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The viscous gravity current that results when fluid flows along a rigid horizontal 
surface below fluid of lesser density is analysed using a lubrication-theory approxi- 
mation. It is shown that the effect on the gravity current of the motion in the upper 
fluid can be expressed as a condition of zero shear on the unknown upper surface of 
the gravity current. With the supposition that the volume of heavy fluid increases 
with time like F, where a is a constant, a similarity solution to the governing nonlinear 
partial differential equations is obtained, which describes the shape and rate of 
propagation of the current. The viscous theory is shown to be valid for t & t, when 
a -c a, and for t -4 t ,  when a > a,, where t,  is the transition time at  which the inertial 
and viscous forces are equal, with a, = $ for a two-dimensional current and a, = 3 
for an axisymmetric current. The solutions confirm the functional forms for the 
spreading relationships determined for a = 1 in the preceding paper by Didden & 
Maxworthy (1982), as well as evaluating the multiplicative factors appearing in the 
relationships. The relationships compare very well with experimental measurements 
of the axisymmetric spreading of silicone oils into air for a = 0 and 1. There is also 
very good agreement between the theoretical predictions and the measurements of 
the axisymmetric spreading of salt water into fresh water reported by Didden & 
Maxworthy and by Britter (1979). The predicted multiplicative constant is within 
10 Yo of that measured by Didden & Maxworthy for the spreading of salt water into 
fresh water in a channel. 

1. Introduction 
Open the front door of a centrally-heated house and a gravity current of cold air 

immediately flows in. The essential feature of such gravity currents is that fluid of 
one density flows primarily horizontally into fluid of a different density and the 
motion is driven by gravitational forces. Gravity currents originate in many different 
situations and have recently been subjected to extensive investigation. Interest in 
these flows spans the fields of geophysics, industrial engineering and geology, as is 
evident from the examples of thunderstorm outflows, polluted discharges into rivers 
or lakes, spreading lava domes and pyroclastic flows from volcanic explosions. 
Further examples are cited by Simpson (1982) in a recent review of the field. 

Most investigators have studied high-Reynolds-number gravity currents, for which 
the motion is governed by a balance between buoyancy and inertial forces. In the 
preceding paper, Didden & Maxworthy ( 1982) consider low-Reynolds-number 
gravity currents propagating over a rigid horizontal surface, for which the motion 
is governed by a balance between buoyancy and viscous forces. Didden & Maxworthy 
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studied the rate of propagation of the front of two-dimensional and axisymmetric 
gravity currents due to a constant inflow rate of new fluid into fluid of much greater 
depth. From order-of-magnitude evaluations of the buoyancy forces, inertial forces 
and viscous forces, they obtained an estimate of the time, t ,  say, beyond which viscous 
forces overwhelm inertial forces. They also determined for t + t ,  dimensional 
relationships between the position of the front as a function of time and the external 
parameters. In a series of experiments they verified the functional forms of the 
position-versus-time relationships and evaluated the constants of proportionality 
from their experimental measurements. 

Previous studies of low-Reynolds-number gravity currents include those by Fay 
(1969) and Hoult (1972), who analysed the release of a fixed volume of relatively light 
fluid flowing under a free surface. The viscous forces in this case are quite different 
to those relevant for the case of a relatively heavy current flowing along a rigid 
bottom. One can hence anticipate that the spreading relationships and shapes of the 
currents in the two cases will be entirely different. A pertinent result for viscous 
gravity currents propagating above a horizontal surface is briefly presented by 
Britter (1979). Britter performed a series of experiments using an axisymmetric 
geometry, in which a fixed flux of salt water was released into a very much deeper 
layer of fresh water. The experiments were designed mainly to investigate large- 
Reynolds-number gravity currents. However, in the last appendix of his paper, 
Britter reports data on the spreading relationships valid for times very much longer 
than the transition times t , .  We compare our thebretically determined results with 
these experimental ones in 54. 

The primary aim of this paper is to determine entirely from theoretical consider- 
ations the spreading relationships for and shapes of two-dimensional and axisym- 
metric viscous gravity currents propagating ov& rigid horizontal surfaces. As 
sketched in figure 1, we consider fluid of density p intruding into fluid of density p - Ap 
(Ap > 0) and depth H so that the volume at  any time is proportional to P, where 
a is some non-negative constant. Thus a = 0 corresponds to the release of a constant 
volume of fluid and a = 1 to a constant flux. In  developing the theory we assume 
that the two fluids are not of greatly different viscosities and neglect the effects of 
mixing between them. We also neglect the effects of surface tension a t  the interface 
and a t  the front, or contact line. This requires that the Bond number B = pg’aZ/T B 1,  
where g’ is the reduced gravity, a the length, or radius, of the current and T the surface 
tension. 

Only viscous and buoyancy effects are taken into consideration, so the theory can 
only be expected to be valid when the viscous forces are much larger than the inertial 
forces. This occurs when 01 < a, for t + t , ,  where t ,  as a function of a and the other 
external parameters is estimated in appendix A, (equation (A7)) and a, = t for a 
two-dimensional current and ac = 3 for an axisymmetric current. If a = a,, the 
viscous forces greatly exceed the inertial forces, and do so for all time, provided that 
the Julian number J = v3g’2/q4 9 1 for two-dimensional currents or that vg‘/Q % 1 
for axisymmetric currents, where g or Q is the constant of proportionality between 
the volume of the current and p. If the inequalities are reversed the current 
propagates under the influence of inertial forces. For a > a, the viscous forces 
initially dominate the inertial forces and so the viscous theory will be valid only for 
t 4 t ,  ; thereafter the influence of the inertial forces becomes important. 

In all cases, except possibly a t  the initiation of the current, its length will greatly 
exceed its thickness, which allows for the boundary-layer approximation common to 
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lubrication theory to be used. We argue in $2, which presents the theoretical 
development, that the effect on the gravity current of the motion in the upper fluid 
can be entirely taken into account by applying the boundary condition of zero stress 
at  the upper surface of the current. The current is thus identical with one propagating 
with a free surface beneath fluid of negligible inertia. The resulting nonlinear partial 
differential equations have similarity solutions which yield the shape and rate of 
propagation of the current. 

For a = 1, the only case considered by Didden & Maxworthy, the calculated 
functional forms of the position of the front of the current as a function of time are 
the same as evaluated by them. Further, our calculated value for the constant of 
proportionality is in excellent agreement with those presented for axisymmetric 
currents by Britter (1979) and by Didden & Maxworthy, but 10 % higher than that 
presented by Didden & Maxworthy for two-dimensional currents. We discuss in more 
detail below a plausible explanation for this discrepancy which incorporates an 
estimate of the effects of drag at the sidewalls in the experiments. 

Following the derivation and solution of the equations in 92, we present the results 
of a series of experiments with viscous silicone oils spreading axisymmetrically into 
air from either a fixed volume or fixed flux release. We find that there is extremely 
good agreement between our theoretically calculated and experimentally measured 
rate of spreading for both types of release. Accurate measurements of the thickness 
at  the centre of the current for a fixed volume release are difficult to make, but the 
results of such measurements are shown to be in quite good agreement with the 
theory. 

2. Theory 
2.1. Two-dimensional currents 

Consider a current of density p intruding into a fluid of density p - Ap and depth H .  
Since the vertical velocities are negligibly small, the pressure is hydrostatic and, with 
the co-ordinate system sketched in figure 1, the pressure in the gravity current is given 

P = Po + (P - AP) S ( H -  h)  + Pdh- 4, (2.1) 
by 

where po  is the (constant) pressure at z = H. The balance between the pressure 
gradient and the viscous forces is thus expressed by 

where 

and horizontal derivatives have been neglected in comparison with vertical derivatives 
on the right-hand side of (2.2) because the length of the current is very much greater 
than its thickness. A t  the base of the current 

(2.4) u(z,  0,  t )  = 0, 

and at the top of the current the shear stress is continuous and thus 

aua 
p- az = p a -  aZ ( z  = h),  

au 

where the subscript a refers to quantities in the ambient fluid. The motion in this 
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FIQURE 1 .  A sketch of the flow field and co-ordinate system. 

fluid is due to viscous diffusion, and hence the ratio of the term on the right-hand 
side of (2.5) to that on the left is given, in order of magnitude, by h,/(v,t)a, where 
h, is a representative thickness of the current. When the current is propagating under 
a buoyancy-viscous balance this ratio, as calculated in appendix B, is very much less 
than unity. The shear stress at  the top of the current is hence very much less than 
its value within the current, and thus (2 .5)  can be approximated as 

au 
a2 
- (2, h, t )  = 0 .  

The solution of (2 .2 ) ,  (2 .4 )  and (2 .6 )  is 

~ ( 2 h  - 2 ) .  
1 g'ah 

u(z, 2 ,  t )  = ---- 
2 v ax 

Exactly the same velocity profile occurs if the motion in the ambient fluid is 
neglected, and a t  the top of the current the pressure is constant and the shear stress 
is zero. The flow is thus identical with that produced by a current spreading into fluid 
of negligible inertia. The physical explanation of this result is that the viscous 
dissipation in the current dominates over the dissipation in the fluid above it. A 
further relation between the unknowns u and h is 

-+-(Johua2) ah a = 0, 
at ax 

which is the depth-integrated version of the equation of continuity. Substituting (2 .7 )  
into ( 2 . 8 ) ,  we obtain 

(2.9) __--_ 
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FIGURE 2. The shape of a two-dimensional viscous gravity current for a = 0, 1 and 2. The dashed 
lines represent the approximate shapes (2.15). 

as the governing nonlinear partial differential equation for h(z, t). I t  is the global 
continuity equation 

(2.10) 

that completes the mathematical specification of the problem. 
While numerical solutions to (2.9) and (2.10) for any given initial conditions could 

be obtained, it is much more fruitful to determine the similarity solutions of (2.9) 
and (2.10), to which all solutions with sufficiently regular initial conditions will tend 
except possibly at x = 0. The similarity solution can be expressed in terms of the 
similarity variable ‘I = ()g’q3/”)txt-(sa+l)/s (2.11) 
and the solution form 

h(z,  t )  = 7$(3q2V/g’)’ t(2a-1)’64(7/?)N), (2.12) 

where qN is the value of 7 at x = zN(t) .  Substituting (2.11) and (2.12) into (2.9) and 
(2.10), we find that $(y), where y = 7/qN, satisfies 

($34’)’+)(3a+1)y4’-)(2a-1)# = 0, (2.13) 
and that 

‘IN = (j: $ d Y ) i *  

Incorporating the condition that #(1) = 0 in (2.13), we find that about y = 1 

(2.14) 

which is sufficient to specify a unique solution of (2.13). 
For arbitrary a the solution can only be obtained by numerically integrating (2.13) 

inward from y = 1 and using (2.15) as a starting condition. However, for a = 0 the 
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FIGURE 3. The values of the constants qN and tN as functions of a. 

solution of (2.13) and (2.14) can be obtained analytically, and is 

(2.16) 

(2.17) 

as first determined by Pattle (1959). The existence of this analytic solution is 
convenient as it allows for a check to  be made on the numerical integration schemes 
used to solve (2.13) and (2.14). Solutions of (2.13) for a = 0, 1 and 2 are presented 
in figure 2, along with the first term in the expansion of the solution about y = 1 as 
given in (2.15). These approximate solutions are seen to  agree quite well with the exact 
solutions. Note that, since at any fixed x the mass flux is linearly proportional to  the 
surface slope ah/&, except for a = 0 the slope of the exact solutions at z = 0 is non-zero, 
as is consistent with the fact that fluid is being continually introduced here. I n  figure 
3 a graph of qN as a function of a is presented, from which the length of the current 

can be determined. 
Note that there are no undetermined parameters in the solution, in contrast to the 

case of a relatively light current propagating under a free surface, analysed 
quantitatively by Hoult (1972). Hoult gives a clear description of the inadequacies 
of his approximations and an explanation of why he needed to resort to an 
experimental determination in order to  complete the calculation. The important 
difference between the two studies is that  in Hoult’s case the motion of, and 
dissipation in, the ambient fluid determines the rate of propagation of the current. 
This is in contrast to  our case, where the motion in the ambient fluid may be 
neglected. 

2.2. Axisymmetric currents 

The radial spreading of an axisymmetric current can be analysed in a similar manner 
to the spreading of a two-dimensional current. With a co-ordinate system as in figure 1 
except that  the radial co-ordinate r replaces x ,  the velocity profile in the current is 

1 g’ah 
2 v ar 

u(r ,  z, t )  = ----2(2h-z). (2.19) 
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FIGURE 4. The shape of an axisymmetric viscous gravity current for a = 0, 1 and 2. The 
dashed lines represent the approximate shapes (2.27). 

The equation of continuity on a vertical sheet of radius r is 

Substituting (2.19) into (2.20), we obtain 

to which must be added the global continuity equation 

A similarity solution of (2.21) and (2.22) can be obtained in terms of 

5 = (fg1Q3/V)-Brt-(3i++1)/8 
and 

h(r> t ,  = @“(3&V/g’)a $([/EN), 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

where EN is the value of [ at r = rN(t). Substituting (2.23) and (2.24) into (2.21) and 
(2.22), we find that $(z ) ,  where z = c/&, satisfies 

(z*3$’)’+9(3a+ 1) .22$’--f(a-- 1) z* = 0 (2.25) 

(2.26) 
and that 

About z = 1, the solution is 

which is used as a starting condition in determining the numerical solution of (2.25). 
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(a) 
Q v 

(cm3) (cmz s?) c (0894) p (0125) k (1.0) q (-025) 

387 13.2 0873+0001 0125&0002 0916k0027 -0222+0009 * 
933 13.2 0860f0001 0 1 2 4 ~ 0 0 0 5  1.314f0083 -0222f0036 + 
406 13.2 0900f0000 0120f0002 0704f0077 -0183f0025 x 
338 1110 0887+0000 0122+0001 0741f0008 -0196+0006 0 
220 132 0877+0004 0124f0002 A 

(b )  
Q v 

(cm3 s-l) (cmz sP1) K (0.715) r (05) 

0223 132 0691+0010 0501f0003 x 
00493 132 0.692 f 0003 0498 & 0 0 0 1  + 

TABLE 1 .  The parameters and results of all the experiments. In (a) rN = e(gQ3/3v)'tP, 
h(0, t )  = k(3@/4ng)!tq; in ( b )  rN = K(gQ3/3v$tr. The numbers in brackets in the column headings 
are the theoretical values of the parameters 

For a = 0 the following analytical solution can be obtained (Pattle, 1959): 

(2.28) 

f lN = (2'0/34n3)Q = 0894. . . . (2.29) 

Solutions for a = 0, 1 and 2 are presented in figure 4 along with the first term in the 
expansion about z = 1 as given in (2.27). Note that the exact solutions are singular 
at the origin unless a = 0, reflecting the fact that fluid is being introduced at a non-zero 
rate at r = 0. Except in the vicinity of the origin the approximate solutions are seen 
to agree well with the exact ones. Figure 3 presents a graph of EN as a function of 
a, and the radial extent of the current is given by 

R G rN(t) = g,(;g'Q3/u)Bt(3a+1)/8.  (2.30) 

3. Experiments 
Before comparing our results with those of Britter (1979) and bidden & Maxworthy 

(1982), we present the results'of some of our own experiments. We conducted a series 
of experiments using two silicone oils, with viscosities 13.2 and 1110 cm2 s-l. These 
values were determined by dropping a series of different size ball bearings in the oil 
contained in a measuring cylinder and recording the terminal velocities. This 
approach led to errors of less than 1 Yo in determining the coefficients of viscosity. 
The experiments were designed to examine a new theory for the spreading of volcanic 
lava domes by Huppert et al. (1982) and further details of the experiments and 
geological applications can be found in that paper. The oil spread axisymmetrically 
on a horizontal sheet of Perspex, beneath which there was a mm ruled sheet of graph 
paper, which allowed the radius of the current as a function of time to be monitored. 

Five experiments with a fixed volume release (a = 0) were conducted. In  the first 
two, at the start of each experiment the oil was poured near to the central point of 
the Perspex. In the next two, the oil was initially held in a cylinder of radius 4 5  cm, 
which was raised at the start of the experiment. In the last experiment the oil was 
initially confined in a Perspex cylinder with internal dimension of h = +(7 - T ) ~ .  The 
value of &, documented for each experiment in table 1, represents the total amount 
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FIQURE 5. A laboratory gravity current due to 400 cm3 of silicone oil with v = 132 om2 s-', 
spreading axisymmetrically into air approximately 12 min after release. 

of oil released, after allowing, if necessary, for any oil remaining on the sides of the 
releasing cylinders. As will be seen from the data, the mode of initiation made no 
difference after a few seconds from release. The height of the oil at the central point 
was measured by lowering a micrometer onto the surface, though it was difficult to 
judge when the micrometer top was just on the surface. Additionally, there frequently 
appeared to be some electrostatic attraction. between the micrometer tip and the 
surface of the oil which resulted in a series of stationary concentric ripples. 

Table 1 lists the conditions of each experiment and the best-fit parameters for the 
results, as defined in the caption. A photograph of a typical current is reproduced 
in figure 5.  Figure 6 presents the results of all five experiments. With the radial extent 
of the current normalized by (gQ3/3v)Q, as suggested by (2.30), the data are seen to 
fall together on a universal curve. The best-fit power law through the data is 

(3.1) 

(3 .2)  

The data on the height of the current at the centre is more scattered - owing to the 
difficulty of making the measurements - though when normalized by (3v&/4ng)f, as 
suggested by (2.24), (2.28) and (2.29) they fall together reasonably well. The best-fit 
power law through the data is 

rN = (0.887 +0002)  (gQ3/3v)4 tolzz*oooz 

TN = 0894 (g&3/3v)Q ty125. 

which is in good agreement with the theoretical relationship 

h(0, t )  = (094 + 0 0 4 )  (3v&/4mg)f t-ozz*ool, (3 .3)  

h(0, t )  = (3v&/4nq)ft-oz5. (3.4) 

in reasonable agreement with the theoretical relationship 

Two experiments with a constant flux release (a = 1) were conducted. In the first 
the oil was released from a burette holding approximately 600 cm3 maintained at a 
constant head and in the second from an LKB 12000 VarioPerspex pump. The 
conditions of both experiments and the best-fit parameters for the results are listed 
in table 1. Figure 7 presents a plot of the data. The best-fit power law is 

(3.5) 

(3.6) 

rN = (0694 +0004)  (g&3/3v)4 to4*@*ooo1, 

rN = 0 7  1 5(g&3/3~) i  to5. 

to be compared with the theoretical relationship 
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4. Discussion 
Section 3 described the close agreement between our theoretical and experimental 

results for the axisymmetric spreading of oil into air. The comparison between our 
theoretical results and the experimental ones presented by Didden & Maxworthy 
(1982) for the axisymmetric spreading of salt water into fresh water is also very good. 
The theoretical spreading relationship, (2.30), predicts that 

rN = 0623 ( g ' Q 3 / ~ ) ; d .  (4.1) 

FIGURE 6. (a) Experimental values of (3v/q&")BrN as a function of time for the axisymmetric 
spreading of constant volumes of silicone oils into air. The straight line is the best-fit power law 
(3.1). ( b )  Experimental values of (4mq/3v&)fh(O,t) as a function of time for the axisymrnetric 
spreading of constant volumes of silicone oils into air. The straight line is the best-fit power law 
(3.3). 



Propagation of viscous gravity currents 53 

2.0 

z 
2: 
g 1.0 
a 
3 

0.5 

10 50 102 5x102 103 S X 1 0 3  10‘ 5 x  104 

t (s) 

FICXJRE 7. Experimental values of (3v/gQ3)k rN as a function of time for the axisymmetric spreading 
of silicone oils into air at constant efflux rates. The straight line is the best-fit power law (3.5). 

This functional form is mirrored in the experimental measurements and the multi- 
plicative constant is close to the measured value of 0-60 & 0.02. 

The comparison between the theoretical and experimental results for the spreading 
of salt water into fresh water in a wide channel is only fair. The theoretical prediction 
for entirely two-dimensional spreading is that 

(4.2) 

This functional form is mirrored in the experimental results, but the multiplicative 
constant differs somewhat from the measured value of 073 f: 003. Given the close 
agreement in the previously cited experiments, the disagreement in this case must 
be due to an effect not present in the axisymmetric situation. The additional drag 
at  the sidewalls of the experiment seems the only possible effect. I ts  relative 
importance will depend on the ratio, say A, of channel width to current height. Didden 
& Maxworthy estimate the sidewall effects to reduce the multiplicative constant by 
up to 7 % - almost sufficient to bring the experimental results in agreement with the 
theoretical predictions - but no systematic variation in the multiplicative constant 
was found with A. 

xN = 0.804 (g’q3/u)i &. 

The similarity between our theoretically determined relationship (4.1 ) and 

TN = (0.67 & 0.07) ( g ’ Q 3 / V ) Q  d (4.3) 

determined experimentally by Britter (1979) is particularly pleasing. Britter chose 
some of the values of g’ and Q for his experiments of salt water propagating 
axisymmetrically into fresh water so that the transition times were as long as feasible. 
It thus appears from his data that even though a gravity current propagates through 
a lengthy buoyancy-inertial phase, once viscous effects become important after 
approximately 0*4t, the radius-time relationship quickly approaches that given by 
a buoyancy-viscous balance. 

From a theoretical viewpoint, one of the most surprising results of this paper is 
that conditions at  the front of the current play no role in determining its motion or 
shape. Indeed, the lubrication-theory profiles (2.7) and (2.19), which represent 
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parallel flow, are totally incorrect at the front. Yet, by using them, solutions to the 
governing equations can be obtained without invoking any further conditions at the 
front. (The relationships (2.15) and (2.27), used to commence the integration of the 
differential equations, are obtained from them and are not an externally imposed 
condition.) 

This lack of influence of the front will be true only if the Reynolds number is low 
and the Bond number is high. High-Reynolds-number gravity currents are totally 
controlled by conditions at the front, and many theoretical and experimental studies 
have been devoted almost entirely to determining the controlling condition, or Froude 
number, at the front (see, e.g. Benjamin 1968; Britter t Simpson 1978; Huppert & 
Simpson 1980). The front of a surface-tension-dominated (low-Bond-number) gravity 
current also plays an essential role in determining its spreading rate, as documented 
for example by Greenspan (1978) and Hocking (1981). 

However, while our approach has been successful in predicting the overall shape - as 
evidenced by the experimental measurements of height presented in $3 - it should 
not be thought that the vertical front common to all the solutions is realistic. 
Contact-line effects will play a role in determining the exact shape at the front and 
the experiments showed clearly the curling over at the front, as evident in figure 5. 

Another somewhat surprising result is the singularity at a = a, and the changeover 
in behaviour at this point. The evolution for a < a, from a buoyancy-inertial balance 
to a buoyancy-viscous balance is in accord with previous experience. As indicated 
by the expressions for the inertial and viscous forces and their ratio presented in table 
2, for a < a, the viscous forces increase monotonically with time until they exceed 
the inertial forces (which may have been either increasing or decreasing monotonically 
with time) at t = t , .  Expressed in an alternative way, the ratio of inertial to viscous 
forces for a < a, is a monotonically decreasing function of time. 

When a > a, the rate at which fluid is introduced is initially sufficiently small that 
inertial forces are comparatively low and viscous forces dominate. With increasing 
time, the volume flux increases and the inertial forces increase monotonically at  a 
more rapid rate than the viscous forces (which also increase monotonically) so that 
beyond t ,  the inertial forces dominate. Alternatively, the ratio of inertial to viscous 
forces for a > a, is a monotonically increasing function of time. 

For a = a, both inertial and viscous forces increase with time at the same rate. 
Thus the gravity current propagates under the same balance of forces for all time, 
and there is no transition region. It would be fun to conduct some experiments around 
and beyond a = a, to confirm (or possibly invalidate) the predictions in this regime. 

It is a pleasure to thank Tony Maxworthy and Steve Sparks for a number of 
stimulating conversations, Rex Britter and Jim Rottman for very helpful readings 
of an earlier version of the paper, and Joyce Wheeler for assistance with performing 
the experiments, analysing the data and preparing the figures for publication. The 
research was supported by a grant from the Natural Environment Research Council. 

Notes added in proof. (i) I am grateful to Professor G. I. Barenblatt, who has drawn 
my attention to the fact that the similarity solutions obtained for (2.9), (2.10) and 
(2.21), (2.22) can be derived from similarity solutions he discussed in IIpaKnawarr 
MaTeMa-raKa EI MexaHaKavol. 16, 1952, pp. 67-78 and pp. 679-698. (ii) The pleasure 
in carrying out the experiments suggested in the last sentence of $4 has already been 
enjoyed by Tony Maxworthy, who finds that the predictions of the paper concerning 
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the form of motion about a = a, to be substantiated. In  particular, his two- 
dimensional experiments indicate that there is a transition at a, = : with a transition 
Julian number at ac of approximately 7. The work is currently being considered for 
publication by this Journal. 

Appendix A 
Using the arguments put forward by Didden & Maxworthy (1982), we determine 

in this appendix relationships for the transition time t ,  when inertia forces and viscous 
forces are comparable. 

The prescribed input into the current requires that 

ha L - qt" for two-dimensional spreading, (A 1 4  

ha R2 - Qt" for axisymmetric spreading, (A 1 b )  

where h, is a representative thickness of the current of length L = xN(t) or radius 
R = rN( t )  and - implies an order-of-magnitude relationship. The total buoyancy 
force is given by 

l$ - pg'hiw - (pg'q2w/L2)t2a for two-dimensional spreading (A 2a) - pg'h: R - (pg'Q2/Rs) t2a for axisymmetric spreading, 

4 - pU2h, w - pqLwtol-2 for two-dimensional spreading 

(A 2b) 

(A 3a) 

- pU2h, R - ~ Q R t o l - ~  for axisymmetric spreading, (A 3b) 

where w is the width of the two-dimensional current. The inertial force is given by 

where U - L/t or R / t  is a representative velocity of the current. The viscous drag 
along the bottom of the current is given by 

F, - pULw/ho - pq-'L3wt-"-' for two-dimensional spreading (A 4a) 

- p UR2/h, - pQ-1R5t-a-1 for axisymmetric spreading. (A 4 b )  

Equating ( A 2 )  and (A3) ,  we find that when the current propagates under a 
buoyancy-inertial balance 

L - (g'q)i t (a+2) /3  for two-dimensional spreading, (A 5a)  

R - (g'Q)a t ( a + 2 ) / 4  for axisymmetric spreading. (A 5 b )  

When propagating under a buoyancy-viscous balance, as described by either (2.18) 
or (2.30), the ratio of the inertial forces to the viscous forces is given by 

F,/F, - ( ~ ~ / q ' ~ v ~ ) i  t (4a -7 ) /5  for two-dimensional spreading (A 6 a )  - (Q/g'u)i t (a -3 ) /2  for axisymmetric spreading. (A 6 b )  

Thus the transition time at which inertial and viscous forces are comparable is given 
by 

t ,  - ( q 4 / g ' 2 ~ 3 ) 1 / ( 7 - ~ ~ )  for two-dimensional spreading (A 7 a )  

- (Qlg'v) t1/(3-a) for axisymmetric spreading. (A 7 b )  

The same expression fort ,  results from equating (A 3) and (A 4) and using (A 5) rather 
than (2.18) or (2.30). 

Expressions for the various forces are summarized in table 2, which presents formal 
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relationships for the inertial forces, given by (A 3), and the viscous forces, given by 
(A 4), when the extent of the current is given by either (A 5), (2.18) or (2.30).  

for two-dimensional spreading and a, = 3 for 
axisymmetric spreading) commented upon previously separates two distinct regimes. 
For a < a, the inertial forces are negligibly small compared with the viscous forces 
for t >> t,, and t ,  increases with increasing flow rate and decreases with increasing 
viscosity, as might be expected. For a = a, the inertial effects are insignificant for 
all time provided that either J = v3qr2/q4 9 1 or vq’/Q 9 1. For a > a, the inertial 
forces may be neglected only if t < t,, where t ,  decreases with increasing flow rate 
and increases with increasing velocity. 

The singularity at a = a, (a, = 

Appendix B 
In this appendix we prove that the continuity of velocity u and shear stress ,uau/ax 

at the upper surface of the gravity current implies that the appropriate boundary 
condition there when the current propagates under a buoyancy-viscous balance is 

The lengthscale of the velocity profile in the gravity current is its thickness h,, while 
that in the ambient fluid is the viscous-diffusion scale (ua t )k  Thus the ratio, say S ,  
of the shear stress in the ambient fluid to that in the current is given by 

au/az = 0. 

r 

s - ho/(vt)4 (B 1 )  

supposing that the two fluids have not greatly differing viscosities. Using (2.18), 
(2.30), (A 1 )  and (A 6) we can express this ratio as 

S - L-lqtP/(vt)i - ( t / t1 ) (4u-7)~10 for two-dimensional spreading (B 2 a )  

- R-ZQP/(vt)i - ( t / t , ) (u-3) /4  for axisymmetric spreading. (B 2 b )  

In both geometries, either for a < a, and t 9 t ,  or for a > a, and t < t,, S < 1, and 
thus the shear at the top of the gravity current is effectively zero. For a = a, 

S - (g’2v3/p4)h for two-dimensional spreading (B 3 a )  

- (g’v/Q)i for axisymmetric spreading. (B 3 6 )  

Again, in both geometries, under the conditions for the viscous forces to dominate 
the inertial forces, as given in the last paragraph of appendix A, S 4 1 and the shear 
at the top of the gravity current may be set equal to zero. 
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