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The fate of continuous input of relatively heavy
fluid at the base of a porous medium
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We evaluate theoretically and confirm experimentally the shape of the fluid envelope
resulting from the input of relatively heavy fluid at a constant rate from a point source
at the base of a homogeneous porous medium. In three dimensions an initially expanding
hemisphere transitions into a gravity current flowing over the assumed rigid, horizontal
and impermeable bottom of the porous medium. A range of increasing transition times
occurs if defined by extrapolation of the relationships in the two extreme regimes
(hemispherical shape and thin-layer gravity current) so that they intersect, for: the ratio
of buoyancy to fluid resistance; the horizontal extent of the fluid; the ratio of height at the
centre to the radius; and just the height at the centre. Corresponding results are derived for
two-dimensional geometries. In this case, we conduct a series of laboratory experiments
demonstrating the transition between the radial and gravity current regimes both in terms
of form and propagation rate. The results are extrapolated briefly to two-layer systems,
in order to begin to understand effects due to vertically heterogeneous pore structures.
We sketch, and verify by experiment, that an expanding hemisphere in a lower layer can
reach a much more permeable upper layer and flow through it as a gravity current, thereby
uniting the two regimes.

Key words: porous media, gravity currents, Hele-Shaw flows

1. Introduction

In many natural and industrial situations, relatively heavy fluid is continuously introduced
at the base of a porous medium. The importance of this situation has led to a whole
series of laboratory experiments being undertaken to simulate such occurrences. Recently
there has been an additional series of papers and laboratory experiments by authors from
different groups motivated by the societally important problem of carbon sequestration,
the final part of carbon capture and storage (e.g. Huppert & Neufeld 2014). To mitigate
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Figure 1. The response to an input flux of heavy viscous fluid into a porous medium above an impermeable
horizontal boundary.

the effects of global warming, attributed to the current anthropogenic annual worldwide
emission of 43 billion tonnes of carbon dioxide (CO2), numerous groups around the world
are evaluating how to store super-critical, liquid-like, CO2 at depths in excess of 800 m
(roughly the depth associated with the pressure and temperature needed to compress CO2
to the super-critical state). The CO2 is relatively less dense than the surrounding interstitial
brine and so it rises like a buoyant plume until it encounters a relatively impermeable cap
rock and spreads beneath it as a gravity current in a porous medium (Bickle 2009). There
are other situations in the Earth where dense fluids discharge into regions containing lower
density interstitial fluids in permeable geological media. An important example occurs
during discharges of high temperature fluids from magma chambers. These flows can cause
discharges of gases at volcanoes and are associated with the formation of metalliferous
ore deposits (Afanasyev et al. 2018). While the overall density of the fluids is less than
the surrounding ground waters, they characteristically exsolve dense brines, which can
separate and then displace surrounding fresh water in the permeable crust.

The focus of the present paper is to analyse the evolution resulting from the injection of
relatively heavy fluid at the base of a semi-infinite porous medium (shown schematically
in figure 1). We show that the flow first spreads in the form of a hemisphere of
steadily increasing radius rN(t) ∝ t1/3, where t is time, with no dependence on the
permeability of the medium nor viscosity of the fluid. This regime can be distinguished
from the more familiar thin-layer theory, which instead predicts that rN(t) ∝ t1/2, with
a prefactor dependent on the permeability of the medium, the viscosity of the fluid and
the density difference between the intruding and interstitial fluids (Lyle et al. 2005).
During the hemispherical regime, buoyancy, and hence the density difference, as well
as the viscosity and permeability of the medium, are irrelevant. After a progression of
intrinsic time scales that we determine, the hemispherical regime transitions towards
the axisymmetric thin-layer regime with radius rN(t) ∝ t1/2. The work of Lyle et al.
(2005) and others addressing fluid injection into porous media have focussed on this
final thin-layer regime, and various generalisations, in which stresses become hydrostatic
to leading order under the Dupuit approximation (Bear 1972). These generalisations
include, in particular, an allowance for vertical confinement in both axisymmetric and
two-dimensional configurations (Nordbotten & Celia 2006; Pegler, Huppert & Neufeld
2014; Zheng et al. 2015; Guo et al. 2016). The analysis of regimes that do not satisfy the
thin-layer approximation and their role as a transient asymptotic regime, the focus of the
present paper, has received less attention.

The significance of transitions connecting non-hydrostatic regimes due to a point
injection and thin-layer gravity currents has been discussed previously in the context
of a viscous fluid layer introduced into a vertical Hele-Shaw cell (Pegler et al. 2013).
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Continuous input of heavy fluid at porous medium

By applying a scaling analysis, an intrinsic length scale describing the transition
was formulated and found to correlate with the magnitude of deviations between the
experimental observations and the predictions of an associated thin-layer theory (focusing
on the time for the current to reach a given thickness). Corresponding dimensionless
numbers have been applied to measure the relative importance of non-hydrostatic effects
from a point injection in porous media (Pegler et al. 2014, 2017), and determined to
correlate with deviations between experimental observations and thin-layer modelling.

The present paper develops predictions for a series of time scales on which the
initially radial flow from a localised point or line source transitions to a corresponding
thin-layer regime in both axisymmetric and two-dimensional geometries. We demonstrate
the transition explicitly in the laboratory by showing a consistent collapse of the
results of a series of experiments onto an evolution (universal subject to scaling)
connecting the radially flowing regime near the source to the gravity-current regime in
the two-dimensional case.

We begin in § 2 by considering the initial response of an expanding hemisphere in an
axisymmetric geometry. Using just conservation of volume, we present the form of the
initial motion. By utilising the expressions for the pressure and dimensions of the current
in this regime in conjunction with existing predictions describing the evolution of the final
thin-layer regime from the study of Lyle et al. (2005), we obtain a series of time scales
on which four different properties of the flow – horizontal length, height, aspect ratio and
ratio of gravitational to viscous stresses – transition from the hemispherical regime to the
thin-layer axisymmetric regime. In § 3, we address the corresponding two-dimensional
transition in a porous medium or Hele-Shaw cell. The transition in the two-dimensional
case is demonstrated experimentally in § 4, showing a consistent collapse with no fitting
parameters to a trajectory spanning the radial regime to the gravity-current regime, with
good agreement in the two limits. Finally, in § 5 we discuss briefly how to extend our
results to flows in some vertically heterogeneous porous media, and present a somewhat
dramatic experimental photograph of how a relatively permeable upper layer can be in a
very different flow regime from a relatively less permeable lower layer. We end the paper
in § 6 with a brief summary.

2. Axisymmetric injection from hemisphere to gravity current

We consider the injection of incompressible fluid at the base of a porous medium, as
illustrated schematically in figure 1. We model the flow using Darcy’s law (Bear 1972)
with the condition of incompressibility,

μu/k = −∇p − ρg, (2.1)

∇ · u = 0, (2.2)

where μ is the dynamic viscosity of the fluid, k is the permeability of the medium, p is
pressure, g is the acceleration due to gravity and u is the Darcy velocity. As an overview
of the proceeding analysis, we begin by deriving, using just mass conservation (2.2), the
form of the flow near the point of injection. By reference to the force balance equation
(2.1), we argue that, due to the large pressures arising near the point source, gravity is
initially negligible in this regime. Following this, we recall the solutions describing the
thin-layer regime arising at late times in which the vertical component of (2.1) exhibits a
leading-order balance between the pressure and gravitational terms (Lyle et al. 2005). By
then considering the predictions of the two regimes in regards to the dimensions of the
flow and the relative importance of gravitational to viscous terms, we present a series of
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predictions for the time scales on which differing properties of the first regime transition
to the second.

2.1. Initial hemispherical regime
For a point source of fluid fed radially at a constant volumetric flux Q, conservation of
volume dictates that the radius of the injected fluid, a(t), satisfies

2
3
πφa3 = Qt or a(t) =

(
3Q

2πφ

)1/3

t1/3, (2.3)

where φ is the porosity of the medium. By differentiating this expression, it follows that
the front of the injected fluid propagates at a speed of

ȧ = (Q/18πφ)1/3t−2/3. (2.4)

By mass conservation (2.2), the Darcy velocity u satisfies

u(r, t) = φȧa2r̂/r2 = Qr̂/(2πr2), (2.5)

where r is a (spherical) radial coordinate and r̂ is the unit vector in the radial direction. The
equation above predicts that the velocity field diverges near the point of injection (u → ∞
as r → 0). Therefore, since the gravitational body force on the right-hand side of (2.1) is
constant, the viscous stress will be much greater than the gravitational force sufficiently
close to the injection point. At sufficiently early times, gravity is therefore negligible. By
substituting the Darcy velocity (2.5) into (2.1) and integrating the resulting equation with
respect to r, we obtain the corresponding pressure field

p = μφa2ȧ
kr

+ p0 = μQ
2πkr

+ p0, (2.6)

independent of time, where p0 is a constant reference pressure. Again, we see that the
pressure gradient will greatly exceed the hydrostatic (gravitational) pressure gradient, ρg,
in the limit r → 0. In summary, during this regime in which gravity is unimportant, both
the horizontal and vertical dimensions of the current are given to leading order by (2.3),
with

rN(t) ∼ h(0, t) ∼ a(t) =
(

3Q′

2π

)1/3

t1/3 (t → 0), (2.7)

where Q′ = Q/φ. We can anticipate that this regime is stable if the injected fluid is more
viscous than the ambient fluid, in correspondence with the criterion for Saffman–Taylor
instability (Saffman & Taylor 1958).

2.2. Late-time axisymmetric thin-layer regime
The theoretical development for a thin-layer gravity current follows the alternative
assumption that the vertical stress balance in (2.1) is dominated by the pressure gradient
and buoyancy, such that ∂p/∂z ∼ −ρg is hydrostatic to leading order. Following this
assumption, one can reduce the evolution of the flow to a nonlinear diffusion equation and
solve it using similarity theory (Barenblatt 1996). In the case of an axisymmetric current
introduced centrally at a constant flux, the following relationships have been determined
for the radius and height profile of the current in the thin-layer regime (Lyle et al. 2005),
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Continuous input of heavy fluid at porous medium

rN(t) = 1.16(βQ′)1/4t1/2, (2.8a)

h(r, t) = (Q′/β)1/2Φ[r/rN(t)] ≈ 0.67(Q′/β)1/2(1 − r/rN), (2.8b)

where Φ( y) is an approximately linear function derived from the leading-order solution
near the nose, and β = �ρgk/φμ is the buoyancy speed.

While the linear profile of (2.8b), derived by extrapolating the solution near the nose
through the length of the current, provides an excellent approximation for the overall shape
(see figure 8 of Lyle et al. 2005), the height profile determined by thin-layer theory, h(r, t),
instead exhibits an unphysical logarithmic singularity as r → 0 (Lyle et al. 2005). By
contrast, the height profile in reality and predicted by (2.7) is finite. The introduction of
vertical velocities near the point injection, incorporated in (2.7), therefore acts to regularise
this singularity in the height profile.

Using the prediction of (2.8b) to approximate the height scale, we obtain

h(0, t) = 0.67 (Q′/β)1/2. (2.9)

Combining this with (2.8a), we obtain the approximation for the aspect ratio in the
thin-layer regime,

γ (t) = h(0, t)/rN(t) (2.10)

= 0.58 (Q′/β3)1/4t−1/2. (2.11)

This result predicts a progressively decreasing aspect ratio, consistent with the
strengthening of the thin-layer assumption with time. Conversely, it predicts that γ → ∞
for small times, thereby predicting a loss of asymptotic consistency in the thin-layer
approximation. This conclusion is in agreement with the transition of the flow from an
early-time regime in which vertical velocities are significant.

2.3. Intrinsic scales
For the purpose of formulating general expressions describing the regime transitions, we
recast the results in terms of intrinsic scales. On the basis of scaling, we can determine the
unique intrinsic time and length scales of the system

T = (Q′/β3)1/2 and L = (Q′/β)1/2, (2.12a,b)

respectively. In terms of these, the frontal evolution in the radial regime (2.7) reads

a/L = (3/2π)1/3(t/T)1/3. (2.13)

For the thin-layer regime, the equations describing the evolution of the horizontal extent
(2.8b), height (2.9) and aspect ratio (2.11), become

rN/L = 1.16 (t/T)1/2, (2.14)

h(0, t)/L = 0.67, (2.15)

γ = 0.58 (t/T)−1/2, (2.16)

respectively.
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As a metric to measure the transition from a regime affected by the injection pressures
to one dominated by hydrostatic pressure, we can consider the ratio of buoyancy, �ρg, to
viscous stresses, μu/k, in (2.1), as

A(t) = �ρgk/μu. (2.17)

Dimensionless numbers of this form have been proposed previously (Pegler et al. 2013,
2014, 2017) and used to represent the relative significance of stresses due to fluid injections
compared with the hydrostatic pressure. Substituting u(a, t) given by (2.5) into (2.17), we
determine the characteristic value of A at the flow front of the radial regime, A1(t), as

A1(t) = 2π(β/Q′)a2

= (18π)1/3βQ′−1/3t2/3

= (18π)1/3(t/T)2/3, (2.18)

where we have made use of (2.3) and (2.12b) to evaluate a(t) and T , respectively. The
increase of A1 as t2/3 is consistent with the reduction in velocity at the flow front, and the
increasing importance of gravity, as it extends from the source.

For the thin-layer regime, the characteristic value of u at the flow front is given from
(2.8a) by

u = 0.58φ(βQ′)1/4t−1/2

= 0.58φLT−1(t/T)1/2. (2.19)

Substituting the above into (2.17), we obtain the ratio of buoyancy to viscous stresses at
the nose of the current during the thin-layer regime,

A2(t) = 1.72 (β3/Q′)1/4t1/2

= 1.72 (t/T)1/2. (2.20)

Since the flow rate at the front of the thin layer decreases with time, the relative importance
of buoyancy is again predicted to become more important with time in this regime,
reflected by the increase of A2 as t1/2 given above, consistent with a transition towards
gravity-driven flow.

2.4. Transition times
By equating the asymptotic expressions for the early- and late-time regimes derived in
§ 2.1 and 2.2, we can derive a series of time scales on which the transition between the two
regime occurs as follows. To begin, by equating the predictions for the ratio of viscous to
buoyancy forces (A1 = A2) given by (2.18) and (2.20), we obtain, on simplification,

tA/T = 0.0081, (2.21)

at which time a/L = h/L = 0.16. Gravity therefore begins to become important at less
than one hundredth of the time scale T with a transition that occurs well before A2 = 1.
A different time for transition, tr, may be defined by equating the predictions for the
position of the flow fronts, a(tr) = rN(tr), given by (2.13) and (2.14), yielding

tr/T = 0.094, (2.22)

at which time a/L = h/L = 0.36. This result indicates that, as far as the horizontal extent
of the current is concerned, the flow begins to switch between the regimes at approximately
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Figure 2. (a) Plots of the predicted asymptotes for A (green), rN(t) (blue), h(0, t) (red) and γ (t) = h(0, t)/rN
(black) for the initial and final responses in an axisymmetric situation (§ 2). The times where the curves meet,
indicated by filled circles, represent the characteristic times at which the flow switches its properties from one
regime to the other, as determined in § 2.4. (b) As above, but for a two-dimensional geometry (§ 3).

10 % of T . Additionally, we could consider the transition time, tγ defined by γ (tγ ) = 1,
where γ is given by (2.16), which leads to

tγ /T = 0.34, (2.23)

at which time a/L = R/L = 0.54. Finally, we evaluate the time th at which the height
of the current at the input takes the same value in the relationships for the two different
regimes, (2.13) and (2.15), as

th/T = 0.63, (2.24)

at which time rN/L = 0.92 and h/L = 0.67. By comparing this with (2.22), we see
that the transition time for the thickness takes relatively longer than the time scale of
transition for the horizontal scale. We attribute this to the fact the vertical flow front lies
considerably closer to the source input, implying that the impact of the non-hydrostatic
source conditions on the flow has a significant influence to longer times.

Plots showing the predictions for A(t), h/L, rN/L and γ in the early-time regime, given
by (2.13), and in the late-time regime, given by (2.14)–(2.16), are shown as functions of
time in figure 2(a). The plot illustrates the differing times (marked by filled circles) on
which the different properties of the flow switch from the predictions of the radial regime
to those of the gravity current.

2.5. Illustrative evaluation of time scales
To get a feel for the various time scales in experimental and geological contexts, we
present values in table 1 using illustrative laboratory and geological values. Here, we
use �ρ/ρ ∼ 0.01 and ν = 10−6 cm2 s−1, which typifies aqueous solutions of sodium
chloride at low concentrations. It should be noted that much larger ranges of densities,
viscosities and injection fluxes across different geological contexts, encompassing liquids,
gases and supercritical fluids, are possible; the evaluations here nonetheless illustrate the
considerable variations arising across different rock types and laboratory conditions. The
illustrative values in the geological cases in the first two rows represent typical values for
low and high porosity rock (e.g. Kampman et al. 2014). The comparison between these two
cases shows a variation in time scales of the order of a few months to tens of thousands of
years.
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φ k (m2) Q (m3 s−1) T tA tr tγ th

Low porosity rock 0.05 10−15 3 × 10−3 90 000 700 8000 30 000 60 000 yr
High porosity rock 0.25 10−12 10−6 0.3 0.002 0.02 0.08 0.2 yr

Laboratory 0.4 2 × 10−7 5 × 10−5 1 0.008 0.09 0.3 0.6 s

Table 1. Illustrative evaluations of the time scales on which the axisymmetric transition from radial to
thin-layer regimes occurs, given by (2.21)–(2.24), for a selection of geological parameters and those of the
experimental configuration of Lyle et al. (2005). The values of the time scales for geological cases (first two
rows) are given in years, while those of the experiment are given in seconds. To evaluate T using (2.12a,b), we
have used the illustrative values of �ρ/ρ = 0.01 and ν = 10−6 m2 s−1, which can characterise injections of
slightly salty water (the solution with least concentration used in Lyle et al. 2005) and hydrothermal fluids, for
example. Much larger ranges of density differences, viscosities and injection fluxes can occur across different
geological contexts, encompassing liquids, gases and supercritical fluids; the evaluations here serve to illustrate
the possibility for considerable variations arising across different rock types and laboratory conditions alone.
The illustrative values for φ and k in the geological context typify high porosity rock, such as sandstone, and
low porosity rock, such as mudstone (e.g. Kampman et al. 2014).

The value for the laboratory (�ρ/ρ ∼ 0.01) corresponds to the aqueous solutions of
sodium chloride with least concentration used by Lyle et al. (2005), which would have
created the longest transitional time scale T in their study. The time scales for this
axisymmetric experiment are so short (<1 s) that the first (hemispherical) regime would
have occurred primarily before the first measurements of the lengths of the currents were
recorded. The intrinsic time scales for the two-dimensional situation, as characterised by
our experiments presented in § 4 below (table 2), are longer (20–540 s), allowing us to
monitor the evolution directly from the initiation of the input.

3. Two-dimensional injection

The consideration of injection into a two-dimensional porous medium or a vertical
Hele-Shaw cell leads to a similar exposition, although it differs quantitatively from the
axisymmetric situation. The description will hence be relatively brief.

In the initial stages, when gravitational effects are irrelevant, conservation of volume
dictates that

1
2πa2 = F′t, (3.1)

forming the two-dimensional analogue of (2.3), where F is the constant two-dimensional
input rate and F′ = F/φ. With length and time scales of

L2 = F′/β and T2 = F′/β2, (3.2a,b)

(3.1) becomes
a(t)/L2 = (2/π)1/2(t/T2)

1/2. (3.3)

For the corresponding thin-layer regime in two dimensions, we quote (4.14), (4.15) and
(4.17) of Huppert (1986) and (3.13) of Huppert & Woods (1995), which give the length,
height and aspect ratio of the current as

xN(t)/L2 = 1.48 (t/T2)
2/3, (3.4)

h(0, t)/L2 = 1.46 (t/T2)
1/3, (3.5)

γ = 0.99 (t/T2)
−1/3, (3.6)
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Continuous input of heavy fluid at porous medium

Surface of saturating freshwater

Saline water

200 cm

25 cm

Control

valve

Release

valve

reservoir

Scales

Porous bead pack

Figure 3. Schematic of our experimental apparatus.

respectively, when recast in terms of (3.2a,b). On using (3.3) and (3.4) to determine the
characteristic Darcy velocity at the flow front in the two regimes using u = φȧ and u =
φẋN , respectively, we determine the corresponding ratios of buoyancy to viscous stresses
in the first (radial) regime and second (gravitational) regimes as

A1(t) = (2π)1/2(t/T2)
1/2, (3.7)

A2(t) = 1.01 (t/T2)
1/3, (3.8)

respectively. Both of these expressions indicate that A, and hence the relative importance
of gravity, increases with time.

As for the axisymmetric case, we can similarly define a series of time scales on which
the early-time regime with frontal position and height given by (3.3), with aspect ratio
γ = 1, transitions to the late-time gravity-current regime with dimensions and aspect
ratio given by (3.4)–(3.5). Proceeding as in § 2.4, we equate the predictions in the two
regimes [A1(tA) = A2(tA), a(tx) = xN(tx), γ (tγ ) = 1 and a(th) = h(0, th)], to determine a
progression of transition times for the two-dimensional case

tA/T2 = 0.0043, (3.9)

tx/T2 = 0.025, (3.10)

tγ /T2 = 1.03, (3.11)

th/T2 = 37.5. (3.12)

We note the considerably wider range of these time scales (spanning five orders
of magnitude) in comparison with their axisymmetric counterparts. Thus, while
qualitatively the results for the axisymmetric and two-dimensional geometries are similar,
quantitatively, the differences in time scales are substantial.

4. Experimental analysis

We conducted a series of laboratory experiments in a narrow acrylic tank of length 200 cm,
height 25 cm and width 1 cm (figure 3). The tank was filled with glass beads of diameter
2 mm (figure 4), creating a porous medium of porosity φ ≈ 0.38 ± 0.01 and permeability
k ≈ (3.1 ± 0.2) × 10−5 cm−2. These values correspond to those measured for 2 mm
beads (Acton, Huppert & Worster 2001) and tested previously for this geometry (Pegler
et al. 2014). The medium was saturated with approximately fresh water with a density of
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H.E. Huppert and S.S. Pegler

10 cm

10 s

60 s

300 s

Figure 4. A progression of photographs showing experiment 2 (green circles in figure 5) at times t = 10, 60
and 300 s. The progression illustrates the transition from an initial regime of approximately radial flow in the
vicinity of the injection at the bottom left-hand corner (with an aspect ratio comparable to unity, γ ≈ 1) towards
an increasingly slender gravity current with increasing time.

0.999 g cm−3. Densities were measured using an oscillating U-tube density meter to an
accuracy of 10−6 g cm−3. In order to provide conditions favouring the persistence of the
early-time radial regime, small density differences between the injected and ambient fluids
were used. Thus, for the injected fluid, we used solutions of salty water with densities
varying from 1.011 to 1.035 g cm−3, which were dyed with blue food colouring. The
kinematic viscosity ν ≈ 0.010 ± 0.001 cm2 s−1 was measured using a U-tube viscometer.
The solutions were introduced into the medium through an inlet located at the bottom
left-hand corner of the cell. A siphon of rubber tubing connected the inlet to a raised
reservoir of salty water, and the release of fluid was initiated using an intermediary ball
valve. The evolution of the flow was recorded using a digital SLR camera, which took
photographs at regular intervals of 1 or 5 s. The rate of input was determined by measuring
the weight of the reservoir over the course of each experiment.

The parameter values used are shown in table 2. The main parameter varied was the
volumetric rate of input per unit width F, which spanned an order of magnitude from
0.2 to 2 cm2 s−1. The evolutions of the frontal position xN(t), height of the current at
the source, h(0, t) (each scaled by L2), and the aspect ratio, measured digitally from
the photographs, are shown in figure 5(a–c). A progression of photographs showing
the evolution of experiment 2 is presented in figure 4, illustrating the transition of
the shape of current from an aspect ratio comparable to unity towards the shallower
aspect ratio characteristic of a gravity current. Figure 5(c) plots γ = h(0, t)/xN(t), the
ratio of the height of the current above the source to its horizontal extent. Overlaid
are the early- and late-time predictions of (3.3) and (3.12). The observations indicate
that the experiments undergo transitions from a regime approximating a radial flow
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Continuous input of heavy fluid at porous medium
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2
(a) (b)

(c)

Figure 5. Collapsed experimental data showing (a) the horizontal length of the current, xN(t), scaled by the
length scale L2 defined by (3.2a,b), (b) the height above the input point, h(0, t), scaled by L2 and (c) the aspect
ratio of the current γ (height over length) as functions of dimensionless time t/T2, where T2 is the time scale
(3.2a,b). The symbols denoting the experiments are given in table 2. The early-time predictions for xN/L2 and
γ associated with the radial regime (3.3), and the late-time predictions associated with gravity-current regime
(3.12) are shown as solid black lines. No fitting parameters have been used in formulating this collapse.

Experiment F (cm2 s−1) �ρ (g cm−3) T2 (s)

1 (×) 2.15 0.036 70
2 (©) 0.68 0.036 22
3 (�) 1.83 0.012 540
4 (♦) 0.90 0.012 260
5 (+) 0.21 0.012 61

Table 2. Parameter values used in our experiments of § 4.

(with aspect ratio γ ≈ 1) to that of the gravity current γ ∼ (t/T2)
−1/3 → 0. Each

experiment was terminated once the current reached the free surface of the ambient water.
Therefore, different experiments cover different intervals of the same collapsed theoretical
transition.
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The experiments show a characteristic collapse to a consistent trajectory spanning the
early-time radial flow to the late-time gravity current in accordance with the intrinsic
scales. However, we observe consistent overshoots of the experimental predictions for
the frontal and height positions, xN(t) and h(0, t), at early times, as compared with the
theoretical prediction (2.13). We attribute this to the effect of hydrodynamic dispersion,
which causes the front of the fluid layer to become diffuse, as can be observed in figure 4.
To conserve mass, the smeared front must therefore extend slightly further ahead than
would apply in the case of the ideal sharp interface assumed in the theory. At early times,
there is a similar 20 % overshoot in both vertical and horizontal dimensions, which is
consistent with dispersion initially playing a similar role in both directions during the
radial regime. In view of its lower density, the dispersed fluid lingers preferentially above
the source, producing a transition from a smeared interface upstream to a sharper interface
near the nose. This is in agreement with the general form of stratified gravity currents
containing a distribution of densities (Pegler, Huppert & Neufeld 2016).

The comparison between the observations and the theoretical predictions also reveals
scatter in the evolution of the flow fronts at early times, particularly shown in the evolution
of the aspect ratio γ (figure 5c). This is likely caused by the sensitivity of the early-time
flow to the inhomogeneities in the permeability of the bead pack (some associated
roughness in the profile of the flow front is evident in the early-time flow front shown
in the first image of figure 4).

We also observe that, while the horizontal flow front has converged appreciably to
the late-time prediction by t/T2 = 1 (figure 5a), the height and aspect ratio transition
relatively slower towards their respective thin-layer predictions (figure 5b,c). This variation
in transitional time scales is consistent with our findings of § 3 showing that the transition
time for the horizontal extent is faster than the vertical. As noted there, this is likely
because the height is affected by the near-field effects of the injection more so than the
horizontal extent, which is primarily affected by the gravity-driven flow that establishes
far from the injection point.

5. Vertically varying permeability and porosity

In the Earth there can be considerable variations in permeability and porosity in both
vertical and horizontal directions. Analysis of these configurations has been incorporated
in the context of thin-layer theory (e.g. Huppert & Woods 1995; Zheng et al. 2013; Hinton
& Woods 2018). Considering only vertical variations, we realise that it may be possible for
an expansion in the approximately hemispherical regime to intrude into a region where the
expansion can proceed more like a gravity current. A hypothetical sketch of this response
in a two-layer system (with a much more permeable upper layer) makes up figure 6. To
confirm the potential to transition between a regime with significant vertical velocities in
the lower layer and a thin gravity current in the upper layer, we carried out a laboratory
experiment in the extreme case of a porous layer topped by air in a cell of width 1 cm filled
with glass ballotini of diameter 2 mm to a depth of 4 cm. An input of blue-dyed glycerine
of viscosity 7.5 cm2 s−1 and density 1.26 g cm−3 was fed at a rate of 0.18 cm2 s−1 to the
base of the container and photographs taken every 2 s.

Following an initial radial spreading from the input position at the base of the cell,
the current in the lower layer developed similarly to that shown in figure 4. Initially, it
exhibited a rounded top and, subsequently, a wedge-shaped nose. By approximately 100
s, the flow was at the top of the layer (with some vertical uplift of the beads as the flow
approached the interface, which perturbed the surface from being horizontal). By 140 s
there was a fully developed horizontal flow along the interface (figure 7), which lengthened
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Continuous input of heavy fluid at porous medium

Figure 6. The possible response in a two-layer system in which the porous medium in the upper section is
considerably more permeable than in the lower section.

Figure 7. The result of an experiment described in § 5 in a porous layer through which the fluid penetrates the
air above and flows along the top of the layer as a gravity current.

with time. Thereafter, parts of the heavy fluid sunk back into the porous layer in the form of
broad fingers. This replicates motions seen in Acton et al. (2001) and similarly in Bharath
& Flynn (2021). There are similarities here to the configuration analysed by Huppert,
Neufeld & Strandkvist (2013), who considered the conditions under which an input of
relatively heavy fluid into the base of a two-layered porous medium flows into the upper
layer because of its greater permeability.

6. Summary

We have evaluated, theoretically and experimentally, the response to the constant injection
at a point source of a viscous fluid that is relatively more dense than the interstitial fluid
of the surrounding porous medium. The medium lies above a rigid horizontal boundary
and the source point is at that boundary. The analysis was presented for both axisymmetric
and two-dimensional situations. We show that the fluid expands first hemispherically (or
as a semi-disc in the two-dimensional situation), where gravity is negligible, and then
transitions to a small-slope gravity current.

We demonstrated a wide range of different transition times between the early time
spherically radial regime and the gravity current, dependent on which quantity is
used to define the transition. Considering the ratio between viscous and gravitational
forces, we determined that, for the fully three-dimensional, axisymmetric case, the
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transition time tA/T = 0.0081 (0.0043 for the two-dimensional situation). Considering
the horizontal radius of the resulting flow, we evaluated the transition time ta/T = 0.093
for axisymmetric situations (and 0.025 for the two-dimensional situation). Considering
the height of the flow above the source point, we found that th/T = 0.63 (37.5 for
two-dimensional situations). Considering the slope, defined by the aspect ratio of height
above the input to the horizontal radius at the boundary (the ratio of the two previous
criteria), tγ /T = 0.34 (1.0 for two-dimensional situations). These large differences
between the various time scales – a factor of approximately 80 in the axisymmetric
situation and 9000 for the two-dimensional situation – are somewhat surprising. They
show that different aspects of the flow become important at different times.

Because the overall time scale T is strongly dependent on the permeability (to the minus
three halves in the axisymmetric situation, and to the minus one in the two-dimensional
situation), we hypothesised that a lower, relatively impermeable layer may display
significant vertical velocities controlled by the injection, while at the same time the flow
penetrating into an upper, much more permeable layer could exist in a thin-layer regime.
The potential for this to occur was demonstrated experimentally in figure 7, which shows
the development of a thin gravity current in an upper, more permeable region that extends
ahead of the fluid in the lower region.

Because the characteristic time scales we determine depend on parameters whose value
is very different in illustrative laboratory settings and in the Earth, the relatively rapid
transition to a gravity current – taking seconds to minutes in the laboratory – can take
thousands of years in the Earth.
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