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The slumping of gravity currents 
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Experimental results for the release of a fixed volume of one homogeneous fluid into 
another of slightly different density are presented, From these results and those 
obtained by previous experiments, it is argued that the resulting gravity current can 
pass through three states. There is first a slumping phase, during which the current 
is retarded by the counterflow in the fluidinto which it is issuing. The current remains in 
this slumping phase until the depth ratio of current to intruded fluid is reduced to less 
than about 0,075. This may be followed by a (previously investigated) purely inertial 
phase, wherein the buoyancy force of the intruding fluid is balanced by the inertial 
force. Motion in the surrounding fluid plays a negligible role in this phase. There then 
follows a viscous phase, wherein the buoyancy force is balanced by viscous forces. 
It is argued and confirmed by experiment that the inertial phase is absent if viscous 
effects become important before the slumping phase has been completed. R’elation- 
ships between spreading distance and time for each phase are obtained for all three 
phases for both two-dimensional and axisymmetric geometries. Some consequences of 
the retardation of the gravity current during the slumping phase are discussed. 

1. Introduction 
Gravity currents, which result whenever fluid of one density flows horizontally 

into fluid of a different density, are frequent occurrences in both natural and man- 
made situations. Thunderstorm outflows, sea-breeze fronts, estuarine effluences, the 
discharge of industrial waste water into rivers, lakes or oceans and the sudden release 
of a foreign gas into the atmosphere are just a few examples. Possibly the most im- 
portant practical aspect of the study of gravity currents is the determination of the 
rate of advance of the front. Indeed this is the stated aim of the first theoretical 
calculation, by von K$rmBn (1940), who purports to prove that a current of density 
po and depth h propagates under a fluid of density pl(  < po) and semi-infinite depth at 
speed 

c = (29’44, 

where the reduced gravity g’ = g(po -pl)/pl and g is the acceleration due to gravity. 
Benjamin ( 1  968) subsequently explained that von KQrmQn’s reasoning in arriving 
at (1.1) is erroneous but that the same relationship can be obtained by valid arguments. 
Nevertheless (1 .1)  is only a partial solution to the problem: it is but one relationship 
between the unknown current depth and the unknown current speed. 

The determination of the rate of advance of a gravity current arising from the 
release of a prescribed amount of fluid of density po was first considered by Fay (1 969). 
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He argues that tthe horizontal buoyancy forces set up by the current are initially 
balanced by the inertia forces within the current. Fay estimates both these forces and 
thus evaluates the axisymmetric spreading of a gravity current of fixed volume Q 

(1.2) 
as initially given by 

R N (g'Q)it*, 

where R is the radial co-ordinate of the front, or nose, of the current. This relationship, 
argues Fay, is valid until the gravity current becomes so thin that viscous forces, 
rather than inertia forces, balance the buoyancy forces. Using an order of magnitude 
evaluation of the viscous force for a current propagating under a free surface, Fay 
determines that 

R N (g'Q2d)&ta, 

where v is the kinematic viscosity. By equating (1.2) and (1.3)) Fay argues that an 
inertia-buoyancy balance is operative if 0 < t c t, and a viscous-buoyancy balance 
if t ,  < t, where 

Since Fay is primarily concerned with the spread of oil over water, he then in- 
vestigates a third stage of the spreading, when there is a balance between viscous 
forces and surface tension. 

In a following paper, Hoult (1972) places the above results on a firmer foundation 
by actually solving governing equations rather than balancing forces. Arguing that 
the length scale of horizontal variations along the current greatly exceeds the thickness, 
Hoult bases his analysis on the depth-averaged, shallow-water equations. Entirely 
neglecting the motion in the upper fluid, Hoult writes down the equations of conserva- 
tion of mass and momentum in the gravity current. Retaining only the buoyancy and 
inertia terms, he commences the solution of the equations in terms of the similarity 
variable 

7 = (g'Q)-irt-t for axisymmetric spreading ( 1 . 5 ~ )  

= (g'q)-+ xt-8 for two-dimensional spreading, (1.5b) 

where q is the volume per unit span. However, conservation of mass and momentum 
are not sufficient to obtain a complete solution. As argued previously by others 
(Fannelop & Waldman 1971) an extra conditicn, such as one applied near the front 
of the current and thus implying that the current is controlled by the head, is seen 
to be required. The results of Benjamin and experience gained from hydraulic con- 
trols suggest that the appropriate condition is the specification of the Froude number, 
Fr = c/(g'h)*, just behind the head. This Froude number should be 24 according to 
Benjamin, but Hoult suggests expressing it as a constant A*, to be determined from 
experiment. From a series of two-dimensional experiments of oil spreading over water, 
Hoult concludes that the best fit to the results comes from h = 1.40. He thus obtains 
(after we have corrected an algebraic error) 

(1.3) 

t* = (Q/d)*- (1.4) 

R = 1*3(g'&)*t* ( 1 . 6 ~ )  

and I = l*G(g'q)it%, (1.6b) 

as the spreading laws in the inertia-buoyancy range for the axisymmetric and two- 
dimensional situations, where 1 is the length of the (two-dimensional) current. Being 
the results of a similarity calculation, these relationships are expected to be valid only 
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after sufficient time has elapsed since the release of the intruding fluid for the initial 
geometry to  be irrelevant. 

To evaluate the spreading laws when viscosity dominates inertia, Hoult retains the 
viscous terms and neglects the inertial terms in the equations for the current and 
uses the (inertial) boundary-layer equations to  describe the motion in the intruded 
fluid. The analysis then continues via the similarity variable 

7 = [~/g'~Q~]l%rt-* for axisymmetric spreading, ( 1 . 7 ~ )  

= [~/g'~q~]*xt-Q for two-dimensional spreading. ( 1 . 7 b )  

The condition a t  the head is now somewhat unsatisfactory since the flow ahead of the 
current needed to  close the problem cannot be of the postulated boundary-layer type: 
horizontal gradients are not sniall compared to  vertical gradients there. Be that as it 
may, Hoult obtains (after correcting for another algebraic error) 

R = 0.94(g'2Q4/~)hta ( 1 . 8 ~ )  

and 1 = 1*5(g'2q4/v)W (1.8b) 

as the spreading laws valid in the viscous-buoyancy stage for axisymmetric and two- 
dimensional spreading, where the multiplicative constant 1.5 is determined by experi- 
ment and the value of 0.94 follows from it. Like Fay, Hoult continues by considering 
surface-tension effects. 

Prior to  the work of Fay and Hoult, a comprehensive series of two-dimensional 
experiments had been performed by Keulegan (1957). Using a full-depth lock gate, 
he releasedfixed volumes of salty water, of specific gravities ranging between 1-005 and 
1.2 1, into fresh water in channels. Amongst other results, Keulegan reports numerous 
data of velocity of the front of the resulting gravity current as a function of distance. 
Differentiating ( l . 6 b )  with respect to time and eliminating t in favour of 1 from the 
resulting expression by use of (1 .6  b )  itself, we obtain the relationship 

u = 1*3(g'q)*Z-*, (1.9) 

with which Keulegan's results can be compared. There is little agreement, either 
quantitative or qualitative, as will be discussed further in 3 3. The only possible con- 
clusion is that in Keulegan's experiments a different physical process from the ones 
described above was operative and must be included if the experiments are to be 
understood. 

The aim of the present paper is to  point out the extra physics involved and to 
present a very simple theoretical model incorporating this physics. Keulegan's results 
are shown t o  agree well with our spreading relationships, as do results from additional 
experiments carried out by us to test the ideas further. 

The key point is that  the motion of the fluid surrounding the gravity current is 
dependent upon the fractional depth of the current 4 = h / H ,  where H is the depth of 
the surrounding fluid. We show that, until 4 becomes sufficiently small, this motion 
causes the current to propagate less rapidly than implied by (1.6). The influence 
of fractional depth on a gravity current of infinite horizontal extent has been dis- 
cussed theoretically by Benjamin and the influence on the Froude number condition 
a t  the head investigated experimentally by Simpson & Britter (1979) a5 indicated in 
figure 1.  Using these results and a simple model for the shape of a gravity current, we 



788 H.E. Huppert and J .  E.  Simpson 

0.0 1 0.05 0.1 0.5 1 .o 

FIGURE 1. The Froude number at the head of a gravity current as a function of the fractional 
depth: x , experimental results from Simpson & Britter (1979) and from this paper; -, 
(2.1), the analytic relationship used in this paper; ..., the theoretical expression obtained by 
Benjamin (1968). 

hlH 

obtain (2.6) and (2 .12)  as the speading relationships in what we call the slumping 
stage, that is the stage in which the dense fluid slumps and fractional depth effects are 
important. An inertia-buoyancy stage may then follow, as outlined by (1.6) or, as 
typified by Keulegan’s experiments, viscous effects may overcome inertial effects. 
The inertia-buoyancy stage as described by Fay and Hoult is then entirely absent. 

The model does not attempt to describe the flows in exact detail. In particular, the 
initial motion, during which the head of the current rapidly accelerates from rest to 
achieve the speed predicted by the model, is not included. Nevertheless, the model 
incorporates the major physical principles involved and its predictions agree well with 
the experimental data. 

Gravity currents propagating with large fractional depths occur frequently. For 
example, sea-breeze fronts often propagate under an atmospheric inversion, which 
acts as an effective lid and hence produces fractional depths of order & (Simpson, 
Miiford & Mansfield 1977). Sewage and pollutants are commonly pushed out by man 
into relatively shallow layers of fluid. A final example comes from mining practice, 
where explosive gas such as methane can escape and travel along the roof of a mine 
roadway and endanger life. 

2. Theoretical concepts 
(a)  Two-dimensional gravity currents 

A simple model, which can be used as a basis of comparison with Keulegan’s experi- 
mental results and our own to be presented in 9 3, is based on two assumptions. First, 
that the slumping takes place through a series of equal-area rectangles (see figures 9 
and 10, plates 1 and 2, and the discussion in 9 4). Second, that the Froude number at  the 
head is given by Fr = $#-+ (0.075 6 # < 1)) (2.1) 

p r  = 1-19 ($ 6 0-075), (2.2) 
when the gravity current is propagating over a solid surface. The relationships (2.1) 
and (2.2) based on the results from steady-state experiments reported by Simpson 
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& BritteF (1979)and from a few additional ones carried out by the present authors, is 
shown in figure 1. Also shown in figure 1 is Benjamin’s theoretical relationship 
obtained by modelling the dissipation a t  the gravity current interface by a loss of 
pressure head. Of course, we do not wish to claim that there is a discontinuityin 
the derivative of Fr against q5 a t  q5 = 0.075. We wish merely to model the fact that 
the variation of Pr with q5 for q5 less than 0.075 is very much less than that for 4 
greater than 0.075. The use of ( 2 . 1 )  leads to results in good agreement with the 
slumping stage, and use of (2 .2 )  with the inertia-buoyancy stage (if this occurs). As 
seen from figure 1, the relationship (2 .1 )  involves an extrapolation of the data 
between q5 = 0.075 and qi = 0.3 to beyond q5 = 0.3 ,  the largest value of q5 for which 
data can be obtained from steady-state gravity current experiments. The major 
justifications of using this particular extrapolation are its simplicity and that it leads 
to predictions in good agreement with the experiments of ourselves and Keulegan. 

The first assumption, that of equal areas, implies that 

h l =  q = h,l,, (2 .3 )  

where h, is the depth of the current before the release and I ,  is its length. Substituting 
(2 .3)  into (2.1) and ( 2 . 2 ) ,  we obtain 

Fr = l*i/(g‘q)* = &(q/lH)-* (0.075 < q/ZH < 1)  ( 2 . 4 ~ )  

= 1-19 (q/lH < 0.075).  (2 .4b )  

Integrating ( 2 . 4 ~ )  using the initial condition 

1 = 1, ( t  = O),  (2.5) 

we obtain I = [1i+&(g’3qH2)Jt]$ ( I ,  < 1 < Z, p/0*075H) (2 .6 )  

(2 .7 )  = [Z, + g(g’3qH2/z0)* t ]  [I  + O(g’3qH2t6/1;)+], 

where the slumping length 1, is the length of the gravity current when the fractional 
depth has been reduced to 0.075. Integrating (2 .4b )  using the initial condition 

1 = 1, [ t  = t, = y(zt - Zi)/(q’3qH2)6], (2.8) 

where the slumping time t, is evaluated by setting 1 = 1, in (2 .6 ) ,  we obtain 

I = [@+ 1*78(g’p)*(t-t,)]3 ( I ,  < I < I * )  (2 .9 )  

- 1*47(g’q)ftf (t > t ,),  (2.10) 

where 1, = ( ~ ~ g ‘ v - ~ ) +  is the length scale of the current when the viscous force first 
exceeds the inertia force, as derived by balancing (1 .6b )  and (2 .10) .  

We note that ( 2 . 7 )  indicates that our model predicts that for some time after its 
initiation the rate of advance of a gravity current of fractional depth greater than 
0.075 is a constant [and does not go like t-* as inferred from the inertia-buoyancy 
balance, cf. (1.6 b ) ] .  Further, as is shown in figure 2 and discussed further in the next 
section, the subsequent evolution of the current as predicted by (2 .6 )  does not depart 
much from the linear relationship ( 2 . 7 ) .  The existence of this approximately constant- 
velocity regime is well documented by our experiments and those of Reulegan (1957),  
as is shown in figure 5 to be considered further below. For larger times, the comparison 
of (2 .10 )  obtained by the simple arguments outlined above, with (1 .6b )  obtained by 
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solving the governing equations of motion and evaluating the multiplicative constant 
by experiment, is encouraging. It points to the underlying strength of dimensional 
analysis in simple models ! 

( b )  Axisymmetric gravity currents 

The same two assumptions used in the model of two-dimensional gravity currents can 
be used when considering axisymmetric currents. The equal-area assumption leads to 

nhR2 = Q = Tho R;, (2 .11)  

where R, is the initial radius of the current before release. The Froude-number 
relationships (2 .1 )  and (2 .2 )  are unaltered: on the length scale of the head an axisym- 
metric gravity current is locally two-dimensional. 

Proceeding as for the two-dimensional situation, we obtain the following relation- 
ships for a radial current propagating over a rigid surface 

R = [ R ~ + + n - ~ ( g ‘ 3 & H 2 ) * t ] ~  [R, < R < rs = (Q/0*075nH)f]  (2 .12)  

= [R, + + ~ - * ( g ’ ~ & H ~ / R i ) * t ]  [ 1 + O(g’3&H2t6/R:)3], (2.13) 

and R = [rf+2.37na(g’Q)*(t-t t ,)]* (r, < R < r * )  (2 .14)  

- 1.16(gf&)*t* ( t  $= ts ) ,  (2.15) 

where r, and r* are the radial equivalents of 1, and 1 *. 
We note again that for small times the rate of advance is a constant, and remains 

approximately so throughout the slumping regime. The agreement between ( 1 . 6 ~ )  
and (2.15) is seen to be satisfactory, though it should be recalled that Hoult’s experi- 
ments leading to ( 1 . 6 ~ )  were for a gravity current propagating over a free surface and 
that we are considering a gravity current propagating over a rigid surface. This will 
be discussed further in 8 4 .  

( c )  The viscous-buoyancy phase 

In  our experiments, and those of Keulegan, the current propagates over a solid 
boundary and the relationships derived by Fay and Hoult (for propagation under a 
free surface) are not valid when viscosity is important. The dominant viscous retarding 
force on the current is then the stress at  the solid boundary, ‘rather than. that a t  the 
interface between the current and the adjacent fluid. The continuity and momentum 
equations for a thin, two-dimensional gravity current of depth h(x ,  t )  can then be 
approximated by 

h, + (uh),  = 0, (2 .16)  

g’hh,+ v u / h  = 0, (2.17) 

where u ( x ,  t )  is the vertically averaged horizontal velocity and vu/h is the viscous 
stress per unit mass exerted on the current. Eliminating u from (2.16) and (2 .17) ,  we 
obtain 

vh,-g’(h3h,), = 0. (2.18) 

Together with the volume conservation equation, 

(2.19) 
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No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

14.9 14,9 1.00 
14.9 14.9 1.00 
14.9 14.9 1.00 
15.0 30.0 0.50 
15.1 30.0 0.50 
14.9 30.0 0.50 
15.0 44.0 0.34 
14.9 45.2 0.33 
15.0 44.9 0.33 
15.2 45.0 0.34 
14.9 14.9 1.00 
7.5 7.5 1.00 

29.8 29.8 1.00 
5.7 44.4 0.13 
5.7 44.6 0.13 

10.2 44.2 0.23 
7.3 7.3 1.00 

11.2 44.3 0.25 

39.0 
39.6 
39.4 
39.3 
39.3 
39.7 
39.1 
39.3 
39.2 

118.7 
118.2 
79.0 
20.2 
82.5 
39.1 
40.1 
39.0 
39.3 

581 
590 
587 
589 
593 
592 
587 
586 
588 

1800 
1760 
593 
602 
47 0 
223 
409 
285 
440 

9.1 
28-7 
54.6 
9.4 

28.7 
61.5 

9.4 
27.4 
64.8 
28.1 
29.5 
11.2 
11.2 
47.1 
87.6 
79-0 
13.6 
44.7 

520 
528 
525 
262 
264 
263 
178 
173 
175 
535 

1576 
1053 
269 
141 
67 

123 
520 
132 

112 
64.1 
46.2 
36.7 
21.2 
14.4 
19.1 
10.7 
7-1 

32.9 
189 
289 

37.1 
3.8 
1.3 
4.0 

6.0 
131 

482 
574 
627 
489 
571 
64 1 
481 
567 
643 

1271 
1258 
503 
509 
524 
336 
511 
307 
496 

TABLE 1. The parameters of the 18 two-dimensional experiments. 

145.3 
105.6 
87.7 

145.2 
106.0 
85.1 

144.8 
106.7 
83.6 

201.4 
195.8 
138.7 
139.9 
80.6 
44.0 
64-2 
86-3 
78.8 

(2.18) suggests the similarity solution 

‘I = [v/(g’q3)]txt-t .  

(2.20) 

(2.21) 

Substituting (2 .20)  and (2 .21)  into (2 .18) ,  taking the first integral of the result and 
evaluating the single constant of integration by using (2 .19) ,  we determine that 

1 = 1*41g’q3/v. (2.22) 

A similarity solution for the fluid above the current can be obtained, in a manner 
analogous to Hoult (1972),  but we do not need the results and will hence not present 
them here. We note, however, that (2 .22)  contains no parameters which need ex- 
perimental evaluation, in contrast to the case of a current propagating under a free 
surface. 

Repeating the above calculations for an axisymmetric current in the viscous- 
buoyancy phase, we obtain 

again without the necessity of experimental evaluation of any constants. 

R = 0.894(g’Q3/~)4 t* ,  (2 .23)  

3. Experimental confirmation 
(a) Two-dimensional 

The first series of our experiments was carried out in a Plexiglas channel 9.6m 
long, 27 em wide and 50 cm high. The channel was very kindly loaned to us by 
Professor M. S. Longuet-Higgins, FRS. A series of 18 experiments were carried out. 
The channel was filled with tap water to a depth h, and then a wooden gate was placed 
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t (9 
FIGURE 2 .  The length of the gravity current as a function of time for four two-dimensional ex- 
periments. (a )  x , experiment number 1 ; @ experiment number 2, ( b )  x , experiment number 9;  
@, experiment number 7. The solid curves ar0 (2.6) and (2.9). 

in the channel a t  a distance I ,  from one end. Household salt was added to  the water 
behind the gate until a suitable density was obtained. Further tap water was then 
added to both sides of the gate, if required, until the total depth of both sides was H .  
The gate was then quickly removed entirely from the system and the position of the 
front of the gravity current recorded a t  pre-set time intervals.? The parameters of 
each experiment are given in table 1.  Within reason, we tried to encompass as wide a 
range of initial conditions as possible. In particular, experiments 14 and 15 were 

or another and we should like to thank them collectively here. 
t Almost every fluid dynamicist in D.A.M.T.P. was involved in the timing of one experiment 
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A 
+ 

a A A  

0.1 
0.5 1 5 10 0.0 I 0.05 0.1 

tlt, 
FIGURE 3. The ratio of the measured length of the 18 two-dimensional gravity currents to the 

predicted length in the slumping phase as a function of t / ts.  

0.1 I I I I I  I I I 1  I I l l  I 
0.0 1 0.05 0.1 0.5 1 5 10 

tlt. 

FIGURE 4. The ratio of the measured length of the 18 two-dimensional gravity currents to 
(g'q)f t8 as a function of t/t,. The straight line included in the figure is (2.22), the relationship 
suggested for t $ t* if no mixing takes place. 

performed with small initial fractional depths to  confirm that the simple buoyancy- 
inertial relationship (1.6 b )  could be attained in our experimental configuration. 

Figure 2 presents the length of the gravity current during the early stages of four 
experiments and compares them .with the prediction of (2.6) and (2.9). The agreement 
is seen to be good for t less than approximately 0.5t,  E 0.5(q4/v3g'2)3. Beyond this 
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FIGURE 5. Keulegan's memured velocity of the nose of a two-dimensional gravity current as a 
function of its length. The solid curves, drawn for 1 > I", are our prediction, (3.2). (a )  X ,  

h, = H = 26.0cm, 1, = 188.0cm, g' = 191-7 cm 8-2, r* = 3409 cm; @, h, = H = 11*6cm, 
I ,  = 83.5 cm, g' = 59.6 cm s-2, z* = 908 cm. 1, = 188.0 cm, 
9' = 114.2 cms-*, x* = 3166cm; @, h, = H = 11.6cm, I ,  = 166.5cm, g' = 37.0cm8-*, 
Z* = 1388cm. 

( b )  x , h, = H = 26.0 cm, 

value viscous effects are important and the experimental results diverge from the 
inviscid predictions. This divergence is taken up further in figure 4 and the discussion 
pertaining to it. As is evident, there is also fair agreement between the results and the 
linear relationship 

1 = I ,  + 4(g'3qH2/Zo)*t. (3.1) 

Figure 3 presents the measured values of Z/[Zi + &(g'3qH2)it]G plotted as a function 
of t l t ,  for all experiments. According to the theory developed, the curves should have 
a constant value of 1.0 until t = t,, whereafter they should gradually decrease. This 
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ho- H Ro Q g’ R, t ,  R, t* 
No. (cm) (cm) (cm3) (cm s-~) (cm) (8) (cm) (9) 

1 15.0 70.0 
2 16.5 55.0 
3 17.0 55.0 
4 17.0 55.0 
5 18.0 26.5 
6 18.0 26.5 
7 16.0 54.0 
8 12.0 54.5 
9 15.2 103.0 

231 000 
157 000 
162 000 
162000 
397 00 
39 700 

147 000 
112000 
507 000 

10.0 256 39.6 448 132.1 0 
43.0 201 14.3 431 71.5 c] 
13.7 201 25.0 397 105.6 0 
7.3 201 34.3 376 130.6 .A 

11.5 97 12.8 217 70.2 # 
39.4 97 6.9 241 46.5 
21.0 197 20.4 395 88.7 X 
12.6 199 30.8 338 96.3 x 
13.6 376 49.6 638 154.9 + 

TABLE 2. The parameters of the nine axisymmetric experiments. Note that Q = nR:ho and, 
because the experiments were carried out in a 12’ sector, Q is thirty times the actual amount of 
fluid in the gravity current. 

is seen to be the case, except for two experiments (numbers 12 and 17) for which 
viscous effects become important before the slumping stage is completed. 

Figure 4 presents the measured values of l/[(g‘q)*tg], cf. (Z.lO),plotted as a function 
of t/t,. These values would have a constant value 1.5 for small t / t ,  were the gravity 
current to be in the inertia-buoyancy range throughout this time (as in Hoult’s 
experiments). Instead, they gradually decrease to this value and then commence to 
decrease again around 0-5t,. It would thus appear that viscous forces overwhelm 
inertia forces at  this point, as has been documented previously by Hoult and others. 

Also plotted in figure 4 is (2.22), the predicted spreading relationship when the 
current is in the viscous-buoyancy phase. The results of our experiments are seen to 
conform well to this relationship. 

From his by now classical experiments, Keulegan (1957) reports the values of the 
velocity, u, of the front of the gravity current as a function of its length. Differentiating 
(2.6) and then eliminating t in favour of 1, we obtain 

u = *(9’3qH”4 z-* (3.2) 

as the appropriate relationship between u and 1 in the slumping phase. Figure 5 
presents Keulegan’s original data (rather than his hand-drawn interpolated curves) 
and the relationship (3.2) for four experiments.? The agreement is seen to be good for 
distances less than approximately O - ~ X , .  Beyond this point viscous effects become 
important. All of Keulegan’s reported experiments are akin to these in being in the 
parametric range where viscous effects become important before the slumping phase 
is completed. The figure also indicates, as was confirmed on comparing the data from 
many other of Keulegan’s experiments with (3.2), that experiments with relatively 
small values of g‘ tend to agree better with (3.2) than those with larger values. Also 
the decrease in velocity is more abrupt for the experiments with smaller values of 9‘. 

f The value of g’ has been consistently calculated using the expression following ( l . l ) ,  
rather than that used by Keulegan, wherein i (po+p,)  replaces p1 in the denominator. 
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t (s) 

FIGURE 6. The length of a gravity current as a function of time for four axisymmetric ex- 
periments. (a) x , experiment number 1 ; @, experiment number 4. ( b )  x , experiment number 
3; @ experiment number 5. 
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FIGURE 7.  The ratio of the measured length of the nine axisymmetric gravity currents 

to the predicted length in the slumping phase as a function of t/t,. 
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FIQURE 8. The ratio of the measured length of the nine axisymmetric gravity currents 

to ( g ' ~ ) t  t4 as a function of t/t,. 

(b  ) Axis ymmetric 

Our experiments were conducted in a sector of 12" with a length of 3.5 m and a height 
of 18 cm. The procedure was as outlined above for the two-dimensional experiments. 
Because the influence of varying the initial fractional depth had already been fully 
investigated in the two-dimensional channel, we carried out all the axisymmetric experi- 
ments with an initial fractional depth of 1.0 (h,, = H ) .  Table 2 lists the parameters 
of all the experiments. 

We plot the results of four typical experiments in figure 6 and compare these with 
(2.12) and (2.14). The agreement is seen to be good. In  figure 7 we plot the measured 
values of R/[Rt +@r-*(gt3&H2)*t]f as a function of t/ts. The vadues are seen to cluster 
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around 1.0 for t / t s  < 1, although not as closely as for the two-dimensional results in 
figure 3. 

In  figure 8 we present the measured values of rl(g'Qt2)' as a function of t / t , .  The 
relatively constant value for t between approximately 0.5t, and t ,  is evident, in 
agreement with (2 .15) .  The length of the sector in which we conducted our experiment 
was, unfortunately, not sufficient for viscous effects to become appreciable. Thus no 
comparison with (2 .23)  is possible. 

4. Discussion 
The analysis we have presented rests on two simple ideas: that  a gravity current 

slumps through a series of two-dimensional rectangles or axisymmetric disks of equal 
volume and that the collapse is controlled a t  the head and can be described by a 
steady-state Froude number relationship which is a function of the fractional depth. 
Using these ideas, we are able to predict the position of the front of the current 
as a function of time, which agrees well with our experiments and those of Keulegan 
(1957).  

The appropriateness of the first assumption, that the depth of the current does not 
vary along its length, can be judged from figures 9 and 10. Figure 9 (plate l),  presents 
four shadowgraph views of a two-dimensional slumping current. In  the first view, the 
lighter (undyed) fluid has not yet reached the back wall and there is a clear variation 
in depth of the intruding gravity current. The depth of the current is tending towards 
uniformity in the second view and is satisfyingly uniform in the third view. In  the 
fourth view, the head of the current is beyond the picture but, except for a depression 
near the end wall, the current is of fairly constant depth. 

Similar remarks can be made about the three views of the axisymmetric slumping 
current in figure 10 (plate 2 ) .  The depression near the apex is possibly larger than in 
the two-dimensional case, but its effect will be less because of the geometric predomi- 
nance of large radius. 

A set of two-dimensional experiments, similar to those discussed in 5 3 (a), has been 
performed for a gravity current flowing out along a free surface. The results are some- 
what unsatisfactory, and this is why they will not be discussed a t  length here, because 
of the effect of the different surface tension of the two fluids. While the fractional 
difference is only a few per cent, it appeared on the scale of our experiments to have a 
considerable influence on the propagation speed of the current. We ascertained this 
by carrying out a series of experiments with fluids containing different solutes, and 
hence different surface tensions, keeping all other parameters constant. However, 
guided by the experimental results for gravity current heads under a free surface 
contained in Britter & Simpson (1978) ,  we anticipate that multiplying the right-hand 
side of (2.1) by 1.3 will lead, using the approach of 5 2,  to satisfactory predictions. We 
hope to take up this matter and that of the influence of surface tension in a subsequent 
paper. 

As mentioned previously, mixing between the two fluids has not been considered. 
The slumping phase occurs over a sufficiently short time scale that the effects of mixing 
are likely to be of secondary importance. During the subsequent inertial phase, if 
this occurs, the effects of mixing can increase, though its influence on the length of the 
gravity current is kept small because the density, as expressed in g', appears in the 
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combination g‘Q or g’q which remains constant. The effects of mixing during the 
viscous-buoyancy phase await investigation. 

We wish to thank Professor M. S. Longuet-Higgins for allowing us to use his 
Plexiglas channel, Dr Joyce Wheeler for carrying out most of the data reduction 
associated with this work and preparing the figures and R. E. Britter, P. F. Linden 
and J. S. Turner for critical comments on a first draft of this paper. The research has 
been supported by grants from the Ministry of Defence, Procurement Executive (to 
HEH) and from the Science Research Council and the Central Electricity Generating 
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FIGURE 9. A two-dimensional gravity current with h, = H = 10 cin, I, = 30 cm, gf = 
11.3cm s - ~  at  approximately 4.4, 6.8, 9.7 and 17.5 s after release. The thin vertical lines are 
at 10 cm intervals and the end wall can just be seen on the far left. The gravity current is in the 
slumping phase in each view. 
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Plate 2 

FIGXJRZ 10. An axispimetric gravity current with h0 = H = 17 ern, R, = 25 cm, 9' = 3 2 . 3 ~ r n s - ~  
a t  approximately 2 . 8 ,  5.3 and 7.7 s after release. The apex of tlic sector can just be seen to the 
far left. The gravity current is in the slumping phase in tlia first two views arid in the inert,ia- 
buoyarxy phase in the third. 


