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Lee waves in a stratified flow. 
Part 4. Perturbation approximations 

By JOHN W. MILES? AND HERBERT E. HUPPERTT 
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A two-dimensional stratified flow over an obstacle in a half space is considered on 
the assumptions that the upstream dynamic pressure and density gradient are 
constant (Long’s model). A general solution of the resulting boundary-value 
problem is established in terms of an assumed distribution of dipole sources. 
Asymptotic solutions for prescribed bodies are established for limiting values of 
the slenderness ratio s (heightlbreadth) of the obstacle and the reduced frequency 
k (inverse Froude number based on the obstacle breadth) as follows: (i) s-f 0 with 
k fixed; (ii) k+O with s fixed; (iii) k .+ 00 with ks fixed. The approximation 
(i) is deveoped to both first (linearized theory) and second order in s in terms of 
Fourier integrals. The approximation (ii), which constitutes a modification of 
Rayleigh-scattering theory, is obtained by the method of matched asymptotic 
expansions and depends essentially on the dipole form (which is proportional 
to the sum of the displaced and virtual masses) of the obstacle with respect to a 
uniform flow. A simple approximation to this dipole form is proposed and vali- 
dated by a series of examples in an appendix. The approximation (iii) is obtained 
through the reduction of the original integral equation to a singular integral 
equation of Hilbert’s type that is solved by the techniques of function theory. A 
composite approximation to the lee-wave field that is valid in each of the limits 
(i)-(iii) also is obtained. The approximation (iii) yields an estimate of the maxi- 
mum value of ks for which completely stable lee-wave formation behind a 
slender obstacle is possible. The differential and total scattering cross-sections 
and the wave drag on the obstacle are related to the power spectrum of the dipole 
density. It is shown that the drag is invariant under a reversal of the flow in the 
limits (i) and (ii), but only for a symmetric obstacle in the limit (iii). The results 
are applied to a semi-ellipse, an asymmetric generalization thereof, the Witch of 
Agnesi (Queney’s mountain), and a rectangle. The approximate results for the 
semi-ellipse are compared with the more accurate results obtain by Huppert & 
Miles (1969). It appears from this comparison that the approximate solutions 
should be adequate for any slender obstacle within the range of ks for which 
completely stable lee-wave formation is possible. The extension to obstacles in a 
channel of finite height is considered in an appendix. 
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1. Introduction 
We continue our investigation of the generation of lee waves by, the consequent 

drag on, and the parametric range of (statistically) stable flow for an obstacle 
in a two-dimensional, steady, inviscid, stratified shear flow in which the 
upstream dynamic pressure and density gradient are regarded as constant 
(Long’s model). In part 1 (Miles 1968a), we considered a thin barrier in either 
a channel of finite height or a half space. In  part 2 (Miles 19683), we considered 
a semi-circular obstacle in a half space. In  part 3 (Huppert 81 Miles 1969)) we 
extended the latter analysis to a semi-elliptical barrier. We refer to these papers 
subsequently as I, 11, and 111, followed by the appropriate equation number 
therefrom. We consider here an arbitrary cylindrical obstacle, say C ,  of character- 
istic base length b and height h in a half space and give asymptotic solutions for 
limiting values of one or more of the parameters 

s = h/b, k = N h / U ,  K = ks = N h / U ,  (l.la, h,  c) 

where N is the intrinsic (Viiisala) frequency and U is the wind speed of the basic 
flow; we consider the necessary modifications for a channel of finite height in 

b P 2 b +  
FIGURE 1. Finite obstacle in seini-infinite, stratified flow. 

appendix B. We require both the height and the cross-sectional area, say A ,  of 
the obstacle to be finite and define b as half the base length, if finite, or as pro- 
portional to A / h  if the base length is infinite. 

Let x and y be dimensionless, Cartesian co-ordinates with b as the unit of length, 
r and 6’ the corresponding polar co-ordinates (see figure l), 

Y = S Y t 4  (1.2) 

the description of the lower boundary (7 = 0 outside of C ) ,  and hS(x, y) the vertical 
displacement of a given streamline relative to its horizontal trace in the basic 
flow; then Long’s model yields the following boundary-value problem for the 
half-space: 

Vz8+ k2S = 0, (1.3) 

S(x,e?/) = ?/(x), (1.4) 

and S(z,g) = ofr-4) (x+ -m). (1.5) 

Long’s model also requires €Sv < 1 ( 1 . G )  
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at every point in the flow as a necessary condition for static stability (€8, > 1 
implies that the vertical gradient of the density is locally positive and that the 
flow is locally reversed). 

Lyra’s model of a uniform flow (no shear) in an isothermal atmosphere also 
leads to the boundary-value problem posed by (1.3)-( 1.5) if the Boussinesq 
approximation and the restriction to infinitesimal disturbances also are invoked 
(Lyra 1943; Queney 1948; Yih 1965, pp. 66-74). The restriction (1.6) then is 
satisfied by hypothesis. 

We give a general solution of (1.3) and (1.5) in $2 below in terms of a distri- 
bution of dipole sources along the base of the obstacle. Invoking (1.4) then yields 
a linear integral equation for the density of this distribution. We consider the 
determination of this density in the following limits: ti) s+O with k fixed; 
(ii) k+O with s fixed; (iii) k - t c o  with K fixed. Only (i) is relevant for Lyra’s 
model. 

The limit s+O yields the planar approximation (we also use the adjectives 
Jirst-order and linearized to describe this approximation), in which the left-hand 
side of (1.4) is approximated by S(z, 0 i- ). The resulting solution is due essentially 
to Lyra (1943) and Queney (1948)’ who gave solutions for a rectangle and the 
Witch of Agnesi, respectively, on the hypotheses of Lyra’s model. The extension 
to an arbitrary configuration follows by linear superposition. The calculation 
of the drag in this approximation appears to be due originally to Blumen (1965). 

The limit k - t O  permits the Helmholtz equation (1.3) to be approximated by 
Laplace’s equation in the neighbourhood of C and the field at  large distances 
from C (kr+co) to be represented by a single dipole source, the strengthofwhich 
may be determined by solving the problem of uniform irrotational flow over C. 
The corresponding procedure in diffraction theory is known as the Rayleigh- 
scattering approximation (Rayleigh 1597), and it seems appropriate to extend 
that description in the present context. We give the details in $ 4 and show that 
the limiting representations of the scattering cross-section and the drag (defined 
in Ej 3) as k + 0 are proportional to the square of the dipole form of C with respect 
to a uniform, horizontal flow and are otherwise independent of C. We also give a 
simple approximation to  this dipole form that depends only on the area and 
height of the obstacle and appears to be fairly accurate for a wide variety of 
cross-sections. 

The first-order approximation is not uniformly valid as k + co in consequence 
of the implicit assumption ks < 1. We are therefore led to investigate the asymp- 
totic limit k+co with K fixed. We find (in $5) that the integral equation for the 
dipole density then reduces to a singular integral equation of Hilbert’s type, 
which we solve by invoking known techniques of function theory. This solution 
has the happy property of reducing to the first-order solution in the limit (i) and 
therefore provides auniformly valid (with respect to k )  approximation for small s. 

We also infer from this asymptotic solution that the upper bound on K im- 
plied by the constraint (1.6)’ say K,, is less than one. This suggests that the asymp- 
totic approximation may be expanded in K, and we find that it typically suffices 
to neglect terms of O ( K ~ )  relative to unity for K < K ~ .  [The formulation of $ 5  is 
meaningful, and the conclusion K, < 1 valid, only for E < 1. We recall (see 111) 

32-2 
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that K, increases monotonically from 0.7 to 1.7 for a semi-elliptical obstacle as E 
increases from 0 to a3.l 

We return to the limit (i) in $ 6  and obtain a second-order (in E )  approximation 
to the dipole density by expanding (1.4) about E = 0 on the hypothesis that the 
obstacle is continuous (as a rectangular obstacle, for example, is not). The limiting 
form of this approximation as k+ 0 is especially simple and provides a second- 
order approximation to the dipole form that appears to be superior (even for 
non-small E )  to the simpler approximation given in $4 for smooth obstacles. 

We apply the results of $02-6 to a semi-ellipse and an asymmetric generaliza- 
tion thereof in $7,  the Witch of Agnesi in $8,  and a rectangle in $9. The various 
Fourier and Hilbert transforms that enter the calculations in these last sections 
may be found in the tables of Erdblyi, Magnus, Oberhettinger & Tricomi (1953b). 

2. General solution 
We pose a general solution to (1.3) in the alternative forms 

where 

f m  

( 2 . 1 ~ )  

(2.lb) 

is (we anticipate) a dipole solution of (1.3), f ( x )  is the equivalent dipole density 
of the obstacle, 

734 = J co f(8 exp ( - d l  (2.3) 
-m 

is its Fourier transform (the factor n proves convenient in the subsequent de- 
velopment), and the operator 9 yields the real part of its operand. Letting 
y -+ 0 in (2.1 a, b) and invoking Fourier’s integral formula, we obtain 

6(x, O + )  = f(x), a&, O + )  = rr8(x), (2.4a, b) 

where $(x) is Dirac’s delta function. We infer from ( 2 . 4 ~ )  thatf(x) = 0 outside of 
C; accordingly, we may replace the limits of integration in ( 2 . 1 ~ )  and (2.3) by 
k 1 for an obstacle of finite base 2b with its mid-point at x = 0. It remains possible 
thatf(x) = 0 over some finite portion of x = ( - 1,  l), as in the neighbourhood of 
a blunt end (see below). 

Invoking the boundary condition (1.4) in (2.1 a) yields an integral equation 
for f(x). We consider the solution of this integral equation in $55 and 6 below 
(and, implicitly, in $4), but note here that the solution in the planar approxima- 
tion follows directly from ( 2 . 4 ~ ) :  

f (x)  -t?w ( E  -+ 0) (2.5) 

provided that f ( x )  is uniformly bounded. The approximation is not uniformly 
valid in the neighbourhood of a stagnation point (where 7’ -t co), but a uniformly 
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valid solution may be obtained by regarding the flow as potential within a radius 
of O( l /k)  of such a point. For example, a uniformly valid, linearized approxima- 
tion for the semi-ellipse ~ ( x )  = (1 -x2)$ is given by f(x) = (1 - €2 - x2)&, with 
f ( x )  = 0 in the intervals between the foci at  x = rf: (1 - s2)# and the stagnation 
points at x = & 1. 

Considering next the requirement (1.5), we find that a stationary-phase 
approximation to (2.2) on the hypothesis (Queney 1948) that the path of inte- 
gration passes under the branch point at  tc = k yields 

6 , (x , y )  N H(x)(2nk/r)~cos (kr-&~)sinO{l +O(l/kr))+O(l/x) (kr+m),  (2.6) 

where H ( x )  = { O , + ,  l} (x < 0 , x  = 0,x  > 0 )  (2.7) 
is Heaviside's step function. We conclude that (1.5) is satisfied for the assumed 
path of integration and that the alternative choice of a path over the branch 
point would have yielded upstream, rather than downstream, waves. 

Replacing x by x - 6 and r by 

R = { ( x - ~ ) ~ + Y ~ ) *  (2.8a) 

N r-EcosO+O(r-l) (r+m) (2.8b) 

in (2.6), substituting the dominant term in the result into (2.la), and invoking 
(2.3), we obtain the asymptotic lee-wave field in the alternative forms 

a(x, y) - (zk/nr)* sin  OH(+^ - 8) J f(5) cos {k(r - 6 cos 01 - gn}d6 ( r  + co) 
m 

--m 

(2.9a) 
(2.9b) 

[The presence of H ( x )  in (2 .6)  implies that the upper limit on the integral of 
(2.9a) should be x, rather than m; however, the difference is negligible, either 
because of the finite breadth of the obstacle or because of the reatriction to 
obstacles of finite cross-sectional area, which implies that the contribution of the 
range (2, 00) to the integral is asymptotically negligible.] We remark that the lee- 
wave field given by (2.9) is transverse in the sense that the radial and tangential 
components of the velocity field, sU{ - r-l8@, 8,) relative to the basic flow, are 
O(kb-*)  and O(kb-*) ,  respectively, as kr +a. 

We now go on to consider additional representations of 6, and to confirm its 
dipole character. Introducing the changes of variable 

= (2nk/r)fr sin efz(gn - O) g { F ( k  cos 8)  exp [ i (kr  - in)]}. 

tc = kcost (0 6 tc < k) (2.10 a )  
= k cash t (a > k) (2.10b) 

in (2.2) and invoking the identity [Erdhlyi, Magnus, Oberhettinger & Tricomi 
1953a, $7.12(18) after replacing x and y therein by y and ix, respectively] 

nYl(kr) exp[i(*n- O)] = exp(ikzcost)sin (kysint-t)dt 1: 
-2f rexp  [-kysinht]sinh(ikxcosht+t)dt, (2.11) 
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where r and 8 are the polar co-ordinates, we obtain the alternative representa- 
tions 

6,(x, y) = k cos {k(x cos t + y sin t ) }  sin t dt 

+kJoWexp( -kysinht) cos (kxcosht)sinhtdt (2.12a) 

(2.12 b) 

Comparing (2.12b) with II(2.1) and 11(2.7), we find that 8, is identical with the 
first of the complete set of functions, {an}, determined in I1 and has the Fourier- 
series representation? 

6,(r cos 8, r sin 8) = - &nkY,(kr) sin 8- 4k 2 m(4m2 - 1)-1J2m(kr) sin 2mO. 

sb" 
= - &nkY,(kr) sine- k sin (kx cos t )  sin (ky sint) sintdt. s,"" 

W 

m = l  
(2.13) 

Letting kr -+ 0, we obtain 

S,(r cos 8, r sin 8)  = r-l sin 8{ 1 + O(k2r2 log kr))  (kr -+ O ) ,  (2.14) 

which identifies 6, as a dipole solution of (1.3) and (1.5). 

2n-pole behaviour as r + 0: 
We construct a related set, say {$n}, by differentiation, such that & exhibits a 

an(%, y) = ( - a / a ~ ) " - ~ { 6 1 ( ~ ,  y) / (n-  l)!} 

+ r-n sin n8{ 1 + O( k2r2)) 

w H ( x )  (2nk/r):sin 8%{( - i k  cos 8)n-lexp [i(kr - +T)]) 

(2.15a) 

(2.15 b )  (kr  -+ 0) 

x{l+O(l/kr)} (kr+m).  (2.15~) 

The set (an} is complete in O = (0, n) for fixed r ,  and each of the an satisfies (1.3) 
and (1.5). [The set {&%(r, O ) }  in I1 also has these properties, anddn-+& in each of 
the limits of (2.15b, c); the two sets are linearly dependent, but not identical.] 
We expand 6(x, y) in the & by expanding S,(z - [, y) in a Taylor series about 
< = 0 in (2 .1~~) :  

where 

(2.16) 

(2.1.7 a) 

= {(ia/aa)n~(a)>,=o (2.17 b)  

is the nth moment off (x). We designate Fo as the dipole moment; see 54 below. All 
of the Fn exist for a finite obstacle. but not, in general, for an infinite obstacle; 
e.g. the representation (2.16) is not possible for the Witch of Agnesi ( $ 8  below). 

t The dipole solution (2.13) appears to have been given originally by Lyra (1943) in 
connexion with the problems of a plateau and a rectangular obstacle in the context of the 
model described in 1. 
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We obtain still another representation of 6, by taking the Fourier-sine trans- 
form of (1.3) with respect to y, invoking (2.4b) at y = 0, and then requiring the 
transform to satisfy (1.5). The result is 

+ jr v( v2 - P - 4  exp { - ( v2 - k2)* I z I }  sin vy dv, (2.1 8) 

where H ( z )  is given by (2.7). 

3. Scattering cross-sections and drag 
The differential scattering cross-section of the obstacle is given by [I1 (1.8a)l 

a( 0) = s26 lim r( 8: + k2d2) 
T+rn 

( 3 . 1 ~ ~ )  

= 2ne2k36 I F (  k cos 0) 12 sin2 6H(  &r - 0) , (3.16) 

where (3.16) follows from (3 . la)  by virtue of (2.9b). The ratio of the energy 
density in the scattered lee wave to that in the basic flow is a(8)/6r. The total 
scattering cross-section is given by 

The lee-wave drag is given by {I1 (1.10 b)]  

(3.3a) 

(3.3b) 

where q = +U2 and p are the dynamic pressure and density in the basic flow. 
The result (3.36) was given by Sawyer (1959) and Blumen (1965) in the context 
of Lyra's model. 

The function JF(a)j2 is essentially the power spectrum of the dipole-distri- 
bution function f(x). Invoking (2.3), integrating by parts, and invoking the 
implicit requirements that IP(a)12 be real and tha t j (  f co) vanish, we obtain the 
alternative representations 

(3.4b) 

(3.4c) 
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The last representation may not be valid for infinite obstacles. Substituting 
(3.4a) and (3.4b) into (3.26) and (3.3b), respectively, and invoking the integral 
representations 

(3.5) 

and H,(x) = (22177) (1-t2)*sinztdt so’ 
for the Bessel function J ,  and the Struve function H,, we obtain 

and 

Substituting ( 3 . 4 ~ )  into (3.2b) and (3 .3b) ,  we obtain the power series 

Q = & T ~ E ~ E ~ ~ { F ~ + ~ ( F ~ - F ~ F ~ ) ~ ~ +  ...} (3.9) 

and D = 37/.e2k3qb{Fi ++(F; - Fo Fz)kZ + . . .}. (3.10) 

The representations of (3.7) and (3.8) are especially convenient for large k (see 
$ 5  below), whereas those of (3.9) and (3.10) are especially convenient for small 
k (see $4 below) provided that the Fn are finite. 

We infer from (3.3b) that C,/k is a monotonically increasing function of k for 
prescribed IF(a)l2 (as in the planar approximation) and tends to a finite limit as 
k -+ 03 if I F ( a )  I = o(a-4) as a -+ oc) [a condition that is satisfied if q(x) is continuous, 
but is violated by a rectangular obstacle; see ( 9 . 2 ~ )  below]. We infer from the 
latter result that the planar approximation to D vanishes like U as U -+ 0 for 
fixed N and therefore (since D vanishes like 1/U as U-+w for fixed N )  exhibits 
a maximum with respect to U a t  some finite value of U.  This conclusion is, 
however, of limited significance in consequence of the nonlinear increase in 
dC,/dk as k + 03, which implies that D would tend to infinity as U -+ 0 i f  the basic 
model were valid for K > K,. 

Reverse-jbw theorem 
We remark that both Q and D are invariant under the transformation 

f ( 4  -+f ( - x). 
Observing that q(x) +q( - 2) is equivalent to a reversal of the basic flow, we infer 
that the planar approximations to both Q and D are invariant under such a 
reversal independently of the symmetry of the obstacle. We anticipate that this 
reverse-flow theorem holds also for k-+ 0 with E fixed (see $4 below). It does not 
hold for k-tw with K fixed (see $5  below) unless the obstacle is symmetric, i.e. 
unless q(z) = q( - x). 
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4. Rayleigh-scattering approximation (k + 0) 

obtain the inner and outer asymptotic approximations 
Letting k+O in (2.15b) and (2.15~) and substituting the results into (2.16), we 

m 

6(x, y) N Fn-lr-nsinnO{l +O(kZr210gkr)} (kr-+O) (4.la) 
n = l  

N F0H(x)(2nk/r)~sin8cos ( k r - g ~ )  (kr+oo). (4.lb) 

It would be consistent with the error in (4.1 a) to retain both the dipole and the 
quadrupole terms in (4.lb); however, the contribution of the latter term to 
Q and C, in the subsequent development would be negligible within the approxi- 
mation already inplicit in the determination of Po on the basis of potential flow. 

The expansion (4.1 a )  typically diverges in r < 1 and cannot be used to de- 
termine the Fn directly from the boundary condition at  the body. We therefore 
require an appropriate continuation of (4.1 a). The flow in the neighbourhood of 
the body is potential by virtue of the reduction of Helmholtz's equation (1.3) to 
Laplace's equation as k -+ 0 with r fixed. Let 

$(x, Y) = Y - a x ,  Y) (4.2) 

w(z) = q5 + i+ (x = refe) (4.3) 

be the corresponding stream function, 

the corresponding, complex potential, and C* the reflexion of C in 
if w(z) can be determined such that 

= 0. Then, 

$ = O  on C+C*, (4.41 

IS satisfies (1 .a), and the Fn are determined uniquely by the analytical continuation 
W 

W(Z) = Z + B  2 Fnn-l~-n, 
7L= 1 

(4.5) 

the imaginary part of which yields (4.la) after invoking (4.2). The Fn are real 
by virtue of the symmetry of C + C* with respect to y = 0. 

Letting k+O in (3.9) and (3.10) and introducing 

we obtain 

and 

within error factors of 1 + O(k21og k ) .  
The parameter A ,  is the dipole form of C with respect t o  a uniform, horizontal, 

potential flow and has the following, general properties (Polya 1947; Polya & 
Szego 1951, Note G; see alsoLamb 1932,572a): (i) A,isinvariantunderareversal 
of the flow; (ii) A ,  is a monotonically increasing set-function of C, such that 

Al(Ci) < A,(C) < A,(C,) if Ci c C c C,; (4.9) 
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A ,  = ( A  + M ) / n ,  (4.10) 

where (4.11) 

and the integration is over the exterior of C (note that M has the dimensions of 
area). 

The dipole form for a semi-ellipse of base 26 and height h is given by (Lamb 
1932, 372a) A ,  = Qh(b + h).  (4.12) 

Thin plate 

Semi-ellipse 

Circular-arc 

Full circle 

Semi-circular 
ditch 

Rectangle 

Lemniscate 

Joukowsky 
profile 

Finned 
semi-circle 

Obstacle 

I T  

b2 

2 h a = - tan-1 - 
n b 

a(2-a) 
3(1 

See (A 5)-(A 8) 

2tL2 

E ( 2  - E )  12 

0 

0 

< 0.1 

( 0  < a < I )  

0.1 

< 0.2 

0.1 

< 0.1 

< 0.2 

TABLE 1. The dipole form, A,, for various obstacles, as considered in appendix A. 
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Using this result in conjunction with (4.9), we obtain the following bounds to A ,  
by constructing inscribed and circumscribed semi-ellipses, with semi-axes b,, 

(4.13) 
hi and b,, h, 

These bounds are valid for arbitrary C, but we expect them to be useful primarily 
for convex C. 

-41, &(b,+hi) < A1 < &(bo+ho) Aio. 

The result (4.12) also suggests the semi-empirical approximation 

A 1' 2- A * -  = *-1A (4.14) 

for any finite obstacle of height h. This approximation evidently is equivalent to 
the approximation of M by the virtual mass of a semi-circle having the same 

M + M ,  = &nh2, (4.15) height, that is 

as is exactly true for a semi-ellipse. The examples given in appendix A and 
summarized in table 1 suggest that (4.14) is a fairly good approximation in 
general, but that (4.15) may not be correspondingly good. In  particular, we 
find that M = O[ha log (b/h)] for a rectangle of base 2b and height h as hlb -+ 0,  so 
that (4.14) is satisfied exactly in thelimit, whereas (4.15) is not even qualitatively 
valid. [The approximation (4.15) is certainly not new, but we have been unable 
to find any systematic investigation of its accuracy.] 

We give alternative approximations to A ,  and 41, in $ 6  below, that are exact 
to second order in B if yi(x) is continuous over the closed interval of the obstacle. 
These approximations, which also are exact for a semi-ellipse, are compared with 
those of (4.14) and (4.15) for a finite, asymmetric obstacle in $ 7 and for aninfinite 
obstacle in $ 8. The latter comparison implies that (4.14) and (4.15) are not satis- 
factory for infinite obstacles. 

5. Low-speed limit (k  + m ) 
We now construct a singular integral equation forf(x) in the limit k+ 00 with 

K fixed and reduce its solution to the solution of the Dirichlet problem (of potentia.1 
theory) for a half-plane. 

We begin with the following definitions: (i) %? is a class of functions of the real 
variable x that are continuous and belong to L2( -a, co). (ii) C is a class of 
functions of the complex variable x = x+ixi that are holomorphic in the half- 
plane xi > 0 and O(l / lx l )  as lxl+00 in xi > 0. (iii) The Hilbert transform 
(Titchmarsh 1948, chapter 5) off(x) is given by 

where the Cauchy principal value of the integral is implied by the crossed in- 
tegral sign; f*(x) is in %? iff(x) is in %'. (iv) The Cauchy integral off(z), given by 

is in C and reduces to 
f(x) = f(x) - ij*(x) (Xi = 0 + ) (5.3) 
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on the real axis. Accordingly, f(x) is a solution to the Dirichlet problem for pre- 
scribed f (x) in % [the most general solution is f + iC, where C is a real constant 
that vanishes identically in the present context; see Titchmarsh (1948, chapter 5) 
and Muskhelishvili (1953, chapter 2 )  for more general discussions]. 

Turning to the construction of the integral equation for f (x), we replace x by 
x in (2.2), let k-tm and xi+O+ while holding x and y fixed, and integrate by 
parts with respect to a to obtain the asymptotic approximation 

a1(x, y) N ~%{ix-~exp (iky)) + O(k-l)  (k-t  GO, xi-+ 0 + ). (5.4) 

Substituting (5.4) into ( 2 . 1 ~ )  and invoking (5.2) and (5.3) on the hypothesis that 
f (5) is in V, we obtain 

S(x,y) N g{exp(iky)f(x)} (xi+O+) (5.5a) 
= f(x) cos ky + f*(x) sin ky ,  (5 .5b)  

where, here and subsequently, the asymptotic limit k+co is implicit, and the 
error is O(l/k) relative to unity. Invoking the boundary condition (1.4), we set 
y/s = 6 = 7 and k = K / B  in (5 .5b)  to obtain the singular integral equation 

(5.6) 

Muskhelishvili (1953, $47) gives a solution of an integral equation that is 
equivalent to (5.6), but we find it rather more economical to proceed inde- 
pendently. Multiplying (5.6) through by exp (q*) and invoking the definition 
(5.3) for 9, we obtain 

g(x) = 9 exp ( ~ 7 * )  = 9{exp ( i q ) f }  (xi = 0 +). (5.7) 

Now, by hypothesis, both 7 and f are in %, in virtue of which g also is in %f and 

(5.8) 
each of q, 

g(x) = exP [iml(z)lf(x), 
and f(x) = exp [ - i q  @)I m) (5.9) 

is in C. Letting xi -+ 0 + in (5.9) and invoking (5.3) and (5.7), we obtain 

f- if* = (9 - ig*) exp [ - K(T* + ir)l (5.10) 
or, equivalently, f = 7 cos KT + csin KT ( 5 . 1 1 ~ )  
and f* = qs inq-ccos tq ,  (5.1 1 b)  
where (5.12 a)  [(x) = - exp [ - K?,I* (x)] g, (2) 

We remark that (5.11a) yields the correct solution in the limit K + O ,  namely 

Substituting (5.9) into (5.51;~) or, equivalently, (5.11u, b )  into (5.5b), we obtain 

(5.13 a) 

= ~cos{Ic(y-sy))-Sjsin{k(y-sy)) (5.13 b)  
= ( q 2 +  c2)* cos {Ic(y - € 9 )  + tan-1 (&I)} ( 5 . 1 3 ~ )  

f (4 + 7 ( x ) .  

6(x, y) N g{exp [i(ky - q ) 1  g} (xi = 0 + ) 
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as alternative, asymptotic representations of S(x, y) in the limit k + 00 with x and 
ky fixed. We may obtain representations that are, respectively, valid as r+m or 
uniformly valid with respect to r by substitutingf(s) from (5.11a) into ( 2 . 9 ~ )  or 
(2 . la) .  

Differentiating (5.13~) with respect to y, we obtain 

(eag)max = [ ~ { ? ( x )  + C2(~)}’Imax, (5.14) 

from which we infer that the stability criterion (1.6) is violated for sufficiently 
large K,  say K > IC,. Indeed, since 

(5.15) 

we infer that K, < 1 for a slender obstacle. This suggests that g(x)  andf(x) may be 
expanded in powers of K within the range of physical interest. 
Turning to the calculation of the scattering cross section and drag, we invoke 

the identity (essentially an analogue of the well-known Dirichlet integral) 

f m  

in (3.7) to obtain Q 2 ~ z b  J f2(x:)dx 
--m 

(5.16) 

(5.1 7 a) 

00 

= 2 K 2 b  / (7 cos K 7  + csin q)2dx, (5.17 b)  
--m 

where (5.17b) follows from (5.17a) by virtue of (5.11a). 

to 2/77 as x+m, we reduce (3.8) to 
Invoking the fact that H,(x) is a bounded function of x that tends uniformly 

J --m J - w  

P r n  

= 2 K  1 - f ’ (z) f*(z)dx 

(5.18a) 

(5.18 b)  
J -m 

= ( 2 K / d / w  Jrn f’(z)f’(5)log I.-tl-ldSdx, (5.18 c) 

where (5.18b) follows from (5.18a) by virtue of (5.1) and ( 5 . 1 8 ~ )  follows from 
(5.18a) by integration by parts. [It can be shown that the error in passing from 
(3.8) to (5.18a) is O(l /k)  relative to unity.] The aerodynamicist will not miss the 
correspndence between ( 5 . 1 8 ~ )  and both Prandtl’s result for (the lifting-line 
approximation to) the vortex drag of a finite-wing in an incompressible flow and 
von KArrnbn’s result for the wave drag on a pointed, slender body of revolution 
in supersonic flow (Ward 1955, p. 204). 

Substituting (5.11a, b)  into (5.18b), eliminating g’(x) from the integrand by 
integration by parts, and remarking that 

- m  --m 

(5.19) 
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by virtue of the fact that 7 vanishes at the end-points of the integration, we 
reduce the result to 

00 

c, = - K /  {2~(:(2)+Kg2(2))r’(x)dx. (5.20) 
-00 

We notice that this result is not generally invariant under a reversal of the flow 
(see last paragraph in $3 above). 

We obtain a composite approximation to thelee-wave spectrum that is valid for 
all k as E -+ 0, for all E as k -+ 0, and for fixed K as k + 00 by the simple expedient of 
multiplying the Fourier transform of (5.11 a)  by 1 + ( M / A ) .  It would appear t,o be 
adequate for this approximation to expand ( 5 . 1 1 ~ )  and (5.12b) in K to obta.in 

r m  r 

We add that (5.21) is valid for all a if E < 1 ( M / A  -+ 0); however, the calculation 
of the lee-wave field and drag require F ( a )  only in a < k. 

6. Second-order approximation 
Invoking (1.4) in (2.1 a) ,  we obtain the integral equation 

--m 

for f (x). We have already established that the perturbation field of the obstacle 
is given to first order in E by the planar approximation (2.5). We now determine 
a second-order approximation to this field, approximating the kernel in (6.1) by 

4(x: - 5, €7 (4) = - 5, 0 + + E(aSl(x - 5, Y)/aY}v,o+r(~)  + W2) (6.2) 

on the hypothesis that the resulting integral over 5 converges (see below). Sub- 
stituting (6.2) into (6.1), invoking (2.46) and introducing 

(6.3u) g , (4  = - n-l(aux, Y)/~Y)z/=o+ 
1 
77 Y+O + 

= - lim gJOw (a2-k2)9exp{iolx:-(a2-k2)~y}da, (6.3b) 

we obtain 

(6.4a) 

(6.4b) 

where F(a)  is the Fourier transform off(x), as defined by (2.3). Replacingf(5) by 
its first approximation, q(5), in ( 6 . 4 ~ )  and designating the corresponding first 
approximation to F(a)  by 

(6 .5 )  
m 

~ ( a )  = n-11 r(5) exp ( - ia5)dt 
- m  
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in (6.4b), we obtain the second approximation to f (x) in the alternative forms 

( 6 . 6 ~ )  

( a 2  - kZ)*.W(a) exp (im) da (6.6b) 

Replacing a by ,tI in (6.6b) and then taking the Fourier transform of f@)(x) in 
accordance with (2.3a), we obtain 

J - -m 

where (pZ-k2)* = -i(k2-/P)*sgnp (Jp1 < k). (6.8) 

The approximation (6.6) is not uniformly valid in the neighbourhood of a 
stagnation point but suffices for the first-order approximations, within error 
factors of 1 + O(ez), to the lee-wave field and wave drag for an obstacIe that is not 
more blunt than a semi-ellipse. It breaks down completely for an obstacle for 
which q(x) is discontinuous; e.g. f(x) - ~ ( x )  is O(elogc), rather than O(e), for a 
rectangular obstacle. Uniformly valid solutions may be obtained with the aid of 
the techniques discussed by Van Dyke (1964). 

We obtain the limiting form of the integral in ( 6 . 6 ~ )  by substituting g, from 
(6.3 b) ,  setting k = 0, integrating by parts with respect to 5, invoking the require- 
ment that q(5) vanish at the end points, carrying out the a-integration, letting 
y+O+ and invoking (5.1): 

limJm k-0 - m  g,(x-t)y(E)d[ = 1 T?J-+O+ lim S-4, ?1(E)dE~~aexp( -ay )cos~a(s - t ) jda  

1 P m  r m  

in virtue of which f(2)(x)+r(z){l--c&(x)) (k+O).  (6.9) 

Carrying out a more elaborate investigation, we find that the error term in (6.9) 
is typically O(k2, ek2 log k), although it may be O ( k )  if q(x) does not vanish either 
identically or exponentially as 1x1 +a, as in the example of the Witch of Agnesi 
(see 5 8 below). 

We obtain alternative representations of the second-order approximation to 
the dipole form either by setting a = k = 0 in (6.7) or by substituting (6.9) into 
(4.6) to obtain Po and then invoking (4.7) and Ff) = A / ~ b h :  

(6.10 a) 

(6.10 b)  
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Comparing (6.10a, b) to (4.12), we obtain 
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(6 . l la )  

m 
= -  [ h(x)h*(x)dx [h(s) = hy(x)] (6.11 6) 

J -m 

as the corresponding approximations to the virtual mass. Introducing the 
Fourier-series representation 

m 

1 
hy(x) = 2 hn sin no, x = cos 0 (6.12) 

for an obstacle of finite base, we obtain 
a0 

M = tnxnh: (6.13) 
1 

and 
1“ A ,  = +bhl+- C .hi. 
2 1  

(6.14) 

We remark that these last results also may be obtained by expanding the 
mapping of C + C, on the unit circle in powers of E: and invoking Polya’s (1947) 
results for M and A,  in terms of this mapping. 

Turning to the limit k- tco ,  we substitute (5.4) into (6.3a) to obtain the 
required approximation to g1 and substitute the result into ( 6 . 6 ~ )  to obtain 

f(4 = r (xH1 - K 7 * ( 4 1  ( h - t o ) ,  (6.15) 

as otherwise may be inferred from (5.11a) and (5.13) within the same approxi- 
mation. 

7. Semi-elliptical obstacle 

h, for which 

and, from (6.5), P(””(a) = a-lJ,(a). (7.2) 

The results are summarized and compared with those for the obstacles treated 
subsequently in table 2. 

Substituting (7.2) into (3.3b), expanding J2,(a) in a power series, and integrating 
term by term, we obtain the first-order approximation 

As a first example, we consider a semi-elliptical obstacle of base 2b and height 

y(x) = (l-s2)+If(l-[sI) (7.1) 

m ( - )nk2n+3 c,, = 7r€ c -~ (€+ 0). 
n=o(n+ l)! (n+2) !  (2nT-3) 

= 1 - k-1J1(2k) 
= 1 + 24(2k)  - 2J0(2k), 

(7.3) 

(7.4a) 

(7.4c) 

(7.4b) 

we obtain k + J , ( 2 k ) - / ~ i J O ( ~ ) d x ]  ( E + O ) ,  (7.5) 
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which contains only tabulated functions and yields the asymptotic approxi- 
mation? 

The results for CD1/(Q7rek3) and C,&TK, which tend to  unity as k+O and k-tco, 
respectively, are plotted in figures 2 and 3. 

c,, N 7rK{1-k1+0(kf+)} (S+o, k+CO). (7.6) 

I I I I I I I I I I I 

" 0  2 4 6 8 10 

k 

FIGURE 2. The first-order approximation to  tho wave drag, relative to the limiting value 
as k + 0. - -, generalized ellipse (a  = 1) ; - , ellipse; - - -, rectangle; - - - , Witch 
of Agnesi. 

Substituting (4.14) into (4.8), we obtain 

which reduces to the leading term in ( 7 . 3 )  as e+O. 
The Hilbert transform of (7 .  l), as defined in (5. l), is given by 

Substituting (7.8) into (5.12b), we obtain 

( 7 . 9 b )  

(7.9c) 

where the identity between ( 7 . 9 ~ )  and (7 .9b )  may be established by introducing 
the integral representation of the modified Bessel function I ,  and reversing the 
order of integration, Carrying out the corresponding calculation for 1x1 > 1, we 
find that the maximum value of 5 occurs at  x = 1.  Substituting ( 7 . 9 ~ )  into 

t We infer from the aforementioned analogy with Prandtl's lifting-line theory [see 
remark following (5.18c)l and (7.6) that the minimum drag for an obstacle of prescribed 
breadth and area in the joint limit E + 0, k + co is D = TK@. 



Lee waves in a strati$ed pow. Part 4 515 

(5.14)) we find that the maximum value of q2+ c2 also occurs at  x = 1 and that 
K~ = 0.67; accordingly, ( 7 . 9 ~ )  provides an adequate approximation within the 
rangeofphysicalinterest. Substituting (7.1) and ( 7 . 9 ~ )  into ( 5 . 1 1 ~ )  and (5.20)) we 
obtain 

f ( x )  = (1 -x2)&{i + K X + ~ K 2 x 2 + 8 K 3 x ( g + x 2 ) + 0 ( K 4 ) }  (7.10) 

and CD N nK{1+ zK2  + o(K4, I C - ~ ) }  (k + a). (7.11) 

k 

FIGURE 3. The first-order approximation to the wave-drag, relative to the limiting value 
for a semi-elliptical obstacle as k + m. - - -, rectangle; -, ellipse; - - , generalized 
ellipse (a = 1 ) ;  - - -, Witch of Agnesi. 

A numerical integration of (5.20)) in conjunction with (7.9b)) reveals that the 
first and second approximations provided by (7.11) are accurate to within 28 and 
3.5 %, respectively, for 0 < K < 0.67. 

Substituting MIA = E ,  (7.1)) and (7.8) into (5.21), we obtain (after some 
manipulation) 

P(a) = (1 + B ) ~ - ~ ( J ~ - ~ K J ~ + ~ K ~ ( J ~ - ~ ~ ~ - ~ J , ) + ~ C K ~ + O ( K * ) }  (a  < k ) ,  (7.12) 

where C is a real constant. Substituting (7.12) into (3.3b) and proceeding as in 
(7.3)-(7.5)) we obtain the composite approximation 

cD = (1 ++[(I + 2 ~ 2 ) c ~ , + n K 3 { 1 ~ - - 2 ~ ~ ( 2 1 ~ ) - - k - 3 ~ , ( 2 k )  + y - 2 - 2 } 1  ( 7 . 1 3 ~ )  

= (1 + “ ) 2 c D l  (KJO), (7.13 b) 

where C,, is given by (7.5). The approximation ( 7 . 1 3 ~ )  is compared with the 
approximations of (7.5)) the aforementioned numerical integration of (5.18)) and 
the solution obtained in I11 in figures 4 a )  b. 

33-2 
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I 1 1 1 1 1 1 1 
0 2 4 6 8 10 

k 
FIGURE 4a. The wave drag on a slender semi-elliptical obstacle as given by the first-order 
approximation of (7.5), the asymptotic approximation of (5.20), the composite approxima- 
tion of ( 7 . 1 3 ~ )  and the reference solution of 111, all for B = 0.1. 

.;:[ 
0.4 

1 2 3 4 5 
k 

FIGURE 46. The wave drag on a slender semi-elliptical obstacle as given by the first-order 
approximation of (7.5), the asymptotic approximation of (5.20),  the composite approxima- 
tion of (7.13a) and the reference solution of 111, all for E = 0.3. 
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We give only the limiting approximations to the total scattering cross section, 
as obtained from (4.7) and (5.16~): 

Q + +&2( 1 + s)2k3b (k + 0) (7.134 
and Q zK2b{i + gK2 + 0(~4,1c- l ) }  (k + a). (7.14) 

Generalized ellipse 
We illustrate the effects of asymmetry by generalizing (7.1) to obtain the family 

y(x) = ro( l+ax)(1-x2)~~(1- IxI )  (la1 < 11, (7.15) 
where yo and a are implicitly related by the requirement that (from the definition 
of e) max(q(x)) = 1. Invoking (6.5), we obtain 

P(l)(a) = qoa-l{J,(a) - iaJ,(a)}. (7.16) 

FIGURE 5. The area parameter ?lo, the virtual-mass parameter (1 + +d) v;, and K, for the 
generalized ellipse. 

Substituting (7.16)into (3.3b) and proceeding asin (7.3)-(74, weobtain the first- 
order approximation 

C,, = m y ;  (1 + +a2)k + (1 + a2) J1(2k)  - Jo(x)dx + a2k-1J2(k) , 

(7.17 a )  
(7.17 b)  

[ ( s:” I 1 
N nKyi(1f *uz - (1 + a2) k-1 + Ofk-5)) (k -+ a). 

The result (7.17a) is plotted in figure 6. 
The Hilbert transform of (7.15) is 

y*(x) = yo[&+ (1 + ax)( -x  + ( ~ 2 -  l)*H( 1x1 - 1) sgnx}]. (7.18) 
Substituting (7.18) into (6.lOb) and (6.11b), we obtain 

A ,  = ~yohb{~+e(l+&a2)yoj  (7.19) 
and M = +7rP$( 1 + &a”. (7.20) 
The area and virtual-mass parameters, y,, and (1 + *a2) qt, are plotted in figure 5. 
The maximum deviation of the latter parameter from unity is 11 yo, which pro- 
vides additional support for the simple approximation of (4.15). 
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Substituting (7.15) and (7.18) into (5.12b), we obtain a double integral for 
{(x); substituting {(x) into (5.14), and carrying out a numerical evaluation, we 
obtain the values of IC, plotted in figure 5. Calculating L(x) through 0(tc2) and aub- 
stituting the result into (5.20), we obtain 

(7.21) 

We infer from (7.21) that the drag is not invariant under a reversal of the flow 
for Ic > 1 and that the drag of the obstacle with a cusped leading edge and blunt 
trailing edge (a  > 0 )  is larger than the drag on the reversed obstacle (a+ -a) .  

C, = nq${ 1 + $a2 +avo K + j( 1 + $a2 + +u4) $ K ~  + O ( K ~ ,  Ic-l)} ( I c  -+ co). 

1.2 

1.0 

- 

- i 
- 

- 

- 

n I I ., 
0 2 4 6 8 10 

k 

FIGURE 6. The wave drag on a generalized cllipse, as given by (7.17). 

8. Witch of Agnesi 
The infinite obstacle described by 

v (x )  = (1  + x y  (8.1) 
and known as the Witch of Agnesif- in the special case e = 1, was considered 
originally by Queney (1948; see also Yih 1965, pp. 68-71) in the context of a 
uniform flow in an isothermal atmosphere; however, he did not calculate the 
drag. Its Fourier transform, as defined by (6.5), is 

(8.2) F(l)(a) = exp ( -  la]), 

which provides an especially simple basis for the second-order calculation of Q 6. 

t The curve described by (8.1) appears to have been studied originally by both Fermat 
and Grandi (Archibald & Court 1964). Grandi designated it both oersiora (because the 
curvature takes opposite signs) and, in a letter to Galileo (1718 p. 393), Versiera. Maria 
Agnesi studied it  in her Imtituziorsi Analitiehe (1748; see Colson ?801) and also designated 
it Versiera, a term that evidently has no direct translation but is similar to the Italian word 
nvversoria, which has the first and second meanings adversary and devil. The Reverend 
John Colson (1801) appears to have opted for a feminine equivalent of the latter meaning 
and designated the curve Witch of Agnesi, by which name it is still known. 
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Substituting (8.2) into (3.3b)) we obtain 

(8.3a) 

I = 3rek3 1 - - I c + p +  ... 1 :  (8 .3~)  

s n ~ { i - p + o ( l c 4 ) )  ( E + ~ , k + c o ) ,  (8.3d) 

where L, is a modified Struve function. 

1.25 

1.0 

I I I I I I 1 I I I 
0 2 4 6 8 10 

k 

FIGURE 7. The first- and second-ordor approximations to the wave drag on the 
Witch of Agnosi. 

We remark that CD11sk3 contain odd, as well as even, powers of k ,  despite the 
fact that 7 is even in x. This is in contrast to the other configurations considered 
here and reflects the fact that ~ ( z )  decays only algebraically as 1x1 +co. We also 
remark that the limiting drag as E + co and E -+ 0 is half the corresponding drag 
on a semi-elliptical obstacle of the same height (referring to the footnote in $ 7 ,  
we recall that the latter drag is the minimum possible for prescribed breadth and 
area). The result (8.3a) was obtained by Sawyer (1959) and evaluatednumerically 
a t  Ic = 1 and k = co. The result (8.3b) is plotted in figures 2 and 3. 

Substituting (8.1) into (6.10a) and (6.11a), we obtain the second-order 
approximations A, = bh(1 +is) 
and M = tnh2. 

The latter result differs from the simpler approximation (4.15) by a factor of two, 
which suggests the inadequacy of that approximation for infinite obstacles. 

The. Hilbert transform of (8.1) is 

7/*(x) = -x(l+x2)-1. (8-6) 

Substituting (8.1) and (8.6) into (5.12b), calculating c(x), and substituting the 
result into (5.14) and (5.20)) we obtain K, = 0.85 and 

CD N i m K { 1  +:gK2+ 0 ( ~ 4 ,  k-1)) ( I~+.oo) .  ( 8 - 7 )  
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Substituting (8.2) into (6.7), we obtain 

IP(2)(a)12 = exp(-2lal)+ekK1(2k)exp(- IaI)cosha+O(e2) (1.1 < k). (18.8) 

Substituting (8.8) into (3.3b), we obtain 

C, = CD1{1 + 4ekKl(2k)} + &7e2k4Kl(2k) + O(eS), (8.9) 

where C,, is given by (8.3), and K,  is a modified Bessel function of the second 
kind. The result (8.9) is plotted in figure 7.  We emphasize that it is not uniformly 
valid as h - c o ,  in which limit the terms of O(E) are exponentially small. 

9. Rectangular obstacle 
We illustrate the effect of discontinuities in height by considering the extreme 

case of a rectangular obstacle [Lyra (1943) gave the wave patterns for this ob- 
stacle but did not calculate the wave drag]. Substituting 

r (x )  = H ( l -  I x ~ ) ,  r’(x) = 8 ( 1 + ~ ) - 8 ( 1 - ~ )  

I I 

(9.1 u, b )  

07  I 1 I 1 

0.01 0.1 1.0 10 100 

hlb 

FIGURE 8. The dipole form of a rectangular obstacle, as given by (A 5). 

into (3.8), we obtain (after some reduction) 

c,, = 2K/02Kx-fH1(x)dx (E+O)  (9.2a) 

63 

= 6 C (-)“[(n+ 1)r(n+~)r(n+9)1-lkzn+3 (9.2b) 

N ( 4 ~ / n ) ( ~ + l o g 4 k - l )  ( k - t a )  ( 9 . 2 ~ )  

as the first-order approximation to the drag coefficient; H, is a Struve function. 
The result (9.2 b )  is plotted in figures 2 and 3. 

The dipole form for the rectangular obstacle is given by (A 5) in appendix A 
and is plotted in figure 8. 

n=O 
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The Hilbert transform of (9 . la)  is 

Substituting ( 9 . 1 ~ )  and (9.3) into (5.12b) and (5.11a), we obtain 

and 

(9.3) 

We infer from (9.4) and (5.14) that K ~ + O  as k+oo in consequence of the dis- 
continuity in q(x) at x = 1. The anomalous behaviour of C, implied by (9 .2~)  as 
k-t oo is therefore of rather limited interest. 

This work was partially supported by the National Science Foundation under 
Grant GA-849, by the Office of Naval Research under Contract Nonr-2216(29), 
and by a Sydney University Post-Graduate Travelling Fellowship (H. E. H.). 

Appendix A. Dipole-form examples 
The following examples are summarized in table 1. They are based on results 

that are either well known (see, e.g. Milne-Thomson 1960) or may be regarded as 
straightforward exercises in potential theory. We emphasize that they are offered 
primarily in support of the approximation (4.14) and are not necessarily of direct 
physical interest. 

Circular-arc mound or ditch 
Circular-arc mounds of base 2b and height 

h = btanQan ( - 1  < a < l), (A 1) 
with a as the family parameter,? permit the determination of w in co-axal 
co-ordinates; we obtain 

Negative values of a yield ditches, for which we must regard A as negative and 
(4.14) as inapplicable. The validity of the calculation for a real fluid is especially 
questionable for la\ > +. 

A ,  = +a( 2 - a) (1 - a)P2b2. (A 2 )  

Letting a+O (shallow mound or ditch), we obtain 

A ,  = (&+a2+$a3+ ...) b2 (A 3 4  

and 4n2 
45 

fa+&r2a2+-a3+ ...) b2. 

Letting u = Q, we recover a semi-circle of radius a = h = b. Letting a+ 1, we 
obtain a full circular obstacle of radius a = b/( 1 - a) n, such that 

A,+&r2a2 = +PA, (a+ 1). (A 4) 
t The parameter a, as used in this section, has no connexion with the wave number in 

$2  above. 
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Numerical calculations reveal that (A, /A,)  oscillates about unity (thereby 
proving that A,  is neither an upper or lower bound to A,)  in a! = ( 0 , l )  with a 
maximum deviation of roughly 10 yo a t  a = 1 and of roughly 5 yo in a = (0,2). 

Letting a = - 4, we obtain a semi-circular ditch of radius a = h = b, for 
which A ,  = - 5a2/27 and the wave drag (as k -+ 0 )  is roughly 34 % of that for a 
semi-circular mound of radius a. Letting a+ - 1 ,  we obtain a circular ditch 
with an opening of approximately ( 1  +a) times its circumference and a drag 
proportional to ( 1  + a)4 for fixed radius. 

The limiting case of a full circular obstacle provides a fairly extreme test for the 
bounds of (4.13). Choosing the inner ellipse as a vertical plate (hi = 2a, b, = 0) 
and an outer ellipse that has matching ordinate, slope, and curvature at  the 
summit (h, = 2a, b, = 2*a), we obtain Ali = 2a2 and A,, = (2+2*)a2. The lower 
bound is understandably poor, but the upper bound is only 4 yo high. 

Rectangular obstacle 
The complex potential for a rectangular obstacle of width 2b and height h may 

transformation, which yields the be obtained through a Schwarz-Christoffel 
parametric results 

b = I ~ ( K ) ,  h = If(2/(l-K2)),  

where f ( ~ )  = E ( K ) - ( ~ - K ~ ) K ( K  

and E and K are complete elliptic integrals. 
The ratio A,/A, ,  which is plotted in figure 8, tends to unity as either h/b+ 0 

or b/h -+ 0 and exhibits a maximum departure from unity of roughly 20 yo, In 
particular, A ,  = 1.40h2 and A ,  = 1-14h2 for h = b.  The corresponding lower and 
upper bounds obtained by inscribing and circumscribing semi-circles are A ,  == h2 
and A ,  = 2h2; circumscribing a semi-ellipse and adjusting h,/b, to minimize 
A,, we obtain A, = 1.81h2 (for h, = 0-655b0). 

The most interesting special cases are given by 

A ,  = 4h2+(A/2m)(log(4~h/b)- 1}+OO(b21og(h/b)} (b/h+O) (A 7 )  
and 

A ,  = mr-l.4 + (2h2/m2){log (4mblh) + +} + O{(h3/b) log (b/h)} (h/b + 0). (A 8) 

These results evidently do tend to (4.14), but only very slowly, as either b/h or 
hlb tends to zero. We infer from (A 8) that 4mh2 is not even a qualitatively valid 
approximation to the virtual mass M as h/b-+O. We contrast this with the 
qualitatively valid implication of (A 3) for a circular-arc mound, namely that 
M + &h2. ( 8 /m2)  as a! + 0. 

Lemniscate 
The lemniscate of Bernoulli provides an example of an obstacle with an inter- 
mediate valley. Choosing 21 as the distance between foci, we obtain 

r 2  = 2c0s2e (0 G e G m) (A 9) 

as the profile in polar co-ordinates. The corresponding height and area are 
h = +l and A = 12. The determination of the complex potential [Miles & Backus 
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1968; the solution given by Basset (1888, @114,117)  in his treatise is incorrect] 
yields A ,  = g12. Combining these results, we obtain 

(A 10a, b)  A ,  = 2h2 = $4, A ,  = { & + ( 4 / n ) } h 2 .  

We add that the bounds of (4.13) are poor in consequence of the valley in C. 

Joukowsky profile 

Airfoils provide convenient examples of asymmetric obstacles. We consider the 
Joukowsky profile obtained from a circle of radius I with centre at  6 = €1 in the 
complex {-plane, namely 

z = { + ( 1 - € ) 2 C - : - ' ,  ] { - E l  = 1. (A l l a ,  b )  

Invoking the well-known solution for the flow around the circle, we obtain 

A ,  = 4 2 - 4 1 2 .  (A 12) 

The area is given by A = 2ne12/( 1 + ~ ) 2 ,  but h(e) is a rather complicated, alge- 
braic expression. A typical case is e = 8, for which A = 1-3912, h = 0.811, 
A ,  = 0-7512, and A ,  = 0.7712. Numerical calculations for other E in ( 0 , l )  reveal 
that A,/A,  exhibits deviations similar to those for a circular arc and tends to 
unity at E = 1 ,  where the profile becomes a semi-circle. 

Finned semi-circle 
A rather extreme example is provided by a thin, vertical plate of height h - a 
mounted on top of a semi-circular obstacle (so that the overall height is h) .  
Mapping this configuration on the unit circle, we obtain 

A ,  = &(h2+~*h-2)  (A 13) 

and 

The latter ratio has a maximum value of 1.207 a t  a/h = 0.645. Circumscribing an 
ellipse (b, = a, h, = h),  we find that A,, > A ,  > A ,  for all a/h.  

We infer from the preceding examples, as summarized in table 1 ,  that the 
approximation (4.14) to the dipole form A ,  is likely to be within 20 yo of the correct 
value and is typically, although not always, a better approximation than either 
of the bounds of (4 .13) .  

Appendix B. Channel of finite height 
We consider the modification of the preceding formulation for a channel of 

finite height H .  Choosing HIT, rather than b, as the characteristic length, we 
replace (1.1) by 

/3 = &/H, E = nh/H,  k = N H / n U ,  K = kc = N h / U .  (B la-d) 

We also replace (1 .5)  by the two boundary conditions 

and 
6(x,n) = 0 

6(x,y)+O (x+ -0). 
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Proceeding as in $ 2 ,  we take the finite-sine transform of (1 .3)  over y = (O,n), 
invoke (2 .4a)  at y = 0 and (B 2 )  at y = n, require the transform to satisfy (B 3 ) ,  
and invert the result to obtain [cf. ( 2 . l a ) l  

TW,Y) = 1 f ( 0 6 , ( x - O K  (B 4) 
- m  

where [cf. (Z . lS) ]  
K m 

i$(x, y) = - 2H(x)  (n/k,) sin (k,x) sin ny + 2 (n/a,) exp ( - a,l X I  ) sin ny, 
n = l  n=K+1 

(B 5 )  
k,  = (k2-n2)i ,  a, = (n2-IC2)*, K < k < K + 1 ,  (B 6 a , b , ~ )  

and K is the integral part of k. The dipole solution (B 5 )  is identical with that 
given originally by Drazin & Moore [1967, equation (5 .7)  with ,u = n therein]. 

Substituting (B 5 )  into (B 4 )  and letting x- foo,  we obtain the lee-wave field 
K m 

d(x,y) N - (2/n)  c (n/kn)sinnYS - w  f(t)sin{kn(x-t))dt ( x + a ) *  (B 7 )  
n = l  

The lee-wave drag is given by [Drazin & Moore’s equation (5.8) contains a 
numerical error] 

D = ( ~ ~ q H / n ) ~ ~ ( 6 ~ - ~ ~ + k Z 6 z ) d y  (x > 0). (B 8) 

Substituting (B 7) into (B 8), dividing by qh, and carrying out the y integration 
(we note that the contributions of the exponentially damped modes would have 
vanished identically at  this stage if the integration had been carried out for any 
positive value of x), we obtain 

K 

n = l  
c, = 2ns c n21P(kn)12, (B 9 )  

where P is the Fourier transform defined by (2 .3) .  
In  the planar approximation, E + O ,  we obtain (2.5), just as for the half-space. 

We emphasize that, under the present normalization, y(z) is the ratio of the 
obstacle height at a point Hx/n from the origin to  the maximum height h. 

We now consider the Rayleigh-scattering approximation, for which each of 
/?, E ,  and K ,  as defined by (B 1 a, b ,  d) ,  must be small. Remarking that the range of 
integration in (2 .3 )  is over x = O(p),  we obtain 

P(kn) +.Po = nA,/Hh (/?+ 0) ,  (B 10) 
where A ,  is the dipole form of C, defined precisely as in $4 (the effect of the upper 
channel wall is negligible in the Rayleigh-scattering approximation to the drag 
by virtue of the restriction E Q 1 ) .  Substituting (B 10) into (B 9 )  and summing 
the series, we obtain 

D +  jnK(K+ 9) (K  + 1 )  ( n / H ) 3 4 q  (p+ 0). (B 1 1 )  

Letting H - t c o  while holding b fixed, so that K-tco and ( n K / H ) - +  ( N / U ) ,  we 
recover (4 .8) .  

The limit k + co with /3 fixed implies that the channel may be approximated by 
a half-space, in which case the problem reduces to that considered in $ 5  if K also 
is fixed. 
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