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Time-dependent density profiles in a filling box 
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An approximate analytic expression for the time-dependent density profile formed 
by a turbulent buoyant plume in a confined region is presented. The analysis is based 
on the approximation that the density of the fluid behind the first front changes a t  
a rate which is virtually independent of position. The approximate expression is 
shown to be in excellent agreement with a full numerical integration of the governing 
equations. 

1. Introduction 
Fluid that is initially homogeneous can become stably stratified due to the presence 

of isolated buoyancy sources. For example, a turbulent plume arising from a point 
source of buoyancy in a confined region can lead to stratification of the fluid 
surrounding the plume (Baines & Turner 1969). This is the situation to be considered 
here. It will be assumed that buoyancy forces are upward, which would be the case 
if the buoyancy was due to a heat source for example. Downward-flowing plumes may 
be treated by suitably inverting our solutions. 

As a turbulent plume rises it entrains fluid from its environment. When the plume 
arrives at the top of the fluid container it spreads out laterally to form a layer of light 
fluid. The continuing plume now entrains light fluid from this layer and hence arrives 
at the top of the container even lighter. The plume thus spreads out above the existing 
light fluid layer, displacing the latter downwards. In this way a stratified region is 
produced, separated from the original unmodified fluid by a density step known as 
the first front. 

Extending concepts first analysed by Morton, Taylor & Turner (1956), Baines & 
Turner (1969) developed expressions for the position of the first front as a function 
of time and for the large-time density gradient in the environment. This latter 
asymptotic state was calculated on the assumption that the density decreases linearly 
with time while all other fluid and flow properties remain constant. 

A numerical scheme which follows the evolution of the stratified layer was 
developed by Germeles (1975). His work was motivated by a desire to understand 
the dynamic processes leading to an event, known as tank rollover, which can take 
place in storage tanks of liquefied natural gas. Stratification of the liquid gas can occur 
owing to input of new gas which may be of a different composition and temperature 
to that of the resident gas. The compositional and thermal gradients can lead to 
overturning (rollover) of the gas, causing large-scale boil-off of methane vapour. The 
resultant overpressure in the tank is potentially very dangerous. 

There are other instances where knowledge of the density profile is required at times 
for which the asymptotic solution given by Baines & Turner is not applicable. For 
example, the property gradients in a filling box in which the fluid density is a function 
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of' two components (e.g. heat and salt) can lead to double-diffusive phenomena in the 
environment before the first front has advanced very far (McDougall 1983). The 
stratified region can break down into discrete well-mixed layers, and this layering 
can significantly affect the subsequent behaviour of the plume. In  particular, the 
plume may no longer reach the top of the tank but can feed out into one of the 
underlying layers. While the mechanism producing the layers is not yet fully 
understood, it seems that the breakdown is governed by the opposing gradients of 
the two components. Since double-diffusive effects can be negligible in the plume while 
still significant in the environment (McDougall1983), the results of the current paper 
are applicable to the initial development of the stratified region and can be used to 
evaluate the gradients of the two components before layering occurs. 

The equations governing the behaviour of the plume are coupled nonlinear 
time-dependent partial differential equations. Complete analytic solutions are not 
known. The analysis presented here is based on the approximation that the time rate 
of change of density of the fluid in the stratified layer is virtually independent of 
position. The approximate solution, which is directly proportional to the asymptotic 
solution with a constant of proportionality that depends on time, has the following 
properties. It is correct at t = 0, i t  tends to the asymptotic solution found by Baines 
& Turner in the limit t + co, and global conservation of buoyancy is satisfied. Finally, 
the approximate solution is shown to be in excellent agreement with a full numerical 
integration of the governing equations. 

The strength of the solution lies in the accuracy with which it fits the numerical 
results and in its simple relation to the asymptotic solution given by Baines & Turner. 
It may thus be applied with confidence and ease in many practical situations. 

2. The governing equations 
The derivation of the basic equations has been discussed in detail elsewhere (e.g. 

Turner 1979). Consider a tank of fluid with uniform cross-sectional area A ,  minimum 
horizontal dimension L and height H .  The aspect ratio L / H  is assumed to be 
sufficiently large that the vertical velocity in the environment is horizontally uniform 
(Baines & Turner 1969; Huppert & Sparks 1983). A point source of buoyancy, of 
constant flux F,, is placed at the bottom of the tank, well away from the vertical 
sidewalls (figure 1). The resulting axisymmetric plume is assumed to have Gaussian 
profiles of vertical velocity and of buoyancy given by 

w(z,  r )  = w(z)  exp ( -  r 2 / b 2 ) ,  

where the z-axis is positive upwards, r is the radial coordinate from the plume axis, 
p and po are the densities inside and outside the plume, p1 is some reference density, 
and g is the acceleration due to  gravity. The dependent variables which will appear 
in the subsequent analysis are: w, the vertical velocity at the plume axes; A ,  the 
maximum buoyancy in the plume at each height; and b, the width of the plume defined 
as the radial distance a t  which the values of w and A have fallen to l /e  of their 
maximum values. Rouse, Yih & Humphreys (1952) showed that Gaussian profiles, 
such as (1) and (2), give good fits to experimental measurements of turbulent plumes, 
though the width of the profiles for the velocity and density fields are usually 
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Density - 
FIGURE 1. A sketch of the filling box some time after introduction of the point heat source. The 
right hand side indicates the fluid motion. The left-hand side shows the density profile above and 
below the first front. 

different. Two points should be noted, however. First, it  is straightforward to 
incorporate the difference in spread of the two profiles into the analysis (Morton 1959). 
Secondly, the exact analytic form chosen for the profiles, ( 1 )  and (2), does not affect 
the conclusions made here since all the results are expressed in terms of mean values 
of the dependent variables, averaged with respect to the volume flux in the plume. 
For example, an often-used approximation is to assume ' top-hat ' profiles (Turner 
1979, chap. 6);  i.e. the vertical velocity and density deficit are assumed to have 
constant values for 0 < r < b and to be zero for r > b .  

The Boussinesq approximation and the entrainment assumption are employed in 
deriving equations representing conservation of volume, momentum and buoyancy. 
These are respectively 

d 
- (b2w) dz = Zubw, (3) 

dz (5) 

The Boussinesq approximation is valid when density variations are sufficiently small 
that they have negligible effect on the inertia of the fluid. It is usually assumed that 
the entrainment constant u is not a function of any external variables, and we shall 
invoke this assumption in this paper. Molecular diffusion in the environment is also 
usually neglected. The evolution of the buoyancy field in the environment A ,  is thus 
given by 

(6) 
ad, nb2waA, -- -~ - 
at A aZ 
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where A ,  = g(po -pl)/pl. For convenience we introduce the non-dimensionalized 
variables 

c = H-lz, 

8 = 4?r%tfMF;g A, ,  f = &F;'b2wA, 

q = $&-iH-%F;&w, 

7 = 4 n & ~ i @ A - ~ F ~ t ,  

m = $&adH-$F;4bw. 

The new dependent variables f ,  q and m2 represent the fluxes in the plume of 
buoyancy, volume and momentum, and &represents the buoyancy of the environment. 
The new independent variables c and 7 are the non-dimensional height and time 
respectively. Note that the non-dimensionalized buoyancy flux f is equal to unity a t  
the bottom of the container, 5 = 0. I n  terms of these new variables, (3)-(5) may be 
written 

as as 
,z=qg 

while (6) may be written 

3. Boundary conditions for the stratified layer 

similarity solution exists in which 
In a uniform unconfined environment the right-hand side of (7c) is zero, and a 

f = 1 ,  (9) 

q = & ( Y ) ~  58, (10) 

m = +(#@. (11)  

It is assumed that these expressions remain valid in a confined environment for 6 < C,, 
where c, is the position of the first front. The density step across the first front is 
given by the mean density of the plume, averaged with respect to the volume flux, 
when it  first reaches the top of the container. This is $A evaluated a t  z = H, and may 
be expressed in non-dimensional form as 

-8  0 -  - f/ = y(&)) z 2.175. 
q 5-1 

The position of the first front at any later time may be found by considering the global 
volume conservation in the container. This requires 

which can be integrated to  yield 

c, = [I  +4(?)4~]-#.  (13) 

The solution t o  (7) and (8), valid as 7-+ m, assumes that 38/37 = 1 independent 
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of 5. The dependent variables may then be calculated to be 

q = q, = &(WO{1 --&g--g2+ ... 1, 

m = m, = g(~ )~5~(1 -~g- - (12+ . . . ) ,  

f = f, = 1-5, 

7 + S =  6, 5 ( ~ ) ~ g ~ ~ 1 - ~ 5 - ~ 5 ' + . . . } .  

46 1 

These expressions are identical with those given by Baines & Turner (1969). It is 
readily shown from (7c) and (12) that the value off just above the position of the 
first front is 

(15) 

It is assumed that when the fluid in the plume reaches the top of the container it 
spreads instantaneously to form an upper layer of light fluid. The density of the fluid 
in this layer must therefore be equal to the mean density of the plume a t  the instant 
just before the plume spreads out. Hence, at g = 1 ,  

f =  fop) = 1-gt  0' 

f ( 1 , ~ )  = 0. (16) 

It might appear that the five boundary conditions (10)-(12), (15) and (16) overspecify 
the fourth-order system (7), (8). However, (7c) and (8) can be combined to give 

df 38 
d[=%. 
- 

This can be integrated from 5 = 0 to 5 = 1 to yield 

since 6dy represents the total buoyancy in the container and increases linearly with 
time. Thus (16) appears as an integral constraint on the governing equations and must 
hold in order to satisfy the global conservation of buoyancy. 

4. The approximate solution 
= 1 from (15) and (16), we invoke the 

approximation that f is linear between these points. This is equivalent to assuming 
that the rate of change with time of the density of the fluid above the first front is 
independent of position at  leading order in go (cf. (17)). Thus 

Knowing the value off at g = go and at  

With this approximation, it is readily seen that the solution of (7) is 

P =.ff(7) q , ( h  m = ff(7) m,(Y), = 1817) L ( S )  -47) .  (21 a ,  b,  c) 

Choosing the constant of integration c(7) to satisfy the integral constraint (18), we 
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While the expression for c(r )  appears rather cumbersome, it should be noted that in 
most circumstances it is only the density gradient and not the actual density which 
is required. In this case c ( r )  is an unnecessary parameter. It is readily shown that, 
as r+O (go+ l) ,  6+S0, the value of the density step across the first front. In addition, 
sincef+ 1 as T-+ a, the expressions (21) tend to the asymptotic solutions (14) in this 
limit. 

A formal asymptotic expansion (in powers of lo) for q,  m and 6 could be obtained 
by using (8) or (17) as a pivot for iteration. Equation (19) could be treated as the 
first iterate, then, at each order, q ,  m and S could be determined from (7) andfupdated 
using either (8) or (17). In such a way'solutions to the governing equations could be 
determined to arbitrary accuracy. However, it is felt that to develop the expansions 
further than (21) would not be justifiable in view of the intrinsic approximations 
already made in developing (3)-(6), and would detract from the simplicity of these 
expressions for use in practical situations. 

The degee to which (21) does not satisfy f17) determines the formal error in the 
approximate solution. Note first that from (13) 

while from (21) and (22) 

Thus, as Co+O, the error in 

5. A numerical solution 

(17) is formally O(&. 

A numerical scheme, using an approach similar to that used by Germeles (1975), 
was applied to (7) and (8). In this scheme the density of the environment is 
represented by a stepped profile. At  each timestep (7c) is integrated analytically to 
give the corresponding stepped profile for f while (7 a ,  b )  are integrated numerically 
by a Runge-Kutta integration scheme. Finally the method of characteristics applied 
to (8) determines how the density levels (the positions of the steps) move with time. 
The results of the numerical integration are shown graphically in figures 2-5. 

The density profile predicted by (21) is superimposed on the numerical result in 
figure 2. As can be seen, there is very close agreement between the numerical and 
analytic solutions. In fact the discrepancy is less than 1 yo over most of the range. 
Figure 3 shows that the linear approximation made for f ,  as expressed by (19), is 
reasonable. The agreement between the theoretical and numerical calculations of the 
volume and momentum fluxes is not so good, with maximum discrepancies of about 
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FIGURE 2. The density profile 8 as a function of height 5 a t  various times 7. The variables 8, 5 and 
7 are non-dimensional. The solid lines are given by the numerical solution; the dotted lines by the 
analytic solution. The steps in the numerical solution are an artefact of the numerical scheme and 
are not meant to imply a stepped density profile in an actual filling box. 
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FIGURE 2. The density profile 8 as a function of height 5 a t  various times 7. The variables 8, 5 and 
7 are non-dimensional. The solid lines are given by the numerical solution; the dotted lines by the 
analytic solution. The steps in the numerical solution are an artefact of the numerical scheme and 
are not meant to imply a stepped density profile in an actual filling box. 
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FIGURE 3. Numerical solution for the buoyancy flux f in the plume, as a function of height 5 at 
various times 7 .  The variablesf, 6 and 7 are non-dimensional. 
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FIGURE 4. Numerical solution (solid line) and analytic solution (dotted line) for the volume flux 
q as a function of height 6 at time 7 = 1.92. The variables q, 5 and 7 are non-dimensional. The 
curves for 7 = 0 and 7 = co are the similarity solution (10) and the asymptotic state (14) 
respectively. 

0 0.2 0.4 0.6 0.8 
m 

FIGURE 5. Numerical solutions (solid lines) and analytic solutions (dotted lines) for the square root 
of the momentum flux m as a function of height 5 at times 7 = 0.53 and 7 = 1.92. The variables 
m, f; and T are non-dimensional. The curves for 7 = 0 and 7 = 00 are the similarity solution (11) 
and the asymptotic state (14) respectively. The fit between the numerical and analytic curves 
improves as 7- t  00. The only error in that limit is due to truncation of the power-series expansion 
for the asymptotic state (14). 
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FIGURE 6. The density profile 8 as a function of height 5 at various times 7 for a two-dimensional 
filling box. The variables 8, 5 and 7 are non-dimensional. The solid lines are given by a numerical 
solution; the dotted lines by the analytic solution. 

3 % and 8 % respectively. Some of this discrepancy is attributable to the inaccuracy 
with which the first three terms of the power series expansions of qw and m ,  describe 
the actual asymptotic solution. The fit is less good for small 7 (large Q) since the formal 
error in the analytic expressions is O(&, which increases as co increases. 

6. The line plume 
The evolution of the stratification in a two-dimensional filling box with buoyancy 

supplied at a line source may be analysed by employing the same approximation as 
above. In this case, however, the time-dependent factorf(7) is unity. Thus the 
asymptotic solution found by Baines & Turner (1969) may be used directly to 
approximate the density field above the first front. The solution is presented here 
for completeness, and is given by 

C ( T )  = - l n ~ o + l - ~ ( l + ~ o ) - ~ ( l + ~ o + ~ ~ ) + . . . ,  (25) 

go = e-?. (26) 

The non-dimensionalization employed here is the same as that used by Baines & 
Turner (1969). The error in this solution is formally O(co) ,  and figure 6 shows that, 
while the agreement with the numerical solution is not quite so good as that found 
in the case of the axisymmetric plume, it is more than adequate for most purposes. 



466 M .  G.  Worster and H .  E.  Huppert 

7. Conclusion 
An analytic expression has been found which closely approximates the density 

profile in a filling box as it evolves with time. This is an improvement over existing 
methods of determining the time evolution of filling boxes which relied on numerical 
simulations and hence required separate evaluation for each time period of interest. 
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