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Abstract: We analyse the motions of a axisymmetric drop expanding between two rotating discs.
We restrict to the case of a highly viscous fluid and a rapid rate of rotation. Therefore, we make
modelling assumptions following from both a low Reynolds number and a low Rossby number. We
investigate both the squeezing problem, where the top disc is pushed down on the drop; and the
contraction problem, where the top plate is pulled away from the drop. Both problems have similar
solutions to the non-rotating case but we find that the rotation term in the contraction problem allows
a critical rotation rate that prevents the plates from moving apart. This exists because pressure in the
fluid layer is lowered by the rotation and thus there is a suction effect between the two plates which
promotes adhesion. We also complete the linear instability analysis of the squeezing problem and
determine the critical values where the system shifts from symmetrical to asymmetrical.
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1. Introduction

The study of expanding viscous drops has seen a lot of development in the last few
decades. A good outline of this field can be found in Huppert (2006) [1], beginning with
analysis from von Kármán (1940) [2]. Recent developments from Ward (2006) [3] and Mof-
fatt et al. (2021) [4] have focused on the case of a drop expanding in the thin layer between
two horizontal plates (a Hele-Shaw cell). These papers have fully described the motion and
shown that the squeezing problem is stable under linear perturbations. Investigation by
Gay (2002) [5] has demonstrated that the contraction problem is unstable: air is drawn in
as the radius of the viscous drop decreases and, as the two interact, a viscous fingering
instability develops and thus the symmetry breaks down. This is an example of a Saffman-
Taylor instability (Saffman and Taylor, 1958 [6]). The rotating contraction problem is also
expected to dominated by a Saffman-Taylor instability, despite the additional complexities
caused by rotation but this has not previously been investigated; this paper is original in its
inclusion of rotation in both the squeezing and contraction problems. Both of these rotating
problems have great relevance to the adhesion industry which, in turn, has applications to
the construction, transportation and machinery manufacture industries, among others, as
detailed in Dinte and Sylvester (2017) [7]. The viscous fluid we consider throughout this
paper can be used to model an adhesive, which Dinte and Sylvester (2017) [7] define “as a
mixture in a liquid or semi-liquid state, capable to join permanently to surfaces, by an adhe-
sive process”. In particular, the theory of this paper is most relevant to adhesively-bonded
lap joints which were analytically investigated by Her (1999) [8]. It was demonstrated
by de Bruyne and Houwink (1952) [9] that such a joint between the ends of two coaxial
cylinders will break at high loads when subjected to torsion (by applying torque in opposite
directions of rotation to the two cylinders). We can investigate an identical joint, but in
the case that the cylinders rotate in the same direction, using the theory of this paper. In
industry, such joints are used for torque transmission and have applications in aircraft,
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space structures and robot arms as outlined by Choi and Lee (1994) [10]. It is demonstrated
in this paper that, by rotating such cylinders at a sufficiently fast rate, the adhesive layer
between them can pull them closer together, even when the external forces are pulling
them apart. We explicitly identify the minimum rotation rate required to achieve this effect.

2. Background

The system we are analysing consists of two plates which are a vertical distance h
apart. Between the two plates is a volume of fluid V with surface tension γ, uniform
density ρ and uniform dynamic viscosity µ. The two plates are rotated about a vertical axis
through the centre of the fluid drop at a rate of rotation Ω = Ωez and a force F = −Fez
acts vertically and uniformly on the top plate. The fluid begins in a cylindrical drop of
radius a0 and the initial vertical distance between the plates is h0. We make the modelling
assumptions that the height of the fluid drop does not vary radially and that the front of
the fluid drop remains vertical at all times. We choose to work in a coordinate system with
origin on the bottom plate directly below initial centre of the fluid drop. The pressure field
in the fluid is denoted by p and the velocity field by u.

We investigate this system by following a similar mathematical analysis to
Moffatt et al. (2021) [4]. In contrast, we work in a rapidly rotating frame, more specif-
ically at low Rossby number. The axis of rotation is vertical and passes through the centre
of the drop.

We consider a reference frame rotating with the plates at constant angular frequency
Ω. This gives the same no-slip boundary conditions as the initial problem investigated
by Moffatt et al. (2021) [4]; as well as adding Coriolis and centrifugal terms to the Navier-
Stokes equations. We consider low Rossby number, so the centrifugal force dominates over
both the Coriolis and advective effects, leaving us with the governing equation

ρ
∂u
∂t

+ ρΩ× (Ω× x) = −∇p + ρg + µ∇2u. (1)

3. The Pseudo-Pressure Field

We now observe the following identity from vector calculus, as in Tritton (1988) [11]

Ω× (Ω× x) = ∇(−1
2
|Ω× x|2). (2)

Hence, we can rewrite the governing equation as

ρ
∂u
∂t

= −∇P + ρg + µ∇2u, (3)

where P = p− 1
2

ρ|Ω× x|2. (4)

Since we are working in the case where the axis of rotation passes vertically through
the centre of the drop, Ω = Ωez and x = rer + zez. Hence

P = p− 1
2

ρΩ2r2. (5)

We can also use the pseudo-pressure field to rewrite another of the key equations
from Moffatt et al. (2021) [4]. Standard lubrication theory indicates that the pressure is
independent of z, i.e., p = p(r, t), and the radial component of velocity, u = u(r, z, t),
satisfies |∂u/∂z| >> |∂u/∂r| and obeys:

∂p
∂r

= µ
∂2u
∂y2 + ρΩ2r, (6)
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which we can rewrite as
∂P
∂r

= µ
∂2u
∂z2 . (7)

It is also worth noting that

p = p(r, t)⇒ P = P(r, t). (8)

Hence, the problem now closely resembles that investigated by Moffatt et al. (2021) [4]
but with this pseudo-pressure field, P(r, t), in the place of p(r, t). The only difference being
that, on the boundary r = a, we have the condition P = pa − 1

2 ρΩ2a2 − 2γ/h, where γ is
the surface tension. This result can be recovered from Ungarish and Huppert (1998) [12] by
directly considering the pressure field and neglecting the gravitational term due to both
the thin layer approximation and low Rossby number.

4. Analysis of Basic State

Using the no slip boundary conditions, u(r, 0, t) = u(r, h, t) = 0, we can solve for
u(r, z, t) in terms of the pressure field

u(r, z, t) =
1

2µ

∂P
∂r

z(z− h). (9)

Thus, averaging over the depth, we find that:

ū(r, t) ≡ 1
h

∫ h

0
u(r, z, t)dz = − h2

12µ

∂P
∂r

, (10)

i.e., ū(r, t) = − h2

12µ

(
∂p
∂r
− ρΩ2r

)
. (11)

Proceeding with the analysis, we find a corresponding result to the Reynolds equation

∇2P =
12µ

h3
dh
dt

(12)

⇒ ∇2 p =
12µ

h3
dh
dt

+ 2ρΩ2, (13)

with boundary condition p(a, t) = pa − 2γ/h. We determine the solution as

p(r, t) =
(

3µ

h3
dh
dt

+
1
2

ρΩ2
)(

r2 − a2
)
+ pa − 2γ/h. (14)

We balance forces on the upper plate to obtain:

F = 2π
∫ a

0
(p− pa)rdr (15)

and arrive at the nonlinear ODE

F =
3µV2

8π

d
dt

(
1
h4

)
−
(

ρΩ2V2

4π
+ 2γV

)
1
h2 . (16)

5. The Squeezing Problem

In this section, we focus on the case F > 0. We use a change of variables to rewrite (16) as:

dX2

dT
= 1 + λX, X(0) = 1, (17)
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where


X = h2

0/h2 = a4/a4
0

T = t/t0

t0 = 3µV2/(8πFh4
0)

λ = ρΩ2V2

4πFh2
o
+ 2γV

Fh2
0
=

πρΩ2a4
0

4F +
2π2a4

0γ
VF .

(18)

This is very similar to the ODE found by Moffatt et al. (2021) [4] for the corresponding
problem in the non-rotating case; however, the parameter λ has now been increased by a
quantity proportional to Ω2. We can solve the equation to determine the implicit solution

T =
2

λ2

[
λ(X− 1)− log

(
1 + λX
1 + λ

)]
. (19)

6. The Contraction Problem

We find a more interesting difference when we investigate the contraction problem,
F < 0. We can, again, use a change of variables to rewrite the ODE as

dX2

dT
= −1 + |λ|X, X(0) = 1, (20)

where


X = h2

0/h2 = a4/a4
0

T = t/|t0|
t0 = 3µV2/(8πFh4

0)

λ = ρΩ2V2

4πFh2
o
+ 2γV

Fh2
0
=

πρΩ2a4
0

4F +
2π2a4

0γ
VF .

(21)

But we now note that the system can be forced to remain at X = 1 (i.e., h = h0, a = a0)
if we choose Ω such that λ = −1. The critical value of Ω which achieves this is

Ωc =

(
4|F|
πρa4

o
− 8πγ

ρV

) 1
2
. (22)

This indicates that, by spinning the plates at Ω = Ωc, we can prevent the contraction
force from pulling the plates apart. If Ω < Ωc, then the plates pull apart; if Ω > Ωc, then the

plates are pushed together. We note that Ωc does not necessarily exist: if a0 > ac =
(

V|F|
2π2γ

) 1
4 ,

then |λ| > 1 and hence the plates are always pushed together.

7. Stability of Squeezing Problem

Other differences from the non-rotating case arise when we carry out a linear stability
analysis. As noted in the introduction, the contraction problem, F < 0, is expected to
develop complicated Saffman-Taylor instabilities at the interface between the air and the
fluid. Therefore, we will focus on the squeezing problem, F > 0. We consider perturbing
the boundary by:

ã(θ, t) = a(t) + εα(t)cos(nθ), (23)

where 0 < ε << 1 and n ≥ 2 is an integer, (24)

and we consider a perturbed pressure field given by

p̃(r, θ, t) = p(r, t) + εp1(r, t)cos(nθ). (25)

As in the paper by Moffatt et al. (2021) [4], we find ∇2[p1cos(nθ)] = 0 and hence
p1(r, t) = k(t)rn. Thus, we have

p̃(r, θ, t) = p(r, t) + εk(t)rncos(nθ). (26)
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We now find k(t), using the condition p̃(ã, θ, t) = pa − 2γ/h,

k(t) = −a(t)α(t)
1

a(t)n cos(nθ)

(
6µ

h(t)3 + ρΩ2
)

. (27)

Hence:

p̃(r, θ, t) =
[
r2 − a2 − 2εaα

( r
a

)n
cos(nθ)

][3µ

h3
dh
dt

+
1
2

ρΩ2
]
+ pa − 2γ/h (28)

and
∂ p̃
∂r

=

[
r− nεα

( r
a

)n−1
cos(nθ)

][
6µ

h3
dh
dt

+ ρΩ2
]

. (29)

We recall (11) and observe that ū(ã, t) = ∂ã
∂t = da

dt + ε dα
dt cos(nθ). Hence, evaluating ∂p

∂r
at r = ã, we obtain

da
dt

+ ε
dα

dt
cos(nθ) = − a

2h
dh
dt

+ εαcos(nθ)

(
1

2h
dh
dt

(n− 1) +
ρΩ2h2

12µ
n
)
+ O

(
ε2
)

. (30)

Therefore, as in Moffatt et al. (2021) [4], at leading order we simply see a statement of
the conservation of V = πa2h. At order ε, we find

dα

dt
= α

[
1

2h
dh
dt

(n− 1) +
ρΩ2h2

12µ
n
]

. (31)

This equation governs the stability of the basic state. It is different to the corresponding
equation in Moffatt et al. (2021) [4] due to the Ω term. Hence:

|α| is decreasing (i.e., the nth mode is stable)⇔ 1
2h

dh
dt

(n− 1) +
ρΩ2h2

12µ
n < 0. (32)

We can rewrite this condition using X and T as

nth mode is stable⇔ dX
dT

>
n

n− 1
ρΩ2h2

0t0

3µ
. (33)

Equation (17) tells us that dX
dT = 1

2X + λ
2 , where λ = ρΩ2V2

4πFh2
o
+ 2γV

Fh2
0

. We also recall that

t0 = 3µV2

8πFh4
0

and, hence , we can rewrite the stability condition as

nth mode is stable⇔ h2 >
1

n− 1
ρΩ2V2

4πF
− 2γV

F
. (34)

Therefore, we can see that the system is always stable if γ ≥ ρΩ2V
8π ; equivalently, the

system is always stable if Ω ≤ Ωs =
(

8πγ
ρV

) 1
2 . Otherwise, we can rewrite (34) in terms of

the radius of the drop as:

nth mode is stable⇔ V2

π2a4 >
1

n− 1
ρΩ2V2

4πF
− 2γV

F
, (35)

which we can rearrange as

nth mode is stable⇔ a <

(
1

n− 1
πρΩ2

4F
− 2π2γ

VF

)− 1
4

. (36)
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Hence, if we let an =
(

1
n−1

πρΩ2

4F −
2π2γ
VF

)− 1
4
, then the nth mode is stable until the

drop’s radius reaches the critical value an.
These values are increasing as n increases so we observe that if a ≤ a2, then the drop

is symmetrical and stable under any perturbation. Therefore, a2 is the critical radius of the
drop at which the system becomes unstable, which we can explicitly write as

a2 =

(
πρΩ2

4F
− 2π2γ

VF

)− 1
4

=

(
4VF

πρΩ2V − 8π2γ

) 1
4
. (37)

The above results are consistent with the results found by Moffatt et al. (2021) [4]
because in their analysis Ω = 0 so the condition Ω ≤ Ωs is satisfied and hence the motion is
always stable. These results also incorporate surface tension which is crucial for calculating
Ωs but is less relevant in the non-rotating case.

We also observe that a2 is decreasing as a function of Ω so the system becomes unstable
at a smaller critical radius when it is rotated at a faster rate.

8. Instability of Contraction Problem

If we use the same linear perturbation model as in the investigation of the squeezing
problem, then again we arrive at (32). There is a difference when we rewrite this equation
in terms of X and T (because T = t/|t0| = −t/t0 ) so we find that

the system is stable⇔ dX
dT

> − n
n− 1

ρΩ2h2
0t0

3µ
. (38)

Equation (20) tells us that dX
dT = − 1

2X −
λ
2 , where λ = ρΩ2V2

4πFh2
o
+ 2γV

Fh2
0

. We also recall that

t0 = 3µV2

8πFh4
0

and, hence, we can rewrite the stability condition as

nth mode is stable⇔ h2 <
2γV
|F| −

1
n− 1

ρΩ2V2

4π|F| . (39)

Therefore, we can see that the system is always unstable if γ ≤ ρΩ2V
8π ; equivalently, the

system is always unstable if: Ω ≥ Ωs =
(

8πγ
ρV

) 1
2 . Otherwise, we can rewrite (39) in terms

of the radius of the drop as:

nth mode is stable⇔ V2

π2a4 <
2γV
|F| −

1
n− 1

ρΩ2V2

4π|F| , (40)

which we can rearrange as

nth mode is stable⇔ a >

(
2π2γ

V|F| −
1

n− 1
πρΩ2

4|F|

)− 1
4

. (41)

We recall an =
(

1
n−1

πρΩ2

4F −
2π2γ
VF

)− 1
4
=
(

2π2γ
V|F| −

1
n−1

πρΩ2

4|F|

)− 1
4
; thus the nth mode is

unstable if a ≤ an but it is stable if a > an.

As before, an is increasing in n and we can calculate lim
n→∞

an =
(

V|F|
2π2γ

) 1
4
= ac thus,

if Ω < Ωs and a ≥ ac, then the system is stable. At first glance, this may appear to be
inconsistent with Saffman and Taylor (1958) [6]. However, we recall that, if a0 ≥ ac, then
the plates are not pulled apart, hence no Saffman-Taylor instabilities develop. Indeed, there
is an equivalence between the statements a0 ≥ ac and a ≥ ac because a0 ≥ ac ⇔ a ≥ a0 (as
the plates are pushed together).
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In the case of non-rotating plates, the necessary and sufficient condition for stability
simply reduces to a0 ≥ ac which is equivalent to the plates not pulling apart.

9. Numerical Values

In this section we will use the following parameters to calculate the predicted critical
values [these were the experimental values used by Moffatt et al. (2021) [4]].

ρ = 1.41× 103 kg m−3, µ = 64.3 kg s−1m−1, V = 5× 10−6 m3, (42)

|F| = 11.04 kgms−2, γ = 0.07 kg s−2, a0 = 30.72× 10−3 m. (43)

Therefore, we can calculate the critical values identified earlier in the paper.

Ωc = 105 s−1 = 999 rpm, (44)

Ωs = 15.8 s−1 = 151 rpm, (45)

ac = 0.0795 m = 79.5 mm (46)

These values give a useful insight into how plausible it would be to stabilise the
motion of an expanding drop and to force two contracting plates together. Using these
values we can also calculate a2 for a range of values of Ω and accordingly construct phase
diagram showing the different regions where the system is either stable (and will remain
axisymmetric) or unstable (and will not) for the squeezing problem. The result of this is
shown in Figure 1.

Figure 1. Regions of stability in the Ω− a phase plane under a squeezing force.

We can also plot the corresponding regions for the contraction problem, which is
shown in Figure 2.
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Figure 2. Regions of stability in the Ω− a phase plane under a contraction force.

10. Conclusions

We have identified the key equations for an axisymmetric viscous drop under com-
pressing and contracting forces in a rotating system and the critical values at which the
symmetry breaks down. In particular, we have shown that, under a squeezing force, the
rotating viscous drop maintains its axisymmetry unless Ω ≥ Ωs and the radius grows to be
larger than a2, where:

Ωs =

(
8πγ

ρV

) 1
2
, (47)

and:

a2 =

(
4VF

πρΩ2V − 8π2γ

) 1
4
; (48)

whereas, under a contraction force, symmetry breaks down if Ω < Ωs or if the drop starts
at an initial radius less than

ac =

(
V|F|
2π2γ

) 1
4
. (49)

We have also found that the critical rotation rate which prevents a contracting force
from pulling apart two plates joined by a viscous drop is:

Ωc =

(
4|F|
πρa4

o
− 8πγ

ρV

) 1
2
, (50)

which exists given that a0 ≤ ac. Further research may be done in a laboratory to experimen-
tally confirm these results.



Symmetry 2022, 14, 2488 9 of 9

Author Contributions: Formal analysis, writing—original draft preparation: M.G.E.R.; Conceptual-
ization, supervision, writing—review and editing, correspondence: H.E.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in the Numerical Values section can be found in
Moffatt et al. (2021) [4]. DOI:10.1017/jfm.2021.668

Acknowledgments: Let us firstly extend our thanks to a very talented group of summer under-
graduate students: A. Cox, M. Liu, M. Loncar, J. Saville and O. Wilson. It was a pleasure to work
alongside them. We must also thank H.K. Moffatt for taking the time to read an earlier draft of this
article and helping us to progress. Lastly, we would like to give our dearest thanks to King’s College,
Cambridge for providing us with a workspace and the Braithwaite Batty Fund for providing an
accommodation subsidy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huppert, H.E. Gravity Currents: A personal perspective. J. Fluid Mech. 2006, 554, 299–322. [CrossRef]
2. von Kármán, T. The engineer grapples with nonlinear problems. Bull. Am. Math. Soc. 1940, 46, 615–683. [CrossRef]
3. Ward, T. Radial spreading of a viscous drop between parallel-plane surfaces. Phys. Fluids 2006, 354, 816–824. [CrossRef]
4. Moffatt, H.K.; Guest, H.; Huppert, H.E. Spreading or contraction of viscous drops between plates: Single, multiple or annular

drops. J. Fluid Mech. 2021, 925, A26. [CrossRef]
5. Gay, C. Stickiness—Some fundamentals of adhesion. Integr. Comp. Biol. 2002, 42, 1123–1126. [CrossRef]
6. Saffman, P.G.; Taylor, G.I. The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid.

Proc. R. Soc. Lond. 1958, A245, 312–329.
7. Dinte, E.; Sylvester, B. Adhesives: Applications and Recent Advances. In Applied Adhesive Bonding in Science and Technology;

InTech Rijeka: Rijeka, Croatia, 2017
8. Her, S.-C. Stress analysis of adhesively-bonded lap joints. Compos. Struct. 1999, 47, 673–678. [CrossRef]
9. de Bruyne, N.A.; Houwink, R. Adhesion and Adhesives; Elsevier Publishing Co. Ltd.: Amsterdam, The Netherlands; Cleaver-

Hume Press: London, UK, 1952.
10. Choi, J.H.; Lee, D.G. The Torque Transmission Capabilities of the Adhesively-Bonded Tubular Single Lap Joint and the Double

Lap Joint. J. Adhes. 1994, 44, 197–212. [CrossRef]
11. Tritton, D.J. Physical Fluid Dynamics, 2nd ed.; Oxford Science Publications: Oxford, UK, 1988.
12. Ungarish, M.; Huppert, H.E. The effects of rotation on axisymmetric gravity currents. J. Fluid Mech. 1998, 362, 17–51. [CrossRef]

http://doi.org/10.1017/S002211200600930X
http://dx.doi.org/10.1090/S0002-9904-1940-07266-0
http://dx.doi.org/10.1063/1.2338021
http://dx.doi.org/10.1017/jfm.2021.668
http://dx.doi.org/10.1093/icb/42.6.1123
http://dx.doi.org/10.1016/S0263-8223(00)00052-0
http://dx.doi.org/10.1080/00218469408027077
http://dx.doi.org/10.1017/S0022112098008878

	Introduction
	Background
	The Pseudo-Pressure Field
	Analysis of Basic State
	The Squeezing Problem
	The Contraction Problem
	Stability of Squeezing Problem
	Instability of Contraction Problem
	Numerical Values
	Conclusions
	References

