluid thickness) was everywhere small, which is clearly totally incorrect
at the (leading) nose. Indeed, it was just this local inaccuracy that induced Huppert (1982)
to carry out the confirmatory laboratory experiments (to quieten his collegial critics). The
treatment of the front of the flow of the fluid down an incline at low Reynolds number
was even more extreme (Huppert 1982); the model front was just cut off and hence had
an infinite slope (which is hardly small!). Additionally, in Huppert (1982) it was assumed
that the flow is caused by the direct action of the gravitational force only, while the effect
of any pressure gradient was neglected. This assumption is doubtful for small inclination
angles. The purpose of this paper is to investigate the influence of these approximations.

The next section summarizes previous work, while § 3 develops the full governing
equations. Section 4 considers the motion of the head without any further approximations,
while § 5 investigates the motion of the tail – without a retaining back wall does it
progress upslope or downslope? An approximate analytical solution, satisfying boundary
conditions at the front and at the wall, is presented in § 6. The influence of the boundary
conditions on the fluid motion is discussed. Numerical verification of hypotheses used in
the analytical solutions is carried out in § 7. The influence of the inclination angle on the
characteristic time scale of the flow is investigated in § 8. In particular, we show that for
any angle (no matter how small) the direct action of gravity due to inclination dominates
over the pressure gradient at sufficiently large times. The final section presents a summary
and a brief interpretation of our findings.

2. Previous work

In work by Huppert (1982), the flow of a viscous gravity current over a flat surface, inclined
at angle α, was considered (see figure 1). The following equation describing the flow was
derived:

∂h
∂t

= −3β sin αh2 ∂h
∂s

, β = ρg/(3μ), (2.1a,b)
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Figure 1. Schematic representation of the gravity current down a flat inclined surface, being
unconstrained (a) and constrained by a wall (b).

where h(s, t) is the fluid thickness at the point s, measured down the plane, ρ is the fluid
density, g is the acceleration due to gravity and μ is the dynamic viscosity. The exact,
self-similar solution of (2.1a,b) is

h(s) =
√

s/ (3tβ sin α), 0 ≤ s ≤ sN,

sN =
(

27A2βt sin α/4
)1/3

, vN = 9A2β sin α/
(

4s2
N

)
,

⎫⎬
⎭ (2.2)

where vN is the front speed and A is the total fluid area. We note that (2.1a,b) is
approximate. It is based on the assumption that the effect of the hydrostatic pressure
gradient is much smaller than the direct action of gravity. This assumption is violated
near the front (s = sN) and the tail (s = 0) for any α, while it has reasonable accuracy far
from these boundaries. Additionally, the solution (2.2) is clearly inaccurate near the front,
with a discontinuity in the fluid thickness h(s, t).

Here we examine the influence of these approximations on the accuracy of the solution.

3. Governing equations

In the present section, we derive a general equation, describing the flow of an
incompressible fluid over a smooth surface under the action of gravity. The surface is
given by the function r(s), where s is a curvilinear coordinate along the surface. A flat
inclined surface is a particular case.

The fluid is modelled by a one-dimensional continuum. Each point of the continuum
has a velocity v, directed parallel to the tangent to the surface at the point:

v(s, t) = v(s, t)eτ (s), eτ = ∂r
∂s

, (3.1a,b)

where eτ is a unit vector, tangent to the surface at point s.
Then the mass balance equation for the fluid has the form

∂h
∂t

= − ∂

∂s
(hv) . (3.2)

At time t, the fluid occupies the domain s ∈ [sT(t); sN(t)], where sT(t), sN(t) are the
positions of the fluid tail and the fluid front, respectively. We assume that the motion of
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the fluid is quasi-stationary in the sense of slow, low-Reynolds-number motions. If the
fluid is bounded by a wall at s = sT (as considered by Huppert (1982)) then

v(sT) = 0, h(sN) = 0. (3.3a,b)

Otherwise
h(sT) = 0, h(sN) = 0. (3.4a,b)

The total area of the fluid, A, is conserved, i.e.∫ sN(t)

sT (t)
h(t) ds = A. (3.5)

Here we implicitly assume that h is much less than the local radius of curvature of the
surface. If h is not small then the elementary volume is not equal to h ds. All further
derivations also rely on this assumption.

Neglecting inertial terms in the equation of momentum balance, we obtain

∂F
∂s

+ Teτ + Nen + ρgh = 0, (3.6)

where F is the force per unit width acting on the cross-section of the fluid at point s, en
is the unit vector normal to the surface, T , N are shear and normal stresses acting on the
fluid from the surface and g is the gravitational acceleration.

The system of equations (3.2), (3.5), (3.6) is not closed. To close the system, constitutive
equations, relating F and T with h and v, are required, while N does not enter the resulting
equation. We use the following constitutive relations:

F = −ρgh2 cos αeτ /2, T = −3μv/h,

sin α = eτ · g/g, cos α = −en · g/g,

}
(3.7)

where μ is the fluid viscosity and g = |g|. According to (3.7), F is proportional to the
average hydrostatic pressure multiplied by the fluid thickness, while the expression for T
guarantees that (3.9) for α = 0 reduces to the result of Huppert (1982).

Substituting (3.7) into (3.6) and multiplying the resulting equation by eτ , we obtain the
expression for the fluid velocity:

v = βh
[

h sin α − 1
2

∂

∂s

(
h2 cos α

)]
. (3.8)

Then the mass balance equation (3.2) takes the form

∂h
∂t

= β
∂

∂s

[
h2

2
∂

∂s

(
h2 cos α

)
− h3 sin α

]
. (3.9)

Note that in general α may be a function of s. A different form of (3.9) is

∂h
∂t

= β
∂

∂s

[
h3
(

∂h
∂s

cos α −
(

1 + hα′

2

)
sin α

)]
, α′ = dα

ds
. (3.10)

Here the first term on the right-hand side describes the effect of the hydrostatic pressure
gradient (which decreases with increasing α), while the second term describes the ‘direct’
influence of the gravitational force.
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Viscous gravity currents over flat inclined surfaces

For the flow along the flat inclined surface (α′ = 0), (3.9) takes the form

∂h
∂t

= β
∂

∂s

[
h3
(

∂h
∂s

cos α − sin α

)]
. (3.11)

We note that (3.11) reduces to (2.1a,b) only under the assumption |∂h/∂s| � | tan α|. The
influence of this assumption is discussed in § 6.

4. Near-front asymptotics

In this section, we consider the asymptotic behaviour of the solution near the fluid front
(s → sN).

At the front, the function h vanishes, as in (3.4a,b). We then assume that in the vicinity
of the front h can be represented as a simple power law of the form

h(s) ≈ c1 (sN − s)γ . (4.1)

Substituting this expression into (3.8), we obtain

v ≈ β

[
c2

1 (sN − s)2γ sin α + c3
1γ cos α (sN − s)3γ−1 + c3

1
2

(sN − s)3γ α′ sin α

]
. (4.2)

The front speed vN is defined as

vN = ṡN = lim
s→sN

v. (4.3)

We assume that the front velocity is bounded. Then from (4.2) and (4.3), it follows that
γ ≥ 1/3. Then two regimes are possible. One possibility is that the front is stationary,
v(sN) = 0. This case is considered in § 5. The second possibility is motion of the front
with positive velocity. Then

v(sN) > 0, γ = 1/3, c1 = [3vN/(β cos αN)]1/3, αN = α(sN). (4.4a–d)

Note that c1 depends on the local inclination of the surface. For α = 0, formula (4.4a–d)
for c1 coincides with a similar expression obtained for a flat surface by Huppert (1982). We
also note that a similar asymptotic approach has been employed by Linkov for simulation
of hydraulic fracturing (Linkov 2015).

Note that according to (4.2) the front speed is non-negative. This is a somewhat
counterintuitive result. For example, consider an unconstrainted current over a flat inclined
surface (see figure 1). In this case the fluid has a front and a tail. It is expected that the
fluid will move downslope. From the asymptotics, presented above, it follows that the front
indeed moves downslope. In contrast, the tail is either stationary (see e.g. the solution of
(2.1a,b), obtained in Huppert (1982)) or it moves up the slope. In the next sections we
discuss both front and tail movement.

5. When does the tail not move?

In this section, we address the question of when the tail of fluid on a flat inclined surface
is stationary.
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Evidently, the tail is stationary if the fluid is bounded by a wall. Then according to
(3.3a,b) and (3.8), the boundary condition at the wall is

∂h
∂s

∣∣∣∣
s=0

= tan α. (5.1)

The tail may also be stationary in the absence of a constraining wall. If it is so, then the
fluid velocity v(s, t), given by (3.8), is positive at least in some vicinity of the tail, i.e.

v = βh2 cos α

(
tan α − ∂h

∂s

)
> 0. (5.2)

This condition is satisfied only if

∂h
∂s

< tan α. (5.3)

In particular, this condition must be satisfied at s = sT . Then ∂h/∂s is finite at the tail.
Additionally, h(sT) = 0 and therefore near the stationary tail

h ≈ C(s − sT)n, n ≥ 1, nC < tan α. (5.4a–c)

Thus the tail is stationary if (5.3) is satisfied. Note that the solution (2.2) violates both
conditions (5.1) and (5.3). However, we show below that it has reasonable accuracy at large
times, determined in § 8. Additionally, we note that ∂h/∂s depends on time. Therefore even
if the initial conditions satisfy (5.3), it can still be violated later on.

6. An approximate solution

In this section, we derive an approximate solution, describing the flow along a flat inclined
surface. As in the real experiments (Huppert 1982), the motion of the tail is excluded by
putting a wall at s = 0.

We combine the solution (2.2) with the asymptotics (4.1) and the proper boundary
condition at the wall (5.1) as

h =
{

2 tan α
√

s0(s + s0), 0 ≤ s ≤ s∗,
[3vN(sN − s)/(β cos α)]1/3, s∗ ≤ s ≤ sN,

(6.1)

where s0(t), s∗(t) are two auxiliary functions. The function s0 is related to the fluid
thickness at the wall as h(0, t) = 2s0(t) tan α, while s∗ is a boundary of the region near the
front, where the asymptotics (4.1) is ‘important’. We assume that in this region the effect
of pressure gradient (proportional to |∂h/∂s|) dominates over the effect of direct action of
gravity (proportional to tan α). Since |∂h/∂s| is infinite at the front, such region always
exists. As s decreases, |∂h/∂s| also decreases, while tan α is a constant. Therefore at some
point the two terms (|∂h/∂s| and tan α) become equal. We assume that the asymptotics is
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applicable up to this point, i.e.

∂h
∂s

∣∣∣∣
s=s∗

= − tan α. (6.2)

Additionally we require the continuity of the solution at s∗, i.e. h(s∗ − 0) = h(s∗ + 0).
Substituting (6.1) into (6.2) and the continuity condition, we obtain

s∗ = sN −
√

vN/
(
9β sin α tan2 α

)
,

s0 =
[√

s2∗ + vN/(β sin α tan2 α) − s∗
]

/2.

⎫⎪⎪⎬
⎪⎪⎭ (6.3)

Note that since vN decreases in time, s∗ tends to sN , while s0 tends to zero. Therefore
intervals at the tail and at the front, where the boundary conditions are important, decrease
in time.

Substitution of (6.1) into the global mass balance equation (3.5) yields

vN/(4β sin α tan α) + 4 tan αs1/2
0 [(s∗ + s0)

3/2 − s3/2
0 ]/3 = A. (6.4)

Equations (6.3) and (6.4) define the dependence of vN(sN) in implicit form. This
dependence can be treated as the differential equation with respect to the front position.
Therefore the approximate solution h(s, t) of (3.11) for a flat inclined surface is given by
(6.1), (6.3) and (6.4).

We estimate the range of applicability of the solution (6.1) as follows. Since the solution
is only valid for s∗ > 0, then from (6.3) it follows that

s2
N > vN/(9β sin α tan2 α). (6.5)

We assume that for small α, motion of the front may be approximated by the flat surface
solution (Huppert 1982), e.g.

sN = ηN(βA3t)1/5, ηN ≈ 1.411. (6.6)

Substituting (6.6) into (6.5), we obtain

βA1/2t > (45ηN sin α tan2 α)−(5/6). (6.7)

Then the solution (6.1) is only valid at large times satisfying the condition (6.7). According
to (6.7), this time increases with decreasing inclination as α−5/2.

To obtain the explicit dependence vN(sN), we employ the fact that s0 � s∗, because
s∗ ≈ sN , s0 = h(0)/(2 tan α), h(0) � sN . Then (6.3) can be approximately replaced by

s0 ≈ vN/(4s∗β sin α tan2 α). (6.8)

Substituting (6.8) and (6.3) into (6.4), we obtain

w2
N/(24 tan2 α) + sNwN = 3A/2, wN =

(
vN

β sin α

)1/2

,

wN = 12 tan α[(s2
N + A/(4 tan α))1/2 − sN].

⎫⎪⎬
⎪⎭ (6.9)

Since at large times

s2
N � A/(4 tan α), (6.10)
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the series expansion of (6.9) yields wN ≈ 3A/(2sN) and

vN ≈ 9A2β sin α/
(

4s2
N

)
. (6.11)

We note that (6.11) coincides with the last formula from (2.2). Using (6.11), we also obtain
the approximate expressions for s0, s∗ and h(0):

s0/sN ≈ 9A2/
(

16s4
N tan2 α

)
, s∗/sN ≈ 1 − A/(2s2

N tan α),

h(0)/sN ≈ 9A2/
(

8s4
N tan α

)
.

⎫⎪⎬
⎪⎭ (6.12)

These formulae show how s0 and h(0) tend to zero and s∗ tends to sN with increasing front
position sN . Substitution of (6.12) into (6.1) yields the explicit expression for the fluid
profile h(s/sN).

Thus, at large times (at least satisfying (6.7)), the approximate solution of the ‘exact’
equation (3.9) coincides with the exact solution of the approximate equation (Huppert
1982). This fact is demonstrated in the following section. The areas where asymptotics
(4.1), (4.4a–d) and the boundary condition (5.1) are important decrease in time (s∗ → sN ,
s0 → 0). According to (6.12), s∗ tends to sN slower than s0 tends to zero.

7. Evolution of the fluid profile

In this section, we compare predictions of the approximate analytical solution obtained
above with numerical results. The solution predicts that for α > 0 at large times the fluid
profile converges to the square-root shape (2.2). Using numerical simulations, we show
that this is indeed the case.

In numerical simulations, we use a uniform spatial mesh with step 	s. Spatial
derivatives in (3.11) are approximated by finite differences. The resulting system of
difference equations is solved numerically using the implicit numerical scheme described
in Appendix A. Initially, the fluid occupies a square of width A1/2. The following values
of dimensionless parameters were used: α = π/12, 	s/A1/2 = 0.003, β	tA1/2 = 0.033.
Evolution of the fluid profile h(s, t) is shown in figure 2(a). As predicted by the analytical
solution (2.2), the area where asymptotics is important shrinks in time. The profile rapidly
converges to the square-root-like shape, predicted by both solutions (2.2) and (6.1). The
time required for the convergence as a function of the inclination angle α is estimated in
the following section. At large times, the solution near the front becomes very steep (see
figure 2b). This fact justifies approximation of the solution by the discontinuous function
(2.2).

8. What is a ‘small’ inclination angle?

Solutions for flat (Huppert 1982) and inclined (Huppert 1982) surfaces are significantly
different. For example, in the flat case, the fluid front propagates as t1/5, while in the
inclined case it propagates as t1/3 (see formula (2.2)). Thus two questions arise. Which
solution should be used if the inclination angle is small? And what angle can be regarded
as small? In this section, we answer these questions by analytical and numerical analysis
of (3.11).

Equation (3.11) contains two ‘forces’ driving the flow, namely the pressure gradient
proportional to ∂h/∂s and the direct action of gravity proportional to sin α ∼ α. If
|∂h/∂s| � α then the flat surface solution will be valid. However, at large times ∂h/∂s
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Figure 2. (a) Normalized fluid profile hsN/A at short times βtA1/2 = 0 (blue line), 1.58 (green line),
15.8 (yellow line) and 316.2 (red line). (b) Normalized fluid profile hsN/A at large times (βtA1/2 = 1.9 × 107).
Numerical solution (blue dots) and analytical solution (2.2) (red line) are shown.

tends to zero. Therefore the flat surface solution will be valid for a certain time scale only.
At larger times, the term proportional to α will always dominate. Therefore at large times
the inclined surface solution (2.2) is more relevant.

We estimate the time scale at which the inclination starts to dominate over the pressure
gradient as follows. We find a time such that ∂h/∂s and α are of the same order. Assuming
that at short times the flat surface solution is valid, we obtain that the fluid front propagates
as t1/5 (see Huppert 1982). Since the total fluid volume is conserved, the fluid thickness
decreases as t−(1/5). Then the following estimate is valid:

∂h
∂s

∼ (βA1/2t)−(2/5). (8.1)

Assuming ∂h/∂s ∼ α, we obtain

βA1/2t ∼ α−(5/2). (8.2)

Note that a similar power law follows from (6.7). Formula (8.2) shows that the
characteristic time scale at which the inclination becomes dominant rapidly increases with
decreasing α and tends to infinity as α tends to zero.

Our numerical simulations, carried out at different inclination angles α from 2◦ to 30◦,
support this conclusion. The simulations show that for all angles the fluid profile converges
to the square-root shape. The time, tc, required for convergence strongly depends on α. To
estimate this dependence we perform simulations with different values of α and compute
the difference ε between the numerical solution hn and the analytical solution ha, defined
by (2.2). The difference is defined by

ε(t) = 1
N(t)

N(t)∑
i=1

|hi
n − ha|/hi

n, (8.3)

where hi
n is the fluid thickness at node i and N(t) is the total number of nodes occupied by

the fluid at time t.
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Figure 3. (a) Relative deviation, ε, of the numerical solution from the square-root solution (2.2) for α = π/18.
Dashed line corresponds to ε = 0.03. (b) Time required for convergence of the fluid profile to the square-root
shape as a function of the inclination angle α. Numerical results (dots) and fitting line (8.4) are shown.

Numerical simulations show that ε decreases in time (see figure 3a). We define the time
required for convergence, tc, as the minimal time satisfying ε(t) ≤ 0.03 (see dashed line
in figure 3a). Using (8.2), we fit the dependence of tc on α by the power law

βA1/2tc = Cα−(5/2), (8.4)

where C ≈ 214. Figure 3(b) shows that formula (8.4) approximates the numerical results
with very good accuracy for all considered inclination angles.

Thus at large times the effect of inclination (direct action of gravity) dominates over
the pressure gradient and the fluid profile converges to the square-root shape, predicted by
(2.2). The time required for convergence tends to infinity with decreasing inclination angle
as α−5/2.

9. Conclusions

We have brought up to date the understanding of the expected motions of both the head
and tail of a low-Reynolds-number viscous gravity current propagating down an inclined
plane at a fixed angle. Our main quantitative analytical results, presented mainly in § 6,
are confirmed by numerical evaluation in §§ 7 and 8. A short summary of our findings is
that the problem has several different time scales. At short times the influence of initial
and boundary conditions is important and the flow is governed by both pressure gradient
and the direct action of gravity. Later on, the areas where the boundary conditions are
important shrink. This fact explains why solution (2.2), being inaccurate near the front and
the tail, described the experimental data with high accuracy. At larger times, of the order
of α−5/2, the influence of the pressure gradient may be neglected and the fluid profile
converges to the square-root shape (2.2). We note that the vanishing importance of the
boundary conditions, confirmed by numerical simulations, follows from the approximate
solution (6.1), which was guessed rather than derived. Therefore more rigorous proof of
this phenomenon would be an interesting extension of the present work.

Our analysis is a first step in the investigation of the form of motion of a
low-Reynolds-number, viscous gravity current over an uneven, bumpy surface, where both
pressure gradient and gravity play an essential role. In these circumstances the flow may
even cease, constrained by the boundaries. We have already initiated the investigation of
such situations and plan to submit the work for publication in the near future.
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Appendix A

For numerical analysis of the fluid flow, we rewrite (3.11) in dimensionless form as

∂ h̃
∂ t̃

= ∂

∂ s̃

[
h̃3

(
∂ h̃
∂ s̃

cos α − sin α

)]
,

s̃ = s/A1/2, h̃ = h/A1/2, t̃ = βtA1/2,

⎫⎪⎪⎬
⎪⎪⎭ (A1)

where A is the fluid area.
By using the implicit scheme, (A1) can be written in a discretized form as

hk+1
i − hk

i
	t

= 1
	s2

{(
hk

i−1/2

)3 [(
hk+1

i−1 − hk+1
i

)
cos α − sin α

]

−
(

hk
i+1/2

)3 [(
hk+1

i − hk+1
i+1

)
cos α − sin α

]}
, (A2)

where hk
i−1/2 = (hk

i−1 + hk
i )/2 and hk

i+1/2 = (hk
i + hk

i+1)/2. The tridiagonal matrix
algorithm is used to solve this equation at each time step.

In order to trace the front position sN(t), the following equations were used:

sk+1
N = sk

N + vk+1
N 	t, vk+1

N =
(

hk+1
n−1

)3
cos α

3(sk
N − sn−1)

, (A3a,b)

where n is the front node, from which we assume there is no flux to the next n + 1 node.
As fluid propagates further to the point sn+1 we change our front node to n + 1.

For physical reasons, the numerical scheme must be positivity conserving to guarantee
that h is always positive. We do not have a rigorous proof of positivity for the numerical
scheme (A2). However, the condition h > 0 has been monitored in all simulations. It has
never been violated.
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