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The compositional stratification in solid formed by cooling a binary alloy from below 
is investigated theoretically and experimentally. It is shown that in order to grow 
composite solid the boundary temperature needs to be below the eutetic temperature. 
Two separate cases are considered. In the first, heavy fluid is released on 
solidification. The solid growth is then governed by the diffusive transport of heat 
and composition. The resultant solid is shown to have a fixed composition until the 
far-field conditions change. In  the second case, light fluid is released on solidification. 
This generates turbulent compositional convection in the melt which significantly 
increases the transport of heat and composition across the solid/melt interface. As a 
result, the fraction of heavy component in the solid initially increases, but 
subsequently decreases to conserve mass. A simple theoretical model, using the 
approximation of a flat solid/melt interface is developed ; this predicts differences in 
the thermal flux in saturated and undersaturated melts. Laboratory experiments 
involving aqueous solutions of sodium carbonate cooled from below which released 
light fluid displayed compositional convection and stratification of the solid as 
predicted. 

1. Introduction 
The mechanisms by which compositional variations are generated by the 

solidification of multi-component melts are important in many fields. These include 
geology, metallurgy and materials science. In the geological context, interest centres 
on solidified magma chambers, which often exhibit significant spatial variation in the 
composition of the solid. These magma chambers originally contained molten 
magma, which may have entered the chamber as a well-mixed fluid and solidified 
progressively. 

In  this work, we address the thermodynamic and fluid-dynamic processes which 
lead to  the formation of a compositionally stratified solid. In  order to bring out the 
essential details, we consider simple solidification situations in which solid is grown 
on a planar surface from a binary (two component) melt. We have conducted a 
number of laboratory experiments in which well-mixed aqueous salt solutions were 
solidified by cooling a t  a planar surface. Depending upon the position of the cooling 
plate and the melt composition a number of different solid compositional profiles 
were obtained. The fluxes of solute and temperature are critical to the determination 
of the solid composition. As the inclination to the horizontal of the planar surface on 
which the solid grows is varied, a wide range of fluid motions, driven by buoyancy, 
occurs in the melt. These cause significant differences in the transport of heat and 
composition and thus the resulting stratification of the solid (Leitch 1985; Huppert 
et al. 1987). 

2-2 
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The majority of previous studies in the field, summarized in the monographs by 
Elliott (1983) and Kurz & Fisher (1986), have adopted one of two approaches. The 
first assumes that all transport in the melt is governed by diffusion and effectively 
ignores the crucially important role of fluid flow. The second assumes that the solute 
rejected on solidification is instantly mixed into the remaining melt by highly 
efficient fluid motions, resulting in the lever-rule or Scheil equation governing the 
solid composition. Further, in many of these studies the solid grown is assumed to 
be of one phase only ; its composition varies only because the solidus line is in general 
non-vertical (see $2) .  However, in the present study, we consider the compositional 
stratification formed in composite solid in which crystals of both phases are mutually 
intertwined. 

The first part of this study, which forms the basis of the present paper, considers 
the solidification of a binary melt above a horizontal, cooled boundary. First, we 
describe a general thermodynamic equilibrium model for the solidification of a 
binary melt, based on a eutectic phase diagram. In $3  we consider briefly 
solidification of a melt accompanied by the release of heavy fluid. This is a process 
controlled by diffusion and our approach extends the model of Huppert & Worster 
(1985) and Worster (1986). I n  $ 4  we describe the solidification of a melt which 
releases light fluid. We derive a model for the compositional and thermal fluxes at  
the solid/melt interface which are produced by compositional convection. We then 
compare predictions of the model with laboratory experiments we have conducted. In 
$6, we present a brief discussion of the possible application of the results to magma 
chambers. In  the concluding section we summarize the various types of solid 
stratification that can be produced by solidification above a horizontal boundary 
maintained a t  a fixed temperature. 

2. Solidification above a cooled horizontal boundary 
2.1 . Phase diagram 

We assume that the solidification of a binary melt is governed by equilibrium 
thermodynamics ; this means that the solidification is thermodynamically quasi- 
static and that the time taken for the system to evolve is much greater than the time 
taken to readjust to  thermodynamic equilibrium at any stage. Under these 
conditions, the thermodynamics is described by a phase diagram, such as the one 
shown in figure 1. Above AEB the system is totally liquid; a state which we refer to  
as the melt. I n  the two triangular regions A E A  and BEB' the melt coexists with 
either pure solid A or B. The point E is the eutectic point ; below the horizontal line 
through this point (the eutectic line) no melt can exist. At the eutectic temperature, 
melt in thermodynamic equilibrium can only have the eutectic composition. 

From this diagram we can immediately deduce two results. First, that (non- 
dendritic) composite eutectic solid may only be grown when the solid/melt interface 
temperature, T,, is the eutectic, T, (ignoring the very small local temperature 
variations due to  the variable crystal curvature (Elliott 1983)). In  fact this 
temperature will be just below eutectic, in order that  a phase change will occur, but 
we assume that this effect is negligible (Langer 1980; Kurz & Fisher 1986). By the 
same argument, when growing solid behind a mush phase, the temperature at the 
solid/mush interface is a t  the eutectic temperature. 

Second, in order to drive the heat transfer in the system, the cooling boundary 
must be below the eutectic temperature, because the temperature a t  the solid/melt 
or solid/mush boundary is eutectic. This undercooling produces a heat transfer 
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FIGURE 1.  Phase diagram of a binary alloy. AE and EB are the liquidus lines, NEB’ is the 
eutectic line. The line A A  corresponds to pure solid A and the line BB’ to pure solid B. 

across the solid which is balanced by the production of enthalpy of fusion and the 
heat flux from the melt generated by its cooling. 

2.2. Density 
The density of the melt increases with the mass fraction of component B, and 
decreases with temperature. As is usually the case, the lines of constant density are 
almost vertical (figure 1 )  reflecting the fact that the influence of composition on 
density is generally much stronger than that of temperature. This density 
relationship causes different types of buoyancy driven motions in the melt during the 
solidification process. These motions alter the heat and solute fluxes a t  the solid/melt 
interface. To avoid confusion, in the remainder of the paper we only refer to mass 
fluxes of component B, and describe them as compositional fluxes. 

2.3. Solid morphology 
When composite solid forms, the solid/melt interface may be approximately flat, 
with small deviations arising owing to the curvature of the crystals. Alternatively, 
the interface may be unstable and dendrites may form (Elliott 1983). We refer to the 
former as a ‘flat’ interface; this contrasts with the truly flat (i.e. planar) interface 
which can form when only one phase solidifies. We now consider briefly the 
morphology of the composite solid that forms with each of these types of interface. 

If the solid/melt interface is approximately flat and horizontal the solidification 
problem is effectively one-dimensional. In  such morphologically stable growth, the 
melt composition and temperature at the interface together with the heat and mass 
fluxes across the interface determine whether either single-phase solid of pure 
component A or pure component B or composite eutectic solid forms. In  composite 
eutectic solid the crystals of each phase either grow in adjacent planes forming a 
lamellar structure, or when there is a greater quantity of one component than the 
other in the solid, rod-like crystals of the minor component grow in a matrix of the 
major component. There is a range of compositions, around the eutectic composition, 
in which composite eutectic solid is morphologically stable (for example Mollard & 
Flemings 1967 grow Pb-Sn solid with the P b  content ranging from 12 % to 26 %) ; 
however, when the solid composition becomes too far removed from the eutectic 
composition, composite eutectic solid growth is not possible. 

If the solid growth is morphologically unstable, a mush phase will develop between 
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FIQURE 2. Schematic of a mushy interface. 

the solid and the melt. The mush phase consists of dendritic, needle-shaped crystals 
extending from the solid, between which there is interstitial melt (figure 2). The 
dendritic crystals are all either of composition A or B depending whether the melt 
composition is above or below eutectic. We assume that the interstitial melt is in 
equilibrium and lies on the liquidus (lines AE and BE of figure 1) .  The solid front 
advances into the mush, by solidifying the interstitial melt, producing a matrix of 
composite eutectic solid around the dendritic crystals. 

2.4. Morphological stability 
At a certain degree of constitutional supercooling, dendritic growth involves a 
smaller degree of undercooling than flat interface growth, and so the planar interface 
breaks down. This principle was first expressed in a quantitative form by Mullins & 
Sekerka (1964). They derived 

<m(k,+k,)-  

as the criterion for instability of the one-dimensional steady-state, diffusively 
governed growth of a single phase solid, where k, is the thermal conductivity in the 
solid, k ,  that  in the melt, T is the temperature, m the liquidus slope, C the mass 
fraction of component B present and x increases away from the interface, in the melt. 
Further stability studies have been carried out for more complex growth situations 
(see Elliott 1983; Kurz & Fisher 1986). The criterion for stability 

where y i  is a complicated expression involving the liquidus slopes and the 
supercooling such that 4 x 2 and ma and ma are the two liquidus slopes a t  the 
eutectic point, was derived by Hurle & Jakeman (1968) for the steady-state, 
diffusively governed growth of a composite eutectic solid. This applies to the case in 
which one of the phases facets and has a form similar to that of the Mullins & Sekerka 
criterion (2.1). 

Determination of the conditions for the onset of morphological stability in a 
convecting melt is difficult, especially in chaotic vigorous convection. The coupling 
of morphological and convective instability is analysed by Corriell et al. (1981) and 
Hurle, Jakeman & Wheeler (1982). However these analyses are completely linear and 
do not cover the case of turbulent convection a t  high Rayleigh number in the 
melt. 
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2.5. Solid composition 
The composition of composite solid is given by the horizontal average of the quantity 
of solid phases A and B deposited. For a solid grown behind a mush zone, we define 
the composition a t  any depth in the solid in terms of the horizontally averaged 
composition, averaged over a scale larger than the dendritic crystal size. The 
dendritic crystals in the mush consist of either pure solid A or B, depending on 
whether the composition of the melt is less than or greater than eutectic, while the 
composition of the composite eutectic solid matrix can vary with space and time. 
Therefore the bulk solid composition may vary with depth in the solid if either the 
solid fraction in the mush at the solid/mush interface varies with time and/or the 
composition of the composite eutectic solid varies with time and therefore depth. 

2.6. Sub- and supereutectic melts 
There are three cases of interest when solid is grown above a horizontal boundary 
(Huppert & Worster 1985). Case I corresponds to cooling a melt of composition less 
than eutectic - a subeutectic melt. The melt a t  the solid/melt or solid/mush interface 
is heavy and cold and so is gravitationally stable. No fluid motions develop and the 
growth is controlled by diffusion (Huppert & Worster 1985; Worster 1986). Case I1 
corresponds to cooling a melt of composition greater than eutectic - a supereutectic 
melt. The melt a t  the solid interface is now depleted in component B, and so may be 
light even though cold. For sufficiently large Rayleigh numbers, convection will then 
occur in the melt. The motion can significantly alter the fluxes of component B and 
of heat from those of the purely diffusive case. Case 111 corresponds to cooling a melt 
of eutectic composition. The solid grown also has eutectic composition. Therefore, 
stratified solid cannot form from such a melt, and we do not consider it further. 
Sidewall effects have not been included in the present work because they are only 
important if the container is relatively deep compared to its width, especially when 
the melt is well mixed by vigorous solutal convection (Adornato & Brown 1987). 

For case I we consider diffusion-governed models for the growth of composite solid 
in both the morphologically stable, flat-interface case and in the morphologically 
unstable case when solidification occurs through a mush phase. For case I1 we 
develop a new analytical model for the growth of composite solid; the model 
approximates the solid/melt interface as being flat. Its predictions are compared 
with the results of several laboratory experiments in which a supereutectic melt was 
cooled and solidified from below. 

3. Case I: subeutectic melt cooled from below 
When a subeutectic melt is cooled from below, with the cooling boundary 

maintained below the eutectic temperature, then if the solid/melt interface is 
approximately flat it remains a t  eutectic temperature, and the melt just above this 
interface has eutectic composition. Therefore the variation with depth of both the 
temperature and the composition in the melt produce a gravitationally stable 
density field. There will be no convective motions in the melt and diffusion is the only 
transport mechanism available in the melt for the fluxes of solute and heat. 

When the far-field conditions in the melt are fixed, and the boundary conditions 
described above are applied, there is a similarity solution governing the mor- 
phologically stable, flat-interface growth (Worster 1983). This predicts that the solid 
composition takes a fixed value between that of pure component A and the far-field 
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composition in the melt. The solid becomes compositionally stratified only if the far- 
field conditions are allowed to vary. 

If a mush phase develops, we can modify the mush model of Worster (1986) so that 
the solid/mush interface temperature is eutectic and the base is a t  a temperature 
below eutectic. At the solid/mush interface, composite eutectic solid forms in the 
interstices between the dendritic crystals of pure solid A. The equations governing 
the solidification are given in Worster (1986) and admit a similarity solution if the 
far-field conditions are fixed. I n  this solution, the solid composition and the solid 
fraction a t  the solid/mush boundary are fixed in time. Therefore, as in the 
morphologically stable case, the solid has a fixed bulk composition, a t  all depths, 
until the far-field conditions change. We deduce that no compositional stratification 
occurs in diffusively grown solid, until the influence of the boundaries of the 
container is important. 

4. Case 11: supereutectic melt cooled from below 
4.1. Introduction 

If a supereutectic melt is cooled from below, again with the cooling boundary set 
below eutectic temperature, then, at thermodynamic equilibrium, the solid/melt 
interface temperature is eutectic and the composition of the melt a t  the interface is 
eutectic. There is now a stabilizing temperature field and a destabilizing 
compositional field in the melt. We assume that the increase of density with 
composition is much greater than the decrease with temperature, as discussed in 
$ 2.2. The compositional destabilization will dominate the thermal stabilization and 
for sufficiently large Rayleigh numbers, compositionally driven convection will 
occur. When the compositional Rayleigh number is very large this convection 
becomes very vigorous and mixes the melt uniformly (Krishnamurti 1970). Following 
the terminology given by Turner (1979), we describe this type of convection as 
' turbulent '. I n  typical laboratory conditions the compositional Rayleigh number is 
of the order of loll, and so the convection can be considered to be turbulent and 
generate a well-mixed melt. We note that in the laboratory experiments, to be 
described below, the compositionally depleted fluid, which rose from the basal 
boundary layer, mixed into the surrounding fluid and did not pool a t  the top of the 
tank. This mixing is effected by a combination of the development of shear 
instabilities in the rising plumes of depleted fluid and the lateral diffusion of 
composition before the plumes have travelled the extent of the tank. Figure 3 shows 
a shadowgraph of this compositional convection during a typical experimental 
run. 

I n  the present theoretical model, we consider the properties of the system averaged 
over several crystal widths, so that the horizontal variations on the scale of 
individual crystals in the thermal and compositional fields due to the composite 
nature of the solid do not complicate the problem (Elliott 1983). Further, we make 
the simplifying approximation that the solid/melt interface is flat. I n  practice, the 
interface will only be flat for a very small range of melt compositions about the 
eutectic (as discussed in $2.4) and beyond this range the interface will be mushy. 
I n  the experimental observations, described in $ 5 ,  however, a mush layer of about 
1 mm thickness formed and so this approximation is quite reasonable for this first- 
order model. We compare our theoretical model ($4.4) with experiments ( $ 5 )  in 
which such composite solid was grown, and obtain good agreement. The problem is 
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FIGURE 3. Shadowgraph of the compositionally driven convection during an experimental run. 

much more complex when an intermediate mush phase is included; Fowler (1985) 
described a preliminary study of this problem and we are currently investigating a 
more detailed model of the solidification which includes an intermediate mush 
zone. 

A simple model of the flat-interface solidification process has been proposed by 
Kerr (1984). In  his model, the cooling boundary was maintained above eutectic 
temperature and solid of pure component B (figure 1) was grown. His model 
constrained the melt to lie on the liquidus and he specified the solid/melt interface 
temperature to be the same as that of the melt interior. He determined the rate of 
cooling of the melt and the growth rate of the solid layer using a simple global 
balance of energy and composition. Because of these simplifications, details of the 
compositional and thermal fluxes a t  the solid/melt interface did not need to  be 
considered. However, such details are necessary to predict the solid composition 
when the cooling boundary is below the eutectic temperature. Therefore, we relax the 
boundary conditions that were imposed in his simple global theory and address the 
form of the boundary layers above the interface. 

4.2. The compositional Jlux 
The compositional flux at the solid/melt interface of a melt in turbulent 
compositional convection is analogous to the thermal flux a t  the cooled/heated 
boundary of a fluid in turbulent thermal convection. In  the thermal case, the motion 
is generated by heating from below or cooling from above, and the thermal flux may 
be considered independent of the depth of the fluid layer. Therefore the thermal 
Nusselt number, Nu, is given by Nu = & Raf, where &, is an empirically determined 
constant, and Ra is the thermal Rayleigh number. The temperature variations are 
confined to thin boundary layers near the horizontal boundaries, with an 
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approximately uniform melt temperature in between. The heat transfer across these 
thermal boundary layers is 

- 

FT = &( 9" A T 4 k r n A T ,  
Krn V 

where K ,  is the melt thermal diffusivity, v the kinematic viscosity, a the coefficient 
of thermal expansion and AT is the temperature jump across the thermal boundary 
layer. 

The analogous result for the compositional flux in compositionally driven 
convection is 

where D is the compositional diffusivity, P is the fractional increase in melt density 
per unit increase in composition (cf. a)  and& is an empirically determined constant, 
which may be different from & because there is no compositional flux across the 
upper boundary of the melt, in contrast to the analogous thermal convection 
problem in which there is a heat transfer across both boundaries. 

4.3. The thermal Jlux 
When determining the heat transfer from the melt across the compositional 
boundary layer and into the solid, two distinct situations need to be considered ; in 
an undersaturated melt the temperature and composition of the melt can evolve 
independently, while in a saturated melt the temperature is constrained to follow the 
evolution of the composition along the liquidus, as shown in figure 4. 

4.3.1. Undersaturated melt 
When the melt is undersaturated three-possible descriptions of the mechanism of 

heat transfer can be envisaged. These are briefly outlined below ; the main difference 
in the models is the dependence of the ratio of the thermal flux to the compositional 
flux on the ratio K,/D.  In most situations K,/D 9 1. In  the laboratory experiments 
( $ 5 ) ,  the compositional convection manifested itself as thin plumes of light fluid 
rising from the compositional boundary layer, with a compensating net downflow 
from the melt (figure 3) and we note here that models I1 and I11 (see below) best 
describe these results. 

Model I :  thermal diffusion across the compositional boundary layer. If the 
compositional convection is sufficiently vigorous it will mix the melt above the 
compositional boundary layer to a uniform temperature and composition. The 
temperature decrease between that in the far-field melt and the eutectic now occurs 
across the compositional boundary layer. This boundary layer has a thickness 
(DAC/Fc) and so the thermal flux will be of the form 

where p is a constant of order 1, prn is the melt density and c, is the specific heat of 
the melt. 

Model I is equivalent to the statement that as the cold light fluid rises through the 
compositional boundary layer, its temperature increases to that of the far field. This 
model predicts a very large heat transfer given the nature of the convection and the 
difference in the diffusivity of composition and temperature (K , /D) .  

Model II : thermal advection balancing thermal diffusion. If the convection-driven 
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FIGURE 4. Evolution of melt in the phase diagram, showing the discontinuity in rate of change 
of temperature with concentration. 

mixing is not efficient, parcels of compositionally buoyant, but cold, fluid can rise out 
of the compositional boundary layer and into the melt above, before their 
temperature has adjusted to  the far-field ambient temperature. By continuity, there 
is a compensating mean downflow of warmer heavy fluid. Away from the 
neighbourhood of one of the upward-rising, compositionally buoyant parcels the 
temperature will adjust from the interface temperature to  the far-field temperature 
over a length determined by a vertical thermal advection/diffusion balance for this 
mean downflow. The appropriate thermal lengthscale includes the melt thermal 
diffusivity K, and the mean vertical velocity towards the boundary layer, v, and so 
is K,/v. The velocity v is determined by the compositional flux, v - Fc/AC. This 
gives the effective thermal boundary-layer thickness 6T N K , A C / F ~ .  Therefore the 
thermal flux into the boundary layer is of the form 

where ,u is an empirically determinable constant. 
This model constrains the thermal flux to be rate-limited by the mean 

compositionally driven velocity field. I n  practice the heat transfer from an 
undersaturated melt may be greater than this because the light field rises in a series 
of narrow plumes, with lateral as well as vertical thermal diffusion. Howard (1964) 
introduced a simple mechanism for convection of a single-component fluid at high 
Rayleigh number based on the description of thermals breaking away from a 
diffusing boundary layer. I n  the present situation, we have a high Rayleigh number, 
double-diffusive interface in which the slower diffusing component (here the 
composition) is unstable. I n  model 111, we adopt an approach similar to  that of 
Howard (1964) to describe both the thermal and compositional boundary layers 
and then deduce an expression for the thermal flux in terms of the compositional 
flux. 

Mode2 III :  thermal diffusion balancing periodic sweeping of the boundary layer. We 
consider modelling the heat transfer from the melt when the buoyant fluid rises from 
the solid/melt interface as a series of pulses which are discrete in both space and time. 
Between successive pulses, which sweep away the fluid from just above the interface, 
diffusive compositional and thermal boundary layers develop. If t is the time elapsed 
since the previous sweeping motion, the thermal boundary layer will be of thickness 
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(K,t)i and the compositional boundary layer of thickness (Dt);. Thus, taking the 
spatial and temporal average, the mean thermal boundary layer is of thickness 
(K, /D)~ times that of the compositional boundary layer. This gives a thermal flux of 
the form 

where ,u is an empirically determinable constant. 
In  model 111 the effective thermal boundary-layer thickness is smaller than that of 

model I1 and so i t  predicts a greater heat transfer from the melt. However, because 
i t  incorporates the difference between thermal and compositional diffusivities in 
determining the boundary-layer thicknesses, it predicts a smaller heat transfer than 
model I. This difference in diffusivities is important when the convective mixing is 
not highly efficient. 

4.3.2. Saturation 
I n  the models of the heat transfer described above, the temperature and 

composition of the melt are assumed to evolve independently. However, when the 
melt becomes saturated, the constraint of thermodynamic equilibrium requires the 
temperature to  follow the composition along the liquidus. Therefore, in a saturated 
melt, the thermal flux is given directly in terms of the compositional flux 

(4.6) 

where m is the linear liquidus slope AT/AC. In the experiments, described in $5, 
some degree of melt supersaturation was observed; this is not possible in the 
equilibrium model but we consider this in more detail in $5. 

FT = P m  cm mFc > 

4.4 The mathematical model 
The solidification may be described quantitatively by the following equations 
which represent the compositional and thermal flux balances in the melt and a t  the 
solid/melt interface. We incorporate the approximation that the solid/melt interface 
is flat (on a scale greater than the crystal scale). Strictly, this is valid only when the 
melt composition is close to eutectic and composite eutectic solid forms, but 
comparison with experiments ($5) indicates that  i t  is a good approximation if the 
mush layer is thin (of order 1 mm). The liquidus slope m is taken to be a constant. 
A schematic of the solid/melt configuration for this model is shown in figure 5. 

At the solid/melt interface, the thermal balance has the form 

pm c ,  h(Tm - T,) +p&h +p, G, hcA(Tm- T,) (C, - CJ; = ks ('- 'I, ( 4 . 7 ~ )  
h 

where pm and ps are the melt and solid densities, h is the solid thickness, L the specific 
latent heat of fusion and h, = K,(g@/Dv)iD. We have introduced the parameter A to  
represent the ratio of the thermal to compositional flux a t  the solid/melt interface. 
We have assumed that the temperature profile in the solid is linear, which is a good 
approximation to the solution of the full diffusion equation provided that the solid 
growth is slow. At the solid/melt interface the compositional flux satisfies 

h(Cs-Crn) = h,(C,-C,)~, (4.7 6 )  

where C, is the composition of the solid. The cooling of the melt is given by 

pmcm(H-h) T, = - p , c r n h c A ( T , - ~ )  (C,-C,);, ( 4 . 7 c )  
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FIQIJRE 5. Geometry of the one-dimensional flat-interface solidification model discussed in $4. 

where H is the initial depth of the melt layer, and the composition of the melt 
decreases according to the equation 

(H-h)Cm = -h,(C,-C,)f. (4.7 d )  

To simplify these questions we introduce the non-dimensional parameters $, 8, #, 7, 
and h given by 

7 hc(Co-Ce)i 
H ’  a 

t =  -, where a = 

These give rise to the non-dimensionalized equations (dropping the caret on h) ,  

h ( i  - 8 +s) +A(I  - 8) (1 - $)f= - 
h’ ( l - h ) &  = (l-$)i, (4.8a7 b)  

($-#)h  = ( l - $ ) i ,  ( 1 - h ) 8  =A(1-8)(1-$)4, (4.8c, d )  

where the non-dimensional number 

)Lk) ks(Te - Tb) 
= ( h , H ( q - T J  (Co-Ce)~ 

is a measure of the ratio of the heat transfer across the solid to the heat transfer from 
the melt, and the Stefan number, 

P S  L 
p m c m ( T , -  C)’ 

S =  

The initial conditions take the non-dimensional form 

+ = O = $ = h = O  at 7 = 0 .  (4.8e) 

For a typical experiment using sodium carbonate ( $ 5 )  the above parameters have 
the values given in table 1 (a). 

The above model is valid after the initial quenching phase during which time the 
growth of solid is constrained by the crystal nucleation kinetics. However, it is 
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(u) Values for the laboratory experiment with an aqueous Na,CO, solution. The data have been 
collected from a variety of sources including Weast (1971), Huppert & Worster (1985) and 
Turner et al. (1986). 

K, = 1.3 x 
K, = 8.9 x 

c,=  1.9x1O3Jkg0C-' 

L = 3.0 x lo5 J kg-' 

c, = 5.97 Yo H = 2 2 c m  

cm2 s-l 
om2 s-' 

D = lo-' cm2 5-l 

g = lo3 cm s - ~  
C, = 3.9 x lo3 J kg OC-' p =  

u = 2.3 x cm2 s-' T, = -2.1 O C  

To = 18.4 O C  

T, = -20 "C c, = 9.37% 

1 

H 
01 = -h,(AC)f = 2.40 x 10-4K, s-' 

p, = 1070 kg m-, 

p, = 1012 kg m-3 

Empirical results indicate that y % 0.2, and so K ,  z 0.15. 

(b) Values for a Komatiite lava (from Turner et ul. 

K, = 5.0 x 
K, = 5.0 x 
C, = C, = 7.3 x 10' J kg-' "C-' 
v = 2.0 cm2 s-' 
L = 5.0 x lo5 J kg-' 
T, = 1200 "C 
c, = 15% 
AS = 3.42 

cm2 s-l 

cm2 ssl 

a = 2.0 x 10-13 8-1 

h, = 1 . 1 9 ~  lo-* cm s-' 
y = 2.46 using K, = 0.15. 

1986) 
D = lo-' cm2 s-l 
g = lo3 cm s - ~  
p =  1 0 - 6  

c, = 10% 

T,  = 1400 "C 
T, = 1600 "C 

H = lo5 cm 

TABLE 1.  Parameter values 

estimated from experimental observations that within a few minutes the nucleation 
kinetics are not important, and thus we ignore this effect here. 

4.5. Asymptotic solutions of the full equations 
Asymptotic solutions of (4.8) for small and large times have been obtained in the 
cases A % 1 and A - 1 and are given in the Appendix. I n  the analysis for A % 1, the 
thermal equilibrium assumption (94.3) is not imposed and the melt is predicted to 
become supersaturated ; in order to incorporate the equilibrium constraint, (4.6) 
(corresponding to A = 1 )  should be applied when the melt becomes saturated. When 
A % 1 ,  the asymptotic analysis reveals four growth regimes, which hold a t  different 
times during the solidification. When A = 1 ,  only the first and last of these regimes 
occur. We now discuss the physical balances involved in each of these four regimes. 
Note that the first three regimes may be identified in the numerical solution of the 
full equations shown in figure 6. From this solution it is seen that the two main 
regions of significant compositional change occur in regimes 1 and 4. 
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FIGURE 6. S = 10, y = 0.1, A = 100. (a) Thickness of the solid layer, A, as a function of time. (b) 
Evolution of the temperature, 1-19, and composition, 1 - +, in the melt with time. (c) Solid 
composition, 1-8, as a function of depth in the solid, h. 

When the solid first begins to form on the cold boundary, it grows very quickly so 
that the rate of production of enthalpy of fusion is sufficient to balance the large heat 
transfer across the thin solid layer. The heat transfer from the melt is not important 
in the energy balance. This is regime 1.  Initially the solid will have the same 
composition as the melt. However, the conductive thermal flux across the solid layer 
decreases as the layer grows. As a result, less latent heat of fusion is required to 
balance the heat transfer across the solid and the growth rate of the solid decreases. 
During the process, the compositional flux is approximately constant because the 
solid layer remains relatively thin. Therefore, with time, a greater quantity of solid 
of composition B is deposited in the composite solid, thus increasing its composition. 
This growth regime persists until the convective heat flux from the melt balances the 
conductive heat flux into the solid, and the rate of production of latent heat of fusion 
is not important in the thermal energy budget. This is regime 2. As the melt cools, 
the growth rate now increases to reduce the conductive thermal flux through the 
solid. This increase in the growth rate causes a decrease in the composition of the 
solid that is formed. When the melt has cooled sufficiently, the latent heat of fusion 
produced during the solidification again becomes important and balances the 
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conductive heat transfer across the solid. This is regime 3. The growth rate now 
decreases and the solid composition increases, as in regime 1. Regime 3 applies until 
the rate of decrease of the composition of the melt exceeds the decrease in the solid 
rate ($4.3.2). This occurs when a sufficiently large quantity of solid has formed. At 
this stage, the fourth asymptotic regime applies in which the solid composition 
decreases towards eutectic, and total solidification of the melt follows. 

In summary, the two main mechanisms generating solid stratification are the 
variation in the solid growth rate and the decay of the ambient composition. 

When A = 1, the melt is predicted to cool down to eutectic temperature at the 
same rate as its composition falls to eutectic composition. Therefore, the solution for 
small times, in which the composition of the solid deposited increases with time (cf. 
regime I), merges directly into the solution in which the compositional decay in the 
ambient melt causes the solid composition to decrease (cf. regime 4). Such a 
compositional profile may be identified in the numerical results shown in figure 7 for 
which A = 2. 

The equilibrium constraint 
If the equilibrium constraint is imposed by applying (4.6) (i.e. A = 1) when the melt 
becomes saturated then the solid can exhibit either all four of the regimes which are 
present in the case A + 1 or just the two regimes that occur when A = 1 described 
above. This depends upon the value of A and the initial degree of undersaturation 
and can be seen in the numerical solutions of the equations (for example figwes 11 
and 12). The asymptotic solutions given for A = 1 and A % 1 may be combined to 
predict the growth when the equilibrium constraint is imposed. 

4.6. Comparison of the predictions of the thermal j u x  models 
The difference in the thermal models may be seen by comparing the different 
predictions of the rate of cooling of the melt relative to the rate of decrease of its 
composition. Equations 4.8 ( b ,  d )  may be combined to give the relationship between 
the composition and the temperature of the melt : 

(1-8) = (l--@)A. (4.9) 

Equation (4.9) has been plotted for the values A = 1, 2, 3, 10, 100 on figure 8, 
together with a typical liquidus (dotted line). This shows the degree of super- 
saturation predicted by each of the values of A if the equilibrium constraint is not 
imposed when the melt becomes saturated. These curves may be compared with 
some experimental data (shown as plus signs) which are described later. With the 
equilibrium constraint imposed, the value of A is changed to 1 when the melt 
becomes saturated and the melt then follows the liquidus. This is a thermodynamical 
constraint rather than a fluid-dynamical constraint. 

If the melt is initially undersaturated, the temperature of the melt is expected to 
decrease more rapidly than the composition. Therefore, the melt will become 
saturated, which indicates that models I or 111, which correspond to A > 1, are the 
most applicable for an undersaturated melt. As a first approximation, we would 
expect the value of A to be independent of the degree of undersaturation, because the 
convection is turbulent. 

In  models I1 and 111 the thermal boundary layer is thicker than the compositional 
boundary layer. Therefore some of the melt in the thermal boundary layer may be 
supersaturated even if the melt is undersaturated in the far field. Such super- 
saturation may admit interfacial instability, with the formation of a mush (52.3). 
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FIGURE 7. S = 4.25, y = 0.56, A = 2. (a) Evolution of the temperature, 1-8, and composition, 
1 -$, in the melt with time, t ,  in min. (b)  Variation of solid composition, 1-4, with depth in the 
solid, h. 

Composition, 1 - @ 

FIQURE 8. Plot of temperature, 1 - 8, against composition, 1 - fi, in the melt, as it evolves in time. 
Curves given for the parametm A = 1, 2, 3, 10, 100 in (4.9). Experimental data are marked by + 
and 0 for two different experiments using aqueous Na,CO,. 

For typical experimental conditions, the morphological stability criterion of Hurle & 
Jakeman (1068) ($2.4) does not hold. Although we cannot apply this criterion 
quantitatively because it ignores the effect of the melt convection, we might expect 
a mush phase to develop. The observations indicate that this mush is thin 
(approximately 1 mm) and that as the experiment proceeds the mush becomes 
thinner. Thus it should not significantly change the nature of the solid stratification 
that would develop with a flat interface. 

The next section describes some laboratory experiments in which a supereutectic 
melt was cooled from below. These have been performed to establish the accuracy of 
the equilibrium model for the growth of composite solid. A value for A may then be 
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estimated and the most appropriate thermal-flux model of $4.3 can be determined. 
These experiments also enable an estimate for the constant K ,  in the compositional 
flux law to be determined. 

5. Laboratory experiments 
Several laboratory experiments have been performed in which a supereutectic 

aqueous solution of sodium carbonate was cooled from below at a temperature below 
the eutectic. The apparatus used is described in Huppert & Worster (1985) and Kerr 
(1984). In  brief, it consists of a Perspex rectangular tank, 2 0 x 2 0 ~ 4 0  cm, with a 
basal cooling plate through which a coolant is circulated. When a solid layer of 
thickness 10-15 cm had formed from the melt, the solid was removed and a vertically 
cored sample taken. This was divided into equal lengths, and the composition of each 
piece was measured, by a hand-held refractometer, to determine the variation with 
depth of the composition in the solid. 

5.1. General features 

We now describe the important features observed in a typical experimental run. At 
the beginning of the experiment, it  was difficult to maintain the temperature of the 
fluid in the cooling plate a t  a fixed temperature, well below the eutectic, since it was 
not pumped through the cooling plate sufficiently fast. Also, the initiation of 
nucleation was not immediate. However, after about an hour a constant basal-plate 
temperature was attained and a fine layer of crystals had formed on the base of the 
tank. Fairly strong compositional convection was generated in the melt by this 
growth. This was observed using a shadowgraph. A few crystals then began to grow 
in the plane sheets protruding from the solid/melt interface at various angles to the 
vertical. These crystals were of pure component B (Na,CO; 10H,O) and extended 
through a depth of a t  most 2 cm. From the experimental observations they appeared 
to be very sparsely distributed and although their number density increased with 
time, it was always small. On close inspection, the main solid/melt interface, below 
these crystals, had an uneven surface, with many small dendrite-like crystals 
protruding approximately 1-2 mm from the purely solid layer. It is this thin mush- 
type zone which was approximated as being flat in the model of $4, and the sparsely 
distributed sheet-like crystals are not accounted for in the theory. As the mush 
developed, the convection in the melt became very vigorous and extended 
throughout the melt. 

After about 12 hours the solid layer, now about 3 cm thick had enveloped all of the 
protruding sheet-like crystals and for the remainder of the experiment the interface 
between the solid and the melt just had a very thin mush-type structure, estimated 
to be of the order of 1 mm thick. The approximation of a flat interface in the 
preceding theory describes the subsequent solidification quite accurately. Towards 
the end of the experiment, the convection decayed as the melt composition tended 
towards eutectic and the transport in the melt became diffusively governed. 

5.2. Experimental results 
5.2.1. Melt evolution 

During the experiments, measurements were made of the concentration and 
temperature at various depths in the melt ; these confirmed the hypothesis that the 
ambient melt was well mixed and uniform (figure 3). Figure 9 shows the temperatures 
a t  3 different depths in the melt during a typical experiment. The lower thermistor 



The growth of compositionally stratijed solid 

20 I- 

45 

15 

0 

- 5  
200 400 600 800 lo00 

Time (min) 

FIGURE 9. Experimental measurements of the melt temperature a t  three depths in the melt. 

became frozen into the solid phase after the point marked with a cross. The evolution 
of the depth-averaged melt temperature with concentration is shown in non- 
dimensional form in figure 8 for two experiments (marked with crosses and circles). 
This suggests that when the melt is undersaturated the temperature decays faster 
than the composition, as anticipated ($4.2). Also it predicts that a significant degree 
of supersaturation is attained before the compositional control of the temperature 
becomes effective. The undersaturated melt evolution may be reproduced theo- 
retically using the approximate value A = 3 in the preceding theory (figure 8). The 
experimental results also show that on reaching some degree of supersaturation, the 
temperature follows the evolution of the composition, on a line approximately 
parallel to the liquidus. We deduce that the thermal flux is now constrained by the 
compositional flux with A = 1, and conclude that equilibrium effects are important. 
The supersaturation possibly represents surface energy effects ; we regard this simply 
as lowering the liquidus. 

An estimate for the value of y and a further estimate of A may be obtained from 
the gradients of plots of log (1  -0) and log (1  -$) as functions of time for the 
experimental data. These gradients are compared with those of the asymptotic 
solutions which apply when the melt is undersaturated. We have 

(1 - 0 )  - e-Ar, (5.1) 

and (1 - $) - e-'. (5.2) 

This comparison gives the estimates A x 3 and y x 0.2. Note that this second 
estimate of A agrees closely with that obtained earlier. Figure 10 shows the predicted 
evolution of (a) 6 and $, and ( b )  the solid thickness with time using these parameter 
values compared with the evolution measured in the laboratory (circles and 
crosses). 

5.2.2. The solid composition 

The measurements of the solid composition are shown on figure 11.  The 
composition varies with thickness in a fashion similar to that predicted by the model 
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FIGURE 10. (a )  Measured evolution of the melt temperature, 1 - 0, (0) and composition, 1 - $ ( + ) 
with time, and the corresponding prediction of theAequilibrium model of $4, with A = 3, S = 3.55 
and y = 0.2. (b )  The thickness of the solid layer, h, as a function of time, t ,  in min as measured 
experimentally (I) and as predicted by the theory with the parameters of (a) .  
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FIUURE 11 .  Variation of the solid composition, 1-4, as measured ( + )  in a block solidified from 
aqueous Pv’a,CO, and as predicted by the equilibrium model with A = 3, y = 0.2 and S = 3.55. 
Pv’ote the discontinuity in the theoretical prediction of the composition gradient caused by the 
equilibrium constraint. 

of 54.4 with A = 3 for the undersaturated melt, A = 1 when saturated, and y = 0.2 
(shown as the solid line). However there is some difference between the model 
solution and the laboratory measurements during the early part of the experiment. 
The experimentally observed compositions in the lower 2 cm of the solid are 
somewhat larger than those predicted by the model using the parameter values given 
above and do not change as rapidly with depth near the point of maximum 
composition as predicted by the flat-interface theory. This is interpreted as being a 
consequence of the development of the thin mush phase; the effect is amplified 
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because of the local vertical averaging involved in the measurements. The 
development of mush may also result in the composition further up the solid being 
lower than predicted theoretically. To maintain equilibrium on saturation of the 
melt, the value of A is changed to A = 1 ;  this produces a discontinuity in the 
theoretically predicted compositional gradient of the solid (figure 11). However, in 
practice, supersaturation effects in conjunction with the mush will act to make the 
solid gradient more continuous. 

In summary, the experiments indicate that the thermal flux appears to have two 
different forms according as the melt is undersaturated or saturated. When 
undersaturated, the value of A is approximately 3 and the melt cools to become 
saturated (figure 8). On reaching a certain degree of supersaturation, the thermal flux 
becomes constrained by equilibrium effects and the melt evolves along a line close 
and approximately parallel to the liquidus. At this point, A takes the value A = 1, 
ignoring the supersaturation. We deduce that in an undersaturated melt, the 
intermittent, compositionally driven sweeping motions balancing the thermal 
diffusion, suggested in model 111, work to increase the heat transfer from the melt 
predicted by the advection/diffusion balance of model 11. However, in a saturated 
melt, the evolution of the temperature is thermodynamically constrained to follow 
the evolution o f  the composition along the liquidus. The flat-interface solid model 
predicts the solid composition reasonably accurately and the error due to ignoring 
the formation of the mush is not too great. 

6. Application to magma chambers 
The model proposed here may be used to predict the extent of the stratification in 

the base of a solidified magma chamber. We apply the model to an idealized 
solidifying magma chamber. We assume that there is efficient hydrothermal cooling 
outside the chamber which maintains the roof, base and sidewalls at constant 
temperature. Further, we assume that when a large body of molten magma is 
deposited in the chamber, the solid that initially forms a t  the base of the chamber 
is produced by local cooling. This is not necessarily true a t  a later stage, when solid 
may form a t  the base owing to cooling elsewhere (Turner, Huppert & Sparks 
1986). 

Figure 12 shows the predicted stratification generated by this process, up to the 
point a t  which one half the material in the chamber has solidified on the base. The 
figure was calculated using parameter values appropriate for a magma, shown in 
table 1 (b ) ,  in conjunction with the equilibrium model of $4.6. The figure indicates 
that the composition of a typical heavy element in the magma may increase by over 
40% of its initial composition above eutectic in the lower 300 m of a 1 km deep 
chamber, with a reversal in the compositional gradient above this region. (The 
magma is treated as a binary melt with the typical heavy element as the component 
B in the model of $4.) This could be a significant result in the interpretation of 
geological data;  for example, the layering in the Skaergaard intrusion (McBirney & 
Noyes 1979). The model may be used qualitatively to understand the initial 
solidification on the base. We note that in a real situation the basal solid may be 
contaminated by solids formed a t  the roof and sidewalls of the chamber which fall 
onto the floor. Also, the model ignores the cooling of the melt through the sidewalls, 
and the resulting change in the convection and composition of the melt. Some of the 
effects of sidewall cooling have been considered by Adornato & Brown (1987). 
However, these effects should not significantly affect the nature of the composition 
near the chamber floor. 
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FIGURE 12. Predicted variation of a heavy component, 1 -$, with depth, R ,  in a magma 
chamber which has solidified from below. Here y = 2.46, S = 3.42 and A = 3. 

7. Conclusions 
The compositional stratification produced in composite solid grown from a binary 

melt on a lower cooling plate of fixed temperature depends upon whether the melt 
composition is sub- or supereutectic. In both cases, the solid/melt interface must be 
a t  the eutectic temperature in order to grow composite solid. 

In  a subeutectic melt, a similarity solution for the diffusion-governed growth holds 
until the far-field conditions change. In  this solution, the solid has a fixed 
composition, irrespectively of whether an intermediate mush phase forms during 
the solidification. When the far-field conditions change, global conservation of solute 
requires the solid composition to change. 

In a supereutectic melt, compositionally depleted, and therefore light, fluid is 
released a t  the solid/melt interface ; this generates vigorous convection in the melt 
which changes the heat and mass transfer across the solid/melt interface. In the 
present study we have derived a model of this solidification process in which the 
solid/melt interface is approximated as being flat. The solid composition is predicted 
to increase initially as the solid growth rate decreases, but subsequently to decrease 
when the solid layer is thicker and the composition of the melt decreases. Laboratory 
experiments with an aqueous solution of sodium carbonate confirmed these 
predictions, and indicated that the solid/melt interface consists of a mush phase, 
approximately 1 mm thick. The laboratory results are consistent with the flux laws 
Fc = A(AC)i and FT = A ~ , c , A ( A C ) ~ ( A T )  for compositionally driven turbulent 
natural convection, with a stabilizing temperature field. The parameters h and A 
have been estimated empirically as h = 0.15D(gp/Dv)*, and A = 3 for an under- 
saturated melt and A = 1 for a saturated melt of aqueous sodium carbonate. 

Weaknesses in the present theory include the neglect of supersaturation effects, 
observed in the laboratory, and the simplifying approximation of a flat solid/melt 
interface. We are presently investigating the incorporation of a mush phase in the 
solidification model and it will be interesting to compare the results of the present 
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study with the more complex model. It would seem from the analysis of this study 
that a similar compositional profile will develop when solid forms behind a mush 
phase. The present composite eutectic model gives a first approximation to the form 
of the solid stratification possible. 
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work, through many discussions and some assistance with the laboratory 
experiments. Useful comments from Don Hurle on an earlier version of the 
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Appendix 
We present in this Appendix asymptotic analyses for small and large times of (4.8) 

for cooling a supereutectic melt from below. We assume that y = O( 1) and S = O( 1) .  
For small times, all variables will be small, and so we linearize to obtain 

$ - r ,  6 - l-edA+. (A l a ,  b)  

The initial thermal balance is between latent-heat production and heat conduction 
through the solid. This gives the leading-order behaviour for the thickness of solid 

h - (gy. 
This solution holds until either h and @ = 0(1), which occurs when T - O(1, (S+ l ) /y)  
or until Ah(l -O)( l -#)  - O(y) ,  which occurs when T - y(1+S)/2A2. 

We now consider the case in which A 4 1, which corresponds to thermal-flux 
models I and I11 ($4.3). To proceed further in this case it is instructive to introduce 
the variables p = AT and d = heP which yields 

(S+e-p) (dd,-d2)+d = A r e 2 ,  for h,+ < 1. (A 3) 

In these variables the initial asymptotic regime is 

This solution breaks down when 7 - O(y(1 +S)/2A2) and then the dominant balance 
in the thermal equation is between the convective heat flux from the melt and the 
conductive heat flux across the solid, giving 

(A 7) d - -e2p. Y 
A 

The nonlinear terms are not important in this regime because 
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The approximations (A 4, A 5 )  for 8 and @ are still valid even though the form of the 
solution for h has changed. When p - O( 1) the linear balance in the energy equation 
breaks down. The melt has now cooled down sufficiently that the latent-heat 
production again balances the heat transfer across the solid. This third growth 
regime for h begins when e2p - A/[y(l  +S)]  and d - l/(l +S). At this point h 4 1 and 
7 Q 1 and therefore the asymptotic solutions for 8 and @ of regime 1 again apply. The 
linear term in the equation 

(S+ e-,) (dd, - d 2 )  + d = - e2p (A 8) 
Y 
A 

is not important and the nonlinear terms dominate, giving rise to the solution 

Here d ( 0 )  and po may be evaluated by matching regimes 2 and 3. Hence 

This solution regime applies until 7 - 0 ( 1 )  at which point the asymptotic 
approximation for @ breaks down. 

These three asymptotic forms for h may be seen on figure 6, which gives the 
numerical solutions for h, 8 and @ as functions of time and q5 as a function of depth 
in the solid. Before the depth becomes 0(1), the approximation for @ breaks down 
when 7 - O(1) and the 4th regime begins. However, the solution for h given by 
regime 3 still holds. For A 9 1, this change to regime 4 occurs after the change from 
regime 2 to 3, which happens when 

For the 4th regime we introduce the variables 6 and p where 

a =  I -@,  = 1-8,  Q 1. 

The non-dimensionalized equations (4.8) reduce to 

h,(S+p)+Ap&= -, Y (1-h)6, = -8, (A l l a ,  b)  

( l - & - + ) h , = $ ,  ( l - h ) p r  = -Ap& (A l l c ,  d )  

giving p = , ~ ~ ( 8 / 6 , ) ~ ,  where 6, and p4 are obtained by matching regimes 3 and 4. 
Using the solution for h given in regime 3, it is found that 

h 

The solution for h given in regime 3 is still asymptotic because the relevant thermal 
equation is now 

(A 13) 
h,(S+p)+Ap& =-. Y 

h 

Here, the term Ap& representing the heat transfer from the melt is negligible. 
The above analysis describes the evolution of the temperature and composition of 

the melt and thickness of the solid in the four different growth regimes. The 
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composition of the solid grown varies according to each of these asymptotic 
regimes. 

In  regime 1, the composition is of the form 

+7-( 2(1+8)7  ) .  
I n  this quenching phase the composition increases as the solid grows. When the heat 
flux from the melt becomes more important than the rate of production of latent 
heat, this solution merges into regime 2. At the start of regime 2, the growth rate 
decreases to a minimum when little latent heat is required. This produces a 
maximum in the solid composition, as there is more time for crystals of component 
B to be deposited owing to the compositional flux. After merging to regime 2, 
d - ( y / A )  e2" and so h - ( y / A ) &  giving h, - y&'. Thus a t  the start of regime 2,  
h, - y and q5 - - l / y .  For comparison, the numerical result shows that the maximum 
composition corresponds to q5 - -9 whereas the asymptotic analysis predicts that 
q5 - - 10 for the parameters of figure 6 ( c )  (S = 10, y = 0.1); this partially confirms 
the validity of the solutions. Beyond this point in regime 2, the solid thickness 
increases exponentially and its composition decreases. The composition will be of the 
form 

At the end of regime 2, this has the value 

where 

Regime 3 then gives a third asymptotic form for q5, that 

$ - 7--(;) (1 -$) (2 (p-p,,) +d2(0) ec2po . )t 
Thus q5 decreases again, corresponding to an increase in the composition of the solid 
being grown. This occurs because the solid growth rate decreases now that the latent- 
heat production balances the heat transfer across the solid. Therefore the 
compositional flux, which has not yet decayed significantly, has more time to  supply 
composition to the solidifying material. However, regime 3 merges into regime 4 when 
the rate of decrease of the compositional flux exceeds the rate of decrease of the solid 
growth rate and the solid composition falls. This may be seen in the asymptotic form 
of the solution for regime 4 

4 1 -[---(log 1 s  (=) + (h - h 4 ) ) I 3  - Sh - [ -- 1 - S (log (E) + h - " ) I 4 .  4 3y l - h ,  y 4 3y l -h ,  
(A 19) 

The decrease of melt composition and consequently the solid composition occurs over 
a timescale of order 7 - O(S /2y )  which is the time over which the melt solidifies as 
a whole. Thus the stratification produced by this process will extend over a 
significant thickness of the solid. When A = O(K,/D), which corresponds to thermal 



52 A .  W. Woods and H .  E .  Huppert 

model I, the following solid thicknesses are predicted for S = 4.25, y = 0.3 and 
K,/D = 100: 

Asymptotic regime Timescale Thickness grown 

1 2.2 8 , 0.07 ern 
2 9 min 0.53 cm 
3 7.7 hr 7.7 cm 
4 2 days 12 cm 

Whereas when A = O((K,/D)$,  which corresponds to thermal model 111, the 
following values are predicted : 

Asymptotic regime Timescale Thickness grown 

1 
2 
3 
4 

Now we consider the case A 

which simplifies the equations 

4 min 0.66 ern 
43 min 1.0 cm 

7.7 hrs 7.4 cm 
2 days 12 em 

= O(1).  When A = 1 equations A 11 ( b ) ,  ( d )  give 

to 
8 = $, (A 20) 

h,( 1 +S-  $) + (1 - @$= 1 h' (A 21a) 

( l -h)@-,=  ( l - $ ) g ,  ($-$)hT =(l--$)g. (A 21 b, c) 

For small times, the same linearized asymptotic equations hold as given in the 
previous case (regime 1 ) :  

(A 22a-c) 

and the solution remains valid until 7 - 0(1), 7 - 0((1 +X)/2y) or T - O($(S+ 1) y ) .  
It fails initially when 7 - O(1) (we assume that $(S+ l )y  = U(1))  and tho solution 
enters the second asymptotic regime. The dominant balance in the thermal equation 
is now 

(A 23) 
Y hh, = -. 
S 

However, the composition and temperature fields in the melt now evolve as 

This solution holds until the composition and temperature in the melt have decayed 
to eutectic, a t  which time the solid depth will be of order 1.  As before, the 
composition evolves as 

$ rv T - ( y  (A 25) 

in the initial quench solution. However, in the second asymptotic regime, the 
composition evolves as 

- (yr (1 - 6 [log (1 - (FY) + (FYI)". (A 26) 
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which is equivalent to regime 4 of the previous problem. Thus the composition falls 
to eutectic over a time of order 7 - S/2y - 4. The numerical solution for A = 2 
shown in figure 7 indicates that  @ - 1 and h - 0.8 when r - 5 ,  which agrees with the 
order-of-magnitude analysis. Above h - 0.8, q5 - 1 (S = 4.25, y = 0.56). 
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