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Lee waves in a stratified flow. Part 2. 
Semi-circular obstacle 

By JOHN W. MILES? 

Appendix 

By HERBERT E. HUPPERTT 
Institute of Geophysics and Planetary Physics, 

University of California, La Jolla 

(Received 11 December 1967) 

A two-dimensional, semi-infinite, stratified shear flow in which the upstream 
dynamic pressure and density gradient are constant (Long’s model) is considered. 
A complete set of lee-wave functions, each of which satisfies the condition of no 
upstream reflexion, is determined in polar co-ordinates. These functions are used 
to determine the lee-wave field produced by, and the consequent drag on, a semi- 
circular obstacle as functions of the Froude number within the range of stable 
flow. The Green’s function (point-source solution) for the half-space also is 
determined in polar co-ordinates. 

1. Introduction 
We continue our investigation of the generation of lee waves by, and the 

consequent drag on, an obstacle in a two-dimensional, steady, inviscid, stratified 
shear flow in which the upstream dynamic pressure and density gradient are 
regarded as constant (Long’s model). In part 1 (Miles 1968, hereinafter referred 
to as I, followed by the appropriate equation or section number therefrom), we 
considered a thin barrier in either a channel of finite height or a half-space. We 
consider here a semi-circular obstacle in a half-space. 

Referring to figure 1, we choose a, the radius of the semi-circle as the unit of 
length and ar and 6 as polar co-ordinates. Let U ,  p and N be the wind speed, 
density and intrinsic (Vaisda) frequency in the basic flow. The hypotheses that 
the dynamic pressure, 

(I= 1 ZP u2, (1.1) 

and the Froude number, F = U / N a  E l/k, (1.2) 
are independent of elevation imply that the vertical displacement of a strea,m- 
line, say aS(r,8) relative to its level in the basic flow, satisfies the Helmholtz 
equation 

The hypotheses that the flow must pass smoothly over the boundary and that 

t Also Department of Aerospace and Mechanical Engineering Sciences. 

V V +  lc26 = 0. (1.3) 
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there must be no upstream reflexion of waves from the obstacle imply the 

boundary conditions ~ ( r ,  0) = a(r, n) = 0 ( r  2 11, (1.4) 

S ( l , 0 )  = sin0, (1.5) 

and S(r, e) = o(r-*) (T+CO, in < 0 < TT).  (1.6) 

We note that k, as defined by (1.2)) is the counterpart of K = Nh/U in I. 

the form 

where f (6) is the complex scattering amplitude of the far field, and H is Heaviside's 
step function. We then define the differential scattering cross-section Cr(0) and the 
total scattering cross-section Q as follows:? 

g(0) = lim ar{(V6)2+ k2S2} (1.Sa) 

= (2ak/TT)lf(0)]2 (0 < 0 < 97r) (1.8b) 

We may pose the asymptotic representation of the solution to (1.3)-( 1.6) in 

S(r ,O) N &?{(2/7rkr)*exp [i (kr-  &~)] f (O)H( i ; r r -B)}  (kr - tm) ,  (1 .7 )  

r+m 

and 

FIGURE 1. Geometrical configuration. 

Our definitions are similar to, but differently normalized than, those of classica 
scattering theory (Morse & Feshbach 1953). The drag on the obstacle, say D, 
is given by the total flux of horizontal momentum, which yields [cf. I (2.7)j 

r+m J o 

= vs,"" v(0) cos0d0. (1.10 b )  

We seek a(@, Q and D as functions of k in 0 < k < k,, where Ic, is the minimum 
value of k for which density inversions (8, > 1)  appear a t  one or more points in 
the flow. It seems likely, although perhaps less than certain (since static stability 
may not be a necessary condition for dynamic stability of finite-amplitude 
motions), that Long's basic model is not physically significant for k > kc. It is, of 
course, likely that separation would occur for k < kc in a real fluid, but this is a 

t The ratio of the energy (kinetic plus potential) density in the scattered lee-wave to  
that in the basic flow is cr(O)/ar. The total wave energy diverges like log r in consequence 
of the assumption of constant q. This is an intrinsic deficiency of Long's model for a half- 
space. 
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separate question from that of static stability (see discussion in I). It also is 
possible that the instability may be local, and that a well-established lee-wave 
pattern may survive, for some finite range of k > k,; however, Long’s model 
could not be expected to provide reliable predictions of either the lee-wave 
amplitudes or the wave drag in this range. 

We represent the solution to (1.3)-(1.6) as an expansion in a complete set of 
functions, say S,(r, 8 ) ,  each of which satisfies the homogeneous boundary con- 
ditions (1.4) and (1.6). We determine such a set in $ 2  on the basis of the additional 
constraint that the singular part of S, behave like a,Y,(kr) sinn8 as kr-to (a, is 
an appropriate constant). The resulting functions behave like Sa,Y,(kr) sin n8 
in 8 = (0 ,  in) as kr+m, which is especially convenient for the construction of 
the asymptotic lee-wave field; however, they are not orthogonal in 8 = (0,n) 
for fixed r ,  in consequence of which the expansion coefficients determined by the 
boundary condition (1.5) are coupled through an infinite set of linear equations. 
(The flat plate, as treated in I $6, permits a solution in terms of a complete set 
of orthogonal functions that do exhibit a convenient asymptotic behaviour, but 
this appears to be a very special case.) 

We determine these equations in $ 3  and obtain approximate solutions by 
truncation. The number of equations, say N ,  that must be solved to obtain a 
given accuracy appears to increase monotonically with k. We find that the results 
for N = 2 are quite adequate for k < 2 and that this includes the range of principal 
interest, namely 0 < k < kc Zi: 1.27. We also find that the first approximation is 
likely to be adequate for k < 1. 

A difficulty that often arises with truncated expansions is the existence of 
singularities at  which the determinant of the truncated set of equations vanishes. 
Such singularities may be physically significant, in the sense that they yield 
approximations to actual resonances or instabilities (in which case the Nth 
approximations to a set of critical parameters should tend to limiting values as 
N-tco); on the other hand, they may be, and often are, spurious consequences 
of the truncation.? We find that such spurious singularities exist in the present 
instance, but not in k < kc. Stewartson (1958) appears to have experienced a 
similar difficulty in calculating the drag on a sphere moving along the axis of a 
rotating fluid. He concluded that the drag is infinite at a critical value of the 
Rossby number (the counterpart of our Froude number) and conjectured that 
the implied breakdown of the flow might be associated with, although not 
necessarily coincident with, the breakdown of the hypothesis of no upstream 
reflexion. We suggest that Stewartson’s critical Rossby number may have been 
a spurious consequence of truncation. 

An alternative, and more general, approach to  the boundary-value problem 
posed by (1.3)-(1.6) would be to construct the Green’s function (point-source 

t The basic difficulty is that the convergence of the Galerkin or Ritz approximation for 
a non-self-adjoint system is not uniform with respect to the parameter k .  Similar difficul- 
ties arise in the flutter analysis of a membrane, but not in that of a plate (Miles 1956) and 
led Fung (1958) to recall Courant’s (1943) remark concerning the Ritz approximation: 
‘The fist success attained by Ritz depends on his good fortune in attacking the seemingly 
more difficult problem. . .of the [vibrating] plate rather than that of the membrane.’ 
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solution) for the half-space and then invoke Green's theorem to obtain both an 
integral equation for a6/an, the normal derivative of 6 on the obstacle, and a 
representation of 6 in the exterior domain of the obstacle in terms of S and 
aS/an  on the obstacle. This approach would be circuitous for the semi-circular 
obstacle, but we develop the Green's fuction in 94 because of its intrinsic interest. 

2. Cylindrical lee-wave functions 
(n = 1,2,  ...), that 

is complete in 0 = (0,n) for fixed r and each member of which satisfies (1.3), 
(1.4) and (1.6). The cylindrical wave functions for the corresponding diffraction 
problem, on the assumption of the time-dependence exp ( io t )  and a radiation 
condition in place of (1.6), are multiples of HE'(kr) sinnf? and behave like the 
harmonic functions r-" sin nf? as kr -+ 0. This suggests that we pose the lee-wave 
functions in the form 

&(r, 0) = a,,{Yn(kr) sin nO + @,(r, O)}, (2.1) 

where afL = - n( i k )n / (n  - l ) !  (2.2) 

We seek a set of cylindrical lee-wavefunctions, say 4 ( r ,  19) 

m 

and @"(r, 0) = 3 b,,J,(kr) sin qf?; (2.3) 
q= 1 

then (1.3) and (1.4) are satisfied by each of Y,(kr) sin nO and J,(kr) sin qf? and hence 

S,& -+ r-n sin nH (kr -+ 0 )  (2.4) 'Tl( '7 ')7 and 

by virtue of our choice of a,. 
Invoking the known, asymptotic approximations to the Bessel functions in 

(2.1) and (2.3) and requiring the resulting approximation to S, to satisfy (1.6) 
we find that the b,, must be determined such that 

sin 2mH = C ( - )pn+p--l b 2,,2,+1sin(2p+1)f? (n = 2m) ( 3 . 5 ~ )  
p - 0  

a, 

and sin(2m.+l)H = C (-)~+~b,,+l,2psin2p0 (n = 2rnf1) (2.5b) 

in f? = (in, n). Invoking the fact that each of the sets sin 2m0 and sin (2m + 1 ) s  is 
complete and orthogonal in both O = (0, in) and 8 = (+n, n),  we satisfy (2.5a, b )  

p = l  

by choosing b,, = (4/n)n(q2-n2)-l (n even, q odd) (2.6a) 

= (4/n)q(q2- n2)-l (n odd, q even) (2 .6b )  

= o  (n - q even). ( 2 . 6 ~ )  

We note the alternative representation 

sgn ($77 - t )  exp ( - ikr cos f? cost)  sin (kr  sin Osin t )  sin ntdt, 

(2.7) 
which may be inferred either from the required asymptotic behaviour of $, or 
by expanding the integrand of (2.7) in a Fourier series in sinqe and integrating 
term by term with respect to t. 
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It follows from (2 .3)  and (2 .6 )  that $n is an even or odd function of @-- 8 as n, 
is even or odd, respectively; accordingly, the asymptotic cancellation of 
I',(kr) sin n8 and $n(r, 8 )  as kr-t  00 in 8 = (in, n) implies their asymptotic identity 
as kr -+ 00 in 8 = (0, in), in virtue of which 

an(r,8) N 2 a n ( 2 / ~ ~ r ) ~ s i n ( k r - ~ n ~ - ~ n ) s i n n B  (kr+w,O d 8 < 47~). (2.8) 

A formal proof that the 8, defined by (2.1)-(2.3) and (2 .6)  form a complete set 
in 8 = (0 ,  n) can be constructed from known theorems. We rest content with the 
remark that an infinite expansion in an(r, 8) may be expressed as a Fourier series 
in sin 48, subject only to rather mild restrictions on convergence. 

The set 8, is not orthogonal. An orthogonal set of the form 

(2 .9)  

could be constructed by the Schmidt orthogonalization procedure, but the 
r-dependence of an(r, 8) would appear to be far too complicated to be offset by 
any advantage of orthogonality for the problems at  hand. 

3. Solution for semi-circular obstacle 
We pose the solution of (1 .3) - (1 .6)  in the form 

m 

S(r, 6 )  = C dn(k)  an(r9 8) -  
1 

Since 8, satisfies (1 .3) ,  (1 .4)  and (1 .6) ,  it remains only t o  determine the d, to 
satisfy (1 .5) .  

Substituting a,, as given by (2 .1)  and (2.3), into (3.1) and reversing the order 
of summation in the resulting double sum, we place the result in the form 

(3 .2 )  

and an, is the Kronecker delta. Substituting (3 .2 )  into (1.5) and equating co- 
efficients of sin ne, we obtain the infinite set of linear equations 

m 

c Znn(l)d,  = a,, (12 = 1 , 2 ,  ...). 
g=1 

(3 .4)  

We observe that 

Znq( 1 )  = S,,a,Y,(k) + O(kn+*) ( 3 . 5 a )  

= a&+ O(k2log k ) )  + O(kn+a) ( k -  0). (3 .5b )  

Turning to the calculation of the scattering amplitude, f(8), we substitute 
(2 .8 )  into (3 .1 )  and equate the result to (1 .7)  to obtain 

m - 
f(8) = nk S ( - i )n - IFn(k)  sinn8, 

Yn(k) = andn/a ,  = (4k)n-ldn(k)/(n- l ) ! .  

n= 1 

where 
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Substituting (3.6) into (1.8b), we obtain 

121 m W 

C (-)mF2,+,sin(2m+1)0 (-)mF2msin2m0 . (3.8) 

Substituting (3.8) into (1.9) and (l.lOb), we place the results in the normalized 
forms 

and 

(3.9) 

We have renormalized the expansion coefficients (from d, to F,) such that each 
of r*(6), &* and D, is 1+O(k210gk) as k+O.  

Truncating (3.4) at n = N = 1, we obtain the first approximations 

0,(8) = &*(k) = D*(k) = {Fj1)(k)12 ( N  = I), (3.11) 

where Fjl)(k) = - {*~k&(k)]- ' .  (3.12) 

Truncating (3.2) at n = A' = 2 ,  we obtain the second approximations 

{c~ , (O) ,&,(k) ,D*(k) )  = ( ~ 1 2 ) ( k ) } 2 [ 1 + H ( k ) ( 4 c o s 2 8 ,  l,$}] ( N  = 3) ,  (3.13) 

where F12)(k) = Fjl)(k) (1 + ( ~ ~ J , J , / ~ T ~ Y , Y ~ ) } - - ~  (3.14 a )  

= FI1)(k){l -&k6+O(k810gk)),  (3.14b) 

( 3.15 a )  

= O(kS), (3.15b) 

and the argument of each of the Bessel functions is k. We infer from (3.13)- 
(3.15) that (J*, Q ,  and D, differ from one another by O(k8)  and that the error 
factor for the first approximation of (3.11) is 1 + O(k6)  as 7c -+ 0. The first approxi- 
mation breaks down at  the smallest zero of Y , ( k ) ,  k = 2.2,  where FI1) = co; the 
nth approximation breaks down a t  k = k,, where k, is fairly close to the smallest 
zero of Y,(k) .t Invoking a known result for the zeros of Y,(k) , we infer that k, is a 
monotonically increasing function of n. The nth-order, truncated determinant 

vanishes at  k = k,, thereby yielding infinite values of F,, F2, ..., Fn, except 
for n = 2 .  The second approximation is anomalous in that it yields finite values of 
F, and F2 near the first zero of Y2, k + 3.4; nevertheless, it  must be regarded as 
inaccurate for k near or greater than this zero. 

Arough estimate of k,, the value of k at which the constraint of static stability, 
S, < 1, is first violated, may be determined from the first approximation, namely 

6 = Fj1)(k)6,(r, 6) ( N  = l), (3.16) 

H ( k )  = ( S J , / ~ ~ T Y ~ ) ~  

t I am indebted to my student Herbert Huppert for this suggestion. 
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which yields k, + 1.2. Huppert (appendix) uses the second approximation to 
obtain kc = 1-27 and presents streamline patterns for k < kc, k = kc and k > kc. 

The second approximations to Q ,  and D,, as given by (3.13), are plotted in 
figure 2; D, differs from Q* by less than 1 yo in k < 1.2. The first approximations 
of (3.11) differ from the second approximations by less than 5 % in k < 1, but 
depart rapidly therefrom in k > 1 (14 % at k = 1.2). The third approximations to 
Q, and D, (not given explicitly above) differ from the second approximations by 
1 % at k = 2. We conclude that the second approximations should be adequate, 
and that the difference between D ,  and Q ,  is small, in the range of stable flow, 
0 < k < kc + 1-27. 

1.2 I I 

FIGURE 2 .  Normalized drag (B*), total scattering cross-section (&*), and drag coefficient 
for semi-circular obstacle, as given by (3.13) and (3.17). The flow may be unstable for 
k > k,  = 1.27. 

The drag coefficient +c, = Dlp U2a (3.17) 

also is plotted in figure 2 .  We conclude that the drag coefficient C ,  for unseparated 
flow over a semi-circular obstacle is not likely to exceed 2.6 in the range of stable 
flow, We again emphasize that the question of stability, as treated here,is distinct 
from the question of viscous separation, which may occur for k < k, in a real 
fluid. 

4. Green’s function for half-space 
The Green’s function, or point-source solution, for a half-space, is determined 

by V2G + k2G = - $(R), (4.1) 
G = 0 (y = 0), (4.2) 

and G = o(r-1) (r --f co, in < 19 < n), (4.3) 
where 8 is Dirac’s delta function (we reserve 6 for streamline displacement), and 

R = I r - p l  = { ( ~ - ~ ) ~ + ( y - - q ) ~ } *  = {r2+p2-2rpcos(O-#)}* (4.4) 
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is the dibtance from p = (&,?I) to r = (x, y) or, in polar co-ordinates, from (p, g5) 
to ( r ,  q . 7  

A particular solution of (4.1) is given by 

00 

-LY(kR) 4 0  = - &  (2-8;)J,(kp)Yn(kr)cosn(8-q5) (p < r ) ,  (4.5) 
n=O 

wherein p and r must be interchanged if p > r .  Changing the sign of q5 in (4.5), we 
obtain a complementary solution of (4.1), say - %Y,(kR,), corresponding to the 
image of (4.5) in the plane y = 0. Subtracting this solution from that of (4.5), we 
obtain 

(4.6a) 
m 

= -I: Jn(kp)Yn(kr) sin n0 sin nq5 (p < r ) ,  (4.6b) 

which satisfies (4.1) and (4.2). Referring to (2.1) and recalling that ?,+7b(r,8) 
satisfies (1.3) and (1.4), we find that 

1 

is a complementary solution of (4.1) and (4.2) that, when added t o  GI, yields a 
solution of (4.1)-(4.3), namely 

00 

G ( r ,  p) = -CJ,(kp){Y,(kr)sinnB+?,+,(r, 0)}sinng5 (4.8~1) 
1 

m 
L 

= - 2 a,; J,( Icp) Sn(r, 8)  sin nq5. (4.8b) 

We obtain an alternative representation of G, by substituting the series 
representation of ?,+n, as given by (2.3) and (2.6), into (4.8) andreversing the order 

GZG-9 e) = c Jn(w?,+n(P3 9) sin no (4.9~) 

= -G2(p , r ) .  (4.9b) 

1 

of summation : 00 

1 

Adding (4.9~) to (4.6b), we obtain 

r 

m 
I 

where g = 2 I: ( - i),-IJ,( kp) sin n8 sin n# 

= exp ( - ik< cos 8) sin (ky sin 0). 

( 4 . 1 2 ~ ~ )  

(4.12 b) 

t The density, denoted by p in 0 1, does not arise explicitly in the subsequent analysis, 

1 

where p appears only as a radius. 
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We may base a formulation of the boundary-value problem for an arbitrarily 
shaped obstacle on G(r, p). Let 8(r) satisfy (1.3), (1.4) outside of an obst'acle of 
prescribed contour C, and (1.6). Applying Green's second theorem to the 
functions S(p) and G(r, p) around a closed contour made up of C, the plane y = 0 
outside of C, and the semicircle p = co, we obtain 

(4.13) 

where n F n(p) is the outwardly directed normal to C ,  dE(p) is a differential 
element of C, and the integration is in the counterclockwise sense. Invoking the 
boundary condition 8 = y on C then yields an integral equation for a8/8n on 
C, the solution of which would permit the calculation of 8(r) from (4.13). 

This work was partially supported by the National Science Foundation under 
Grant GA-849 and by the Office of Naval Research under Contract Nonr- 
2316(29). I also am indebted to my colleagues George Backus and Freeman 
Gilbert for several helpful discussions. 

Appendix 
By HERBERT E. HUPPERT 

We present some additional, numerical results. Retaining the first two lee- 
wave functions in (3.1) and evaluating 8, numerically, we find that instability 
first occurs at  rc = 4.0, 0, = 57" for k = k, = 1.27. 

The contour lines of the function 

?k = ?/ -8( r ,0 )  

are the streamlines of the flow. Pour flow patterns are shown in figures AI-A4 
(the contour interval is 0.7). 

Long (1955) determined flow patterns for the stratified flow over an obstacle 
in a channel, for which the lee-wave spectrum is discrete, rather than con- 
tinuous. The flow patterns in the half-space and the channel are similar if one and 
only one mode is present in the channel; they are quite different if either no, or 
more than one, mode is present, demonstrating the marked influence of the upper 
boundary condition. 

Experiments performed by Long indicate that, although there is local in- 
stability in regions where 8, > 1, the downstream wave may be similar to that 
presented in figure A 4  for k = 1.5 > k,. 

This work was supported partially by a Sydney University Post-Graduate 
Travelling Fellowship and partially by Contract Nonr-22 16(29) with the Office 
of Naval Research. 
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FIGURE A 1. Stratified shear flow over a semi-circular obstacle for 7c = 0.5.  

FIGURE A2. Stratified shear flow over a semi-circular obstacle for k = 1.0. 
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FIGURE A3. Stratified shear flow over a semi-circular obstacle for k = k,  = 1.27. 

FIGURE A4. Stratified shear flow over a semi-circular obstacle for k = 1-5. 
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